Patients with leg length discrepancy (LLD) develop compensatory mechanisms, which result in kinematic alterations in the lower limbs and pelvis. We investigated these compensatory mechanisms. Seven normal subjects underwent three-dimensional (3-D) gait analysis using a CODA MPX 30(R) analyser. The subjects were fitted with raises of varying heights to one lower limb and then analysed in static and dynamic modes. Pelvic obliquity was the most common mechanism used to compensate for small degrees of leg length discrepancy up to 2.2 cm, particularly in static standing. With larger degrees of discrepancy, the subjects developed flexion of the knee of the longer leg. Compensatory mechanisms during walking were more complex and included a combination of kinematic changes at the pelvis, knee and ankle. We developed mathematical models for the compensatory mechanisms at all the three levels. We conclude that 3-D gait analysis is a useful tool in the assessment of patients with functional and structural leg length discrepancies.