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ABSTRACT
Model transformations (MTs) are key in model-driven engineer-
ing as they automate model manipulation. Their early verification
is essential because a bug in a MT may affect many projects us-
ing it. Still, there is a lack of analysis tools applicable to non-toy
transformations developed with practical MT languages.

To alleviate this problem, this paper presents AnATLyzer: a static
analysis tool for ATL MTs. The tool is able to detect a wide range
of non-trivial problems in ATL transformations by using constraint
solving to improve the analysis precision. It provides a live envi-
ronment integrated into Eclipse which allows checking and fixing
problems as the transformation is written. The environment is
highly configurable and provides facilities like quick fixes, visual-
izations, navigation shortcuts and problem explanations. We have
evaluated the tool over third-party MTs, obtaining good results.

The tool website is http://anatlyzer.github.io, and a video show-
casing its features is at https://youtu.be/bFpbZht7bqY
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1 INTRODUCTION
Model transformation (MT) is the main enabler of automation in
model-driven engineering (MDE) [19]. It is used to define all sorts
of model manipulations, like language conversions, model refine-
ments, refactorings, simulators, and code generators. Given the
prominent role of MTs, they need to be thoroughly tested to guar-
antee the reliability of any MDE-based solution [15].

MTs are typically encoded using dedicated rule-based transfor-
mation languages to describe the mappings between the input and
output model elements, or model rewritings. While there are many
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MT languages [7, 9, 12, 14], their development environments hardly
ever support the static analysis of transformations. Thus, languages
like ATL [9] and ETL [12] are popular to define MTs, but assessing
the correctness of these transformations is difficult. MT verifica-
tion is an active area of research [15], and much effort has been
spent in verifying transformations defined with formal languages
(e.g., based on graph transformation [7]). However, few verifica-
tion tools can be applied on non-toy transformations defined with
transformation languages widely used in practice. Compared to the
IDEs of mainstream programming languages, MT environments
are still rudimentary in terms of facilities to detect and fix errors,
and understanding transformation programs.

To address this shortcoming, we have developed AnATLyzer: a
static analysis tool for ATL transformations. ATL is one of the most
widely used MT languages, backed by a mature and efficient execu-
tion runtime [9]. In contrast to other verification approaches [4, 6],
AnATLyzer targets the full ATL language with the aim of being a
truly practical tool. Its main features are the following: (1) its static
analysis identifies more than 50 types of problems, is highly con-
figurable, and is powered by constraint solving, including live and
batch analysis; (2) integration with Eclipse and the standard ATL
editor; (3) catalogue of quick fixes, including speculative ones; (4)
different visualizations to help understanding the transformation
and its errors; (5) programmatic API and extension capabilities.
This paper presents AnATLyzer from the transformation developer
perspective, and evaluates its analysis capabilities. Technical details
of the static analysis and quick fixes can be found at [16, 17].

2 ATL MODEL TRANSFORMATIONS
This paper deals with model-to-model transformations, a special
case of MT to transform an input model conforming to a source
meta-model, into an output model conforming to a target meta-
model. Such MTs are useful in different scenarios, like model analy-
sis (e.g., transform a process model into a Petri net for verification),
model refinement (e.g., create a Java model out of a UML model),
model abstraction (e.g., in reverse engineering, to create models
from code), or to bridge technological spaces (e.g., create a BPMN
model from a UML activity diagram).

As a concrete scenario, we focus on a reverse engineering pro-
cess transforming a KDM [11] model into a UML class diagram.
The Knowledge Discovery Metamodel (KDM) is an OMG standard
for representing legacy code in a neutral way. Listing 1 shows an
excerpt of an ATL MT, part of the Modisco project [2], performing
this task. While the listing only shows 3 simplified rules (slightly
modified for illustration), the complete transformation has 31 rules
(579 LOC). Rule ModuleToPackage (lines 1–3) creates a UML package
for every KDM module. ClassUnitToClass (lines 5–12) creates a UML
Class for every KDM ClassUnit. MemberUnitToProperty (lines 14–16)
creates a UML Property object (e.g., an attribute) and its lower and
upper cardinality objects for each KDM MemberUnit.
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1 ruleModuleToPackage {
2 from src : kdm!Module
3 to tgt : uml!Package (

✿✿✿✿✿✿✿✿
packagedElement

✿✿
←

✿✿
src.

✿✿✿✿✿✿
codeElement ) }

4
5 rule ClassUnitToClass {
6 from src : kdm!ClassUnit (
7 not src.refImmediateComposite().oclIsTypeOf(kdm!StorableUnit) )
8 to tgt : uml!Class (
9 name←

✿
src
✿
.
✿✿✿
model.

✿✿✿
name+src.name,

10 visibility← src→getVisibility(),
11

✿✿✿✿✿✿✿✿
ownedAttribute

✿✿
←

✿
src
✿
.
✿✿✿✿✿✿
codeElement

✿
→
✿✿✿
select(

✿
e |
✿
e
✿
.
✿✿✿✿✿
oclIsKindOf

✿
(
✿✿
kdm!

✿✿✿✿✿✿✿
DataElement))

12 ) }
13
14 ruleMemberUnitToProperty {
15 from src : kdm!MemberUnit
16 to tgt : uml!Property ( ), //... bindings and other object creations omitted }

Listing 1: Excerpt of KDM to UML transformation. Issues
underlined according to their type (

✿✿✿✿
Error, Style warning)

ATL
trafo.

meta-
models

1: type
checking TDG

potential

problems
errors,

warnings

3: transf. analysis
2: create

dep. graph

annot.
ATL

model

Yes! Confirm error

4: constraint
solving

witness
found?

No! Discard error

Figure 1: Static analysis process

Each rule declares a matching pattern with one or more source
objects (“from” clause), and creates objects in the output model
(“to” clause). Rules may define filter conditions to exclude some
matches. For example, line 7 restricts the applicability of the rule
to ClassUnit objects not contained in any StorableUnit (i.e., avoid
transforming inner classes). The features of the created target ob-
jects are initialized via rule bindings. For features with primitive
type, these are just assignments (e.g., line 10). For references (e.g.,
line 3), an implicit resolution mechanism assigns to the reference
the target objects resulting from the transformation of the source
objects selected by the right-hand side of the binding. Typically,
non-primitive bindings involve navigating the source model, select-
ing objects using OCL expressions. ATL supports other kinds of
rules, like lazy rules which must be called explicitly, and auxiliary
operations called helpers. Rules need to be exclusive; otherwise, if
two rules match the same source object, a runtime error is raised.

The listing has some problems discussed in the rest of the paper,
but the standard ATL environment reports none. In general, MTs
should meet the following quality attributes: Q1: is the transfor-
mation correctly typed w.r.t. to the source meta-model? Q2: do the
generated models conform to the target meta-model (including its
invariants)? Q3: are there conflicting or missing rules? The stan-
dard ATL environment does not help in answering Q2 and Q3, and
gives poor support for Q1. The next section shows how AnATLyzer
improves this situation.

3 ANATLYZER
AnATLyzer is an Eclipse plug-in that extends the basic ATL editor
with new features, including automatic reporting of errors detected
by static analysis. Fig. 1 depicts its analysis process.

Table 1: Some of the problems detected by AnATLyzer.

Error description Kind Time Solver Qu.
1: Feature or operation not found typing live no Q1
2: Incoherent variable declaration typing live no Q1
3: Access over undefined receptor navigation live maybe Q1
4: No binding for compulsory target feature tgt. integrity live no Q2
5: Binding resolved by rule with invalid target tgt. integrity live maybe Q2
6: Unresolved binding rules live maybe Q3
7: Rule conflict rules batch maybe Q3
8: Target invariant violation tgt. integrity batch yes Q2

Given an ATL MT, the first step is its type checking based on
a type inference engine for OCL, which annotates each node of
the abstract syntax tree with the inferred type. From this, a trans-
formation dependence graph (TDG) is built. A TDG is similar to a
program dependence graph but including links between bindings
and their resolving rules. At this point, the analysis outputs two
kinds of results: (i) actual errors and warnings, which are reported
to the user; (ii) “potential problems” or smells that cannot be stati-
cally confirmed to be errors (e.g., problem in line 3 of Listing 1) but
that can be verified using a model finder (a constraint solver over
models). Hence, for each potential problem, we compute its OCL
path condition (i.e., an OCL expression stating the requirements
for an input model to make the MT fail at the problem’s location)
and use it as input of the finder. If a model is found, the problem
is confirmed and reported to the user; otherwise, we discard the
problem. Interestingly, we use a similar approach to refine the TDG
deleting impossible binding-rule links. This improves the accuracy
of the visualizations and program navigation actions.

Next, we review the main features of the tool.
Detecting errors. AnATLyzer identifies more than 50 problems
types. Table 1 shows some of the most relevant ones. Problems
#1, #2 and #3 report typing errors and OCL navigation issues, and
hence contribute to answer Q1. Notably, checking error #3 some-
times requires using constraint solving. As an example, AnATLyzer
reports an error #3 in line 9 of Listing 1 because property model is
optional, and hence, the expression will fail ifmodel is not initialized.
Problems #4, #5 and #8 aim to answer Q2 by analysing whether the
MT always produces models conformant to the target meta-model.
For instance, an error #5 is signalled in line 3 of the listing because
the type of packagedElement is Package, but if src.codeElement contains
a MemberUnit, packagedElement will be incorrectly assigned a Prop-
erty (i.e., the target object in which MemberUnit was transformed
by rule MemberUnitToProperty). Problems #6 and #7 signal rule
errors, which requires analysing how related rules cover different
fragments of the input model (i.e., Q3). For instance, AnATLyzer
reports a potential error #6 in line 11 as there may be objects in the
right-hand side of the binding not handled by any rule. This is a
smell of incompleteness of the transformation. The problem can
be confirmed or discarded using the solver to check whether the
OCL expressions in the rule’s filter and the binding prevent this
possibility. Moreover, the analysis takes into account pre-conditions
expressed in OCL, either declared in the transformation or encoded
in an Ecore meta-model. See [17] for details on detected errors.

Fig. 2 shows a screenshot of AnATLyzer. The detected problems
are highlighted in the ATL editor (label 1, underlined and with error
markers) and classified in the Analysis View (label 2).
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Figure 2: Screenshot of AnATLyzer.

Live analysis. The static analysis performed by AnATLyzer is fast
enough to be executed whenever a transformation file is saved
(see Sect. 4). The constraint solving phase is also fast due to an
internal meta-model pruning optimization, but its performance
is less predictable and may interrupt the developer workflow. To
address this issue, we launch the solver in a background process
with low priority to avoid interrupting the editing process, and
classify the potential problems in the Analysis View into Running
(currently being checked by the solver), Confirmed (the solver has
confirmed the problem), andDiscarded (spurious problem according
to the solver).

Problem checking is incremental upon transformation changes,
as the solver is launched to check a potential problem only if the
changes may affect the result of the last check. This is done by
computing a “problem hash” based on the problem’s path condition.

Finally, users can configure the solver by defining a search scope
(minimum and maximum number of model objects).
Batch analysis. Some kinds of analysis may take more than a few
milliseconds to complete as they heavily rely on the solver. These
analyses must be performed on demand by double-clicking on their
icon (label 3). There are 4 such analyses. Rule conflict analysis checks
that a transformation does not contain overlapping rules, i.e., its
rules will not match the same input objects. Target invariant analysis
checks whether any possible output model of a transformation will
fulfil a set of provided post-conditions, target meta-model invari-
ants and transformation contracts expressed in OCL. This analysis
is based on rewriting target constraints as source constraints [18].
Child stealing analysis checks that no object changes its container
at runtime. Unconnected components reports whether the transfor-
mation generates disconnected subgraphs, which is a smell of bugs
caused by the lack of initialization of some target references.
Fixing problems. AnATLyzer provides a comprehensive catalogue
of more than 100 quick fixes to help developers easily correct the
detected problems [16]. Given a problem, the user can access the
available quick fixes with CTRL+1 (Fig. 2; label 4). When the best
strategy to fix an error is not straightforward, the user can query
a dedicated dialog in which quick fixes are executed speculatively

1

2

Figure 3: Screenshot of visualization facilities.

to show the state of the transformation if a given quick fix was
applied. Moreover, the IDE provides an explanation for each error,
in order to help less experienced developers understand its causes.
Transformation comprehension. For any moderately complex
MT, it can be difficult to grasp the accepted input model configura-
tions, the relations between its rules, and the connections between
the objects produced and consumed by the rules. This issue is exac-
erbated in ATL due to its implicit rule resolution mechanism.

To help comprehend a MT, AnATLyzer can render it as a graph
where rules are nodes and bindings are edges, and where the rules
a binding resolves are explicit (Fig. 3; label 2). At the program level,
the shortcut CTRL+B allows jumping from a binding to its resolving
rules, and vice versa. This navigation is very precise as it is derived
from a filtered version of the TDG using constraint solving.

Another recurrent task involves understanding the relations be-
tween source and target elements. Hence, AnATLyzer provides a view
in which source and target meta-model elements are connected,
offering a high-level view of the mappings (Fig. 3; label 1).

To improve error comprehension, given a reported error, AnAT-
Lyzer can provide a source model (i.e., a witness) that would make
the error happen at runtime. Such a witness is generated by con-
straint solving, can be visualized, and can be exported into XMI to
use it as input to the transformation for testing.
Configuration. Reporting too many errors and warnings may
overwhelm some users. For this reason, AnATLyzer permits a fine-
grained configuration of the problems to be checked and reported in
live mode, and which ones defer to the batch mode. It also provides
pre-defined profiles like: “check all problems”, “do not check warn-
ings”, ”delay to batch mode if require constraint solving”, etc. The
problems scheduled to be executed in batch mode can be checked
by clicking on the Delayed analysis button (Fig. 2; label 3).

4 EVALUATION
In [17], we evaluated the accuracy and performance of AnATLyzer
on 101 MTs gathered from the ATL Zoo [17], and others generated
via mutation. The results showed that: a) there were very few false
positives and negatives due to the use of constraint solving, b)
84% of the potential problems were successfully validated by the
constraint solver (i.e., AnATLyzer has good support for a variety of
ATL constructs) and c) performance was generally good. However,
a threat to the validity of the results is that the ATL Zoo might
not be representative of the MTs used in industry, as some of them
have been developed by non-experienced people.
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Table 2: Setup and results of evaluation.

T1: Java2Kdm T2: Kdm2Uml T3: Syml2Modelica Total
Rules/helpers/SLOCs 109/7/2003 31/20/579 37/74/988 -
Source/target classes 146/320 320/263 378/47 -
Q1: source errors 48 22 190 260
Q2: target errors 48 25 29 102
Q3: rule behaviour 48 13 1 62
Other problems 5 0 2 7
Total 149 60 222 431
Solver executions 342 48 142 532
Successful executions 146 26 8 180
Timeouts (2.5 secs) 53 0 0 53
Errors confirmed 89 18 5 112
Parsing/analysis time [secs.] 1.4/0.7 0.4/0.2 1.1/0.7 -
Solver t. (total/median) [secs.] 180.0/0.08 4.5/0.02 32.7/0.02 -

Hence, in this paper, we evaluate AnATLyzer with 3 large third-
party industrial MTs: T1: Java2Kdm and T2: Kdm2Uml are part
of MoDisco, an Eclipse project for the modernization of legacy
systems, and T3: SysML2Modelica is an implementation of an OMG
standard to integrate SysML and Modelica [20]. Table 2 shows the
transformation size and the evaluation results. AnATLyzer uncovers
many errors (431) which were unnoticed by the developers, 112 of
them discovered by constraint solving and involving mostly rule-
related errors. As these MTs are supposed to have been thoroughly
tested, the results evidence a remarkable usefulness of AnATLyzer for
industrial practice. Regarding the ability to map complex programs
to the input format of the solver, AnATLyzer provides a reasonable
mapping for T1 and T2 up to some limitations of the solver to handle
string operations; however, for T3, we found a limitation regarding
the translation of UML profiles, whose support is future work.

Regarding performance, the main bottleneck is the parser, which
is based on the standard ATL parser (1 second). The analysis is
relatively fast (average 0.5 seconds), even for the largest MT. The
total time spent in checking problems with the solver is fairly large
for T1 due to the amount of problems to check. However, the median
(0.02 seconds) indicates that solving is normally fast. Moreover, it
is done in the background and can be cancelled by the user.

5 RELATEDWORK
While static analysis has been applied in graph transformation, e.g.,
to detect rule conflicts [7], its use to detect errors for MT languages
closer to programming languages, like ATL, is uncommon. As an
exception, VIATRA2 [21] performs static type checking to ensure
the parameters of rules are well-typed w.r.t. a meta-model. In our
case, we type-check ATL which is more challenging as it relies on
OCL, and produce witness models and fixes for the errors. Specific
to ATL, the static fault localization technique in [3] uses testing
to identify the rules causing contract violations. This technique
complements ours. In [22], the proposed Java Façade for ATL can
be used to build static analyses. We opted for a new API to integrate
explicit rule dependencies and error handling information.

Many works express MTs as transformation models [1] and
analyse them using model finding. E.g., [4] uses this approach to
check if an ATL transformation can yield models violating the
output meta-model constraints. In [5], MT properties are defined in
OCL and analysed with model finders. While these works assume
correctly typed ATL transformations, we focus on typing errors.

Most approaches to derive and rank quick fixes come from the
programming languages community. For instance, MintHint [10]

analyses statistical correlation to identify likely expressions in
patches, BugFix [8] learns from bugs previously fixed to delete
new bugs, and [13] visualizes fix alternatives for buffer overflows in
C code. However, few works propose quick fixes for MDE artefacts,
and none tackles MTs that we are aware of.

6 CONCLUSIONS
This paper has presented AnATLyzer, an advanced IDE for ATL,
which features a static analyser powered by constraint solving; and
an Eclipse plug-in with facilities for live and batch validation, quick
fixes, visualizations and navigation shortcuts. Our experiments
show that the tool can deal with large and realistic transformations
effectively, not being limited to “easy” subsets of ATL. AnATLyzer is
free software, available under EPL license.
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