Nutrient and Water Use Efficiency at Leaf Level of Cucumber Plants under Contrasting Soil Nutrient and Lignosulfonate Level †
Abstract
:1. Introduction
2. Experiments
2.1. Substrate Preparation and Plant Growth Conditions
2.2. Photosynthetic Parameters and Plant Biomass Measurements
2.3. Leaf Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Plant Biomass
3.2. Gas Exchange Parameters
3.3. Leaf Nutrient Content
3.4. Photosynthetic Nutrient Use Efficiency
3.5. Photosynthetic Water Use Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RAS | Russian Academy of Science |
LS | Lignosulfonate |
PPFD | Photosynthetic photon flux density |
SNA | Sufficient nutrient availability |
LNA | Low nutrient availability |
LMA | Leaf mass area |
PNUE | Photosynthetic N use efficiency |
PPUE | Photosynthetic P use efficiency |
PKUE | Photosynthetic K use efficiency |
PCaUE | Photosynthetic Ca use efficiency |
PMgUE | Photosynthetic Mg use efficiency |
PFeUE | Photosynthetic Fe use efficiency |
PMnUE | Photosynthetic Mn use efficiency |
PNaUE | Photosynthetic Na use efficiency |
WUE | Photosynthetic water use efficiency |
References
- Krasilnikov, P.V. Stable carbon compounds in soils: Their origin and functions. Eurasian Soil Sci. 2015, 48, 997–1008. [Google Scholar] [CrossRef]
- Butphu, S.; Rasche, F.; Cadisch, G.; Kaewpradit, W. Eucalyptus biochar application enhances Ca uptake of upland rice, soil available P, exchangeable K, yield, and N use efficiency of sugarcane in a crop rotation system. J. Plant Nutr. Soil Sci. 2020, 183, 58–68. [Google Scholar] [CrossRef]
- Ikkonen, E.; Chazhengina, S.; Butilkina, M.; Sidorova, V. Physiological response of onion (Allium cepa L.) seedlings to shungite application under two soil water regimes. Acta Physiol. Plant. 2021, 43, 76. [Google Scholar] [CrossRef]
- Carrasco, J.; Kovács, K.; Czech, V.; Fodor, F.; Lucena, J.J.; Vértes, A.; Hernández-Apaolaza, L. Influence of pH, iron source, and Fe/ligand ratio on iron speciation in lignosulfonate complexes studied using Mössbauer spectroscopy. Implications on their fertilizer properties. J. Agric. Food Chem. 2012, 60, 3331–3340. [Google Scholar] [CrossRef] [PubMed]
- Jiao, G.; Xu, Q.; Cao, S.; Peng, P.; She, D. Controlled-release fertilizer with lignin used to trap urea/hydroxymethylurea/urea-formaldehyde polymers. BioResources 2018, 13, 1711–1728. [Google Scholar] [CrossRef] [Green Version]
- Islas-Valdez, S.; López-Rayo, S.; Hristov-Emilov, H.; Hernández-Apaolaza, L.; Lucena, J.J. Assessing metal–lignosulfonates as fertilizers using gel filtration chromatography and high-performance size exclusion chromatography. Int. J. Biol. Macromol. 2020, 142, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Deng, Y.; Tang, J.; Chen, D.; Li, X.; Lin, Q.; Yin, G.; Zhang, M.; Hu, H. Potassium lignosulfonate as a washing agent for remediating lead and copper co-contaminated soils. Sci. Total Environ. 2019, 658, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lucena, P.; Tomasi, N.; Pinton, R.; Hernández-Apaolaza, L.; Lucena, J.J.; Stefano Cesco, S. Evaluation of 59Fe-lignosulfonates complexes as Fe-sources for plants. Plant Soil 2009, 325, 53–63. [Google Scholar] [CrossRef]
- Docquier, S.; Kevers, C.; Lambe, P.; Gaspar, T.; Dommes, J. Beneficial use of lignosulfonates in in vitro plant cultures: Stimulation of growth, of multiplication and of rooting. Plant Cell Tissue Organ Cult. 2007, 90, 285–291. [Google Scholar] [CrossRef]
- Stapanian, M.A.; Shea, D.W. Lignosulfonates: Effects on plant growth and survival and migration through the soil profile. Int. J. Environ. Stud. 1986, 27, 45–56. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tugnoli, V.; Righi, V.; Nardi, S. Effect of Commercial Lignosulfonate-Humate on Zea mays L. Metabolism. J. Agric. Food Chem. 2011, 59, 11940–11948. [Google Scholar] [CrossRef] [PubMed]
- Dorlodot, S.; Lutts, S.; Bertin, P. Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J. Plant Nutr. 2005, 28, 1–20. [Google Scholar] [CrossRef]
- Chapin, F.S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Evol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Poorter, H.; Evans, J.R. Photosynthetic nitrogen-use effciency of species that differ inherently in specic leaf area. Oecologia 1998, 116, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Waraich, E.A.; Ahmad, R.; Ashraf, M.Y.; Saifullah; Ahmad, M. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric. Scand. B Soil Plant Sci. Acta Agric. 2011, 61, 291–304. [Google Scholar] [CrossRef]
Variables | SNA | LNA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0LS | 1LS | 2.5LS | 5LS | 10LS | 0LS | 1LS | 2.5LS | 5LS | 10LS | |
Plant DM, g plant−1 | 1.96 ± 0.21 a | 2.08 ± 0.12 a | 2.03 ± 0.10 a | 1.80 ± 0.201 ab | 1.53 ± 0.12 b | 0.11 ± 0.00 c | 0.17 ± 0.02 c | 0.18 ± 0.02 c | 0.20 ± 0.02 c | 0.22 ± 0.02 c |
Leaf DM, g plant−1 | 1.11 ± 0.21 ab | 1.31 ± 0.07 a | 1.28 ± 0.06 a | 1.12 ± 0.11 a | 0.97 ± 0.06 b | 0.03 ± 0.00 c | 0.07 ± 0.01 c | 0.08 ± 0.01 c | 0.09 ± 0.01 c | 0.12 ± 0.02 c |
LMA, g m−2 | 36.2 ± 1.2 d | 34.0 ± 16 d | 42.2 ± 1.6 c | 42.3 ± 1.8 c | 39.3 ± 1.8 d | 44.4 ± 2.6 bc | 47.1 ± 1.3 bc | 49.2 ± 2.4 b | 56.3 ± 2.9 a | 59.9 ± 1.4 a |
An, μmol m−2 s−1 | 13.5 ± 0.6 a | 11.7 ± 0.8 b | 12.4 ± 0.7 ab | 12.4 ± 0.45 ab | 14.0 ± 0.4 a | 0.36 ± 0.05 d | 1.55 ± 0.31 cd | 1.33 ± 0.19 cd | 2.00 ± 0.11 c | 1.53 ± 0.27 cd |
Tr, mmol m−2 s−1 | 1.93 ± 0.1 a | 1.69 ± 0.16 a | 1.78 ± 0.20 a | 1.69 ± 0.06 a | 2.01 ± 0.07 a | 0.57 ± 0.10 c | 0.69 ± 0.07 cb | 0.63 ± 0.04 c | 0.92 ± 0.07 b | 0.84 ± 0.13 bc |
N, g kg−1 | 28.0 ± 3.4 b | 40.9 ± 2.2 a | 30.3 ± 5.5 ab | 28.7 ± 3.9 b | 27.4 ± 2.8 b | 33.7 | 16.0 | 14.1 | 9.5 | 17.0 |
P, g kg−1 | 2.1 ± 0.4 b | 3.4 ± 1.0 a | 2.6 ± 0.6 ab | 2.1 ± 0.3 b | 2.9 ± 0.3 ab | 1.3 | 1.2 | 1.7 | 0.8 | 1.6 |
K, g kg−1 | 14.6 ± 2.0 a | 16.6 ± 1.6 a | 17.1 ± 1.7 a | 14.3 ± 0.7 a | 15.7 ± 2.5 a | 10.5 | 8.4 | 8.7 | 8.0 | 9.1 |
Ca, g kg−1 | 11.8 ± 0.5 b | 14.0 ± 1.1 a | 11.5 ± 0.5 b | 10.4 ± 0.2 bc | 9.5 ± 0.7 c | 13.4 | 15.8 | 12.8 | 12.1 | 11.6 |
Mg, g kg−1 | 8.4 ± 1.0 ab | 9.7 ± 0.5 a | 8.2 ± 0.6 abc | 6.7 ± 0.4 bc | 6.3 ± 0.3 c | 5.4 | 5.9 | 5.2 | 4.6 | 3.9 |
Fe, mg kg−1 | 99.2 ± 16.7 a | 92.8 ± 8.4 a | 82.6 ± 2.5 a | 84.4 ± 5.8 a | 90.0 ± 9.8 a | 2077 | 1300 | 378 | 493 | 304 |
Mn, mg kg−1 | 954 ± 37 a | 365 ± 137 b | 196 ± 13.4 bc | 116 ± 27 c | 224 ± 10.0 bc | 960 | 203 | 134 | 90 | 220 |
Na, g kg−1 | 1.02 ± 0.1 c | 2.0 ± 0.2 c | 3.7 ± 0.3 b | 3.8 ± 0.3 b | 6.8 ± 0.7 a | 3.7 | 7.9 | 9.0 | 10.7 | 14.9 |
PNUE, μmol CO2 g−1 N s−1 | 18.2 ± 3.1 d | 7.8 ± 09 c | 11.0 ± 2.4 bc | 11.1 ± 2.3 bc | 12.0 ± 0.5 ab | 0.3 ± 0.0 d | 1.9 ± 0.3 d | 1.9 ± 0.3 d | 3.9 ± 0.2 d | 1.5 ± 0.3 d |
PPUE, μmol CO2 g−1 P s−1 | 261 ± 76 a | 91.4 ± 6 bc | 136 ± 35 b | 149 ± 25 b | 112 ± 5 b | 7 ± 1 d | 50 ± 7 cd | 15 ± 2 d | 44 ± 24 cd | 16 ± 3 d |
PKUE, μmol CO2 g−1 K s−1 | 0.028 ± 0.004 a | 0.020 ± 0.002 bc | 0.018 ± 0.002 c | 0.024 ± 0.001 ab | 0.023 ± 0.005 abc | 0.001 ± 0.000 d | 0.004 ± 0.001 d | 0.003 ± 0.001 d | 0.005 ± 0.000 d | 0.005 ± 0.000 d |
PCaUE, μmol CO2 g−1 Ca s−1 | 0.033 ± 0.002 a | 0.023 ± 0.001 c | 0.026 ± 0.002 bc | 0.028 ± 0.003 b | 0.035 ± 0.003 a | 0.002 ± 0.000 d | 0.002 ± 0.000 d | 0.002 ± 0.000 d | 0.003 ± 0.000 d | 0.002 ± 0.000 d |
PMgUE, μmol CO2 g−1 Mg s−1 | 0.048 ± 0.006 a | 0.033 ± 0.002 c | 0.037 ± 0.004 bc | 0.044 ± 0.003 ab | 0.052 ± 0.007 a | 0.002 ± 0.001 d | 0.005 ± 0.001 d | 0.005 ± 0.001 d | 0.008 ± 0.000 d | 0.007 ± 0.001 d |
PFeUE, μmol CO2 g−1 Fe s−1 | 4.16 ± 0.58 a | 3.42 ± 0.23 b | 3.60 ± 0.16 ab | 3.52 ± 0.356 ab | 3.74 ± 0.52 ab | 0.00 ± 0.00 c | 0.02 ± 0.00 c | 0.07 ± 0.01 c | 0.08 ± 0.00 c | 0.08 ± 0.01 c |
PMnUE, μmol CO2 g−1 Mn s−1 | 0.40 ± 0.02 df | 1.13 ± 0.27 c | 1.53 ± 0.12 b | 2.74 ± 0.27 a | 1.46 ± 0.15 b | 0.01 ± 0.00 f | 0.15 ± 0.02 df | 0.21 ± 0.03 df | 0.42 ± 0.02 d | 0.11 ± 0.02 f |
PNaUE, μmol CO2 g−1 Na s−1 | 0.440 ± 0.040 a | 0.160 ± 0.020 b | 0.080 ± 0.010 c | 0.080 ± 0.020 c | 0.050 ± 0.010 c | 0.003 ± 0.001 d | 0.004 ± 0.001 d | 0.003 ± 0.001 d | 0.004 ± 0.000 d | 0.002 ± 0.000 d |
WUE, μmol CO2 mmol H2O | 7.0 ± 0.2 a | 6.8 ± 0.4 a | 7.2 ± 0.5 a | 7.3 ± 0.1 a | 7.0 ± 0.3 a | 0.7 ± 0.1 c | 2.2 ± 0.2 b | 2.1 ± 0.2 b | 2.3 ± 0.2b | 1.9 ± 0.3 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikkonen, E.; Chazhengina, S.; Jurkevich, M. Nutrient and Water Use Efficiency at Leaf Level of Cucumber Plants under Contrasting Soil Nutrient and Lignosulfonate Level. Biol. Life Sci. Forum 2021, 4, 25. https://doi.org/10.3390/IECPS2020-08611
Ikkonen E, Chazhengina S, Jurkevich M. Nutrient and Water Use Efficiency at Leaf Level of Cucumber Plants under Contrasting Soil Nutrient and Lignosulfonate Level. Biology and Life Sciences Forum. 2021; 4(1):25. https://doi.org/10.3390/IECPS2020-08611
Chicago/Turabian StyleIkkonen, Elena, Svetlana Chazhengina, and Marija Jurkevich. 2021. "Nutrient and Water Use Efficiency at Leaf Level of Cucumber Plants under Contrasting Soil Nutrient and Lignosulfonate Level" Biology and Life Sciences Forum 4, no. 1: 25. https://doi.org/10.3390/IECPS2020-08611