Comparative Genomics of Histoplasma capsulatum and Prediction of New Vaccines and Drug Targets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Data
2.2. Identification of Intra-Species Conserved Non-Host Homologous Proteins
2.3. Identification of the Subcellular Location of Proteins
2.4. Analysis of Protein Features
2.5. Identification of Vaccine Candidates
2.6. Identification of Drug Targets
2.7. Comparison of Identified Vaccine Candidates and Drug Targets against the Newly Sequenced Genome of Histoplasma capsulatum and Available Transcriptomics Data
2.8. File Preparation and Molecular Docking Analysis
3. Results
3.1. Identification of Intra-Species Conserved Non-Host Homologous Proteins
3.2. Prediction of Subcellular Location
3.3. Prediction of Vaccine Candidates
3.4. Prediction of Drug Target Candidates
3.5. Comparison of Identified Vaccine Candidates and Drug Targets against the Newly Sequenced Genome
3.6. The Docking Analysis Found the Possible Best Drug Targets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emmons, C.W. Isolation of Histoplasma capsulatum from soil. Public Health Rep. 1949, 64, 892–896. [Google Scholar] [CrossRef]
- Di Salvo, A.F.; Ajello, L.; Palmer, J.W., Jr.; Winkler, W.G. Isolation of Histoplasma capsulatum from Arizona bats. Am. J. Epidemiol. 1969, 89, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.P. Histoplasma capsulatum molecular genetics, pathogenesis, and responsiveness to its environment. Fungal Genet. Biol. 2002, 35, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.A.; Jackson, B.R.; Haselow, D.; Fields, V.; Ireland, M.; Austin, C.; Signs, K.; Fialkowski, V.; Patel, R.; Ellis, P.; et al. Multistate epidemiology of histoplasmosis, United States, 2011–2014. Emerg. Infect. Dis. 2018, 24, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Falci, D.R.; Monteiro, A.A.; Braz Caurio, C.F.; Magalhães, T.C.O.; Xavier, M.O.; Basso, R.P.; Melo, M.; Schwarzbold, A.V.; Ferreira, P.R.A.; Vidal, J.E.; et al. Histoplasmosis, an underdiagnosed disease affecting people living with HIV/AIDS in Brazil: Results of a multicenter prospective cohort study using both classical mycology tests and Histoplasma Urine Antigen Detection. Open Forum Infect. Dis. 2019, 6, ofz073. [Google Scholar] [CrossRef]
- Araúz, A.B.; Papineni, P. Histoplasmosis. Infect. Dis. Clin. N. Am. 2021, 35, 471–491. [Google Scholar] [CrossRef]
- Pasqualotto, A.C.; Queiroz-Telles, F.; Chebabo, A.; Leitao, T.M.J.S.; Falci, D.R.; Xavier, M.O.; Bay, M.B.; Sprinz, E.; Dalla Lana, D.; Vincentini, A.P.; et al. The “Histoplasmosis Porto Alegre manifesto”—Addressing disseminated histoplasmosis in AIDS. PLoS Negl. Trop. Dis. 2023, 17, e0010960. [Google Scholar] [CrossRef]
- Ray, S.C.; Rappleye, C.A. Flying under the radar: Histoplasma capsulatum avoidance of innate immune recognition. Semin. Cell Dev. Biol. 2019, 89, 91–98. [Google Scholar] [CrossRef]
- Newman, S.L.; Lemen, W.; Smulian, A.G. Dendritic cells restrict the transformation of Histoplasma capsulatum conidia into yeasts. Med. Mycol. 2011, 49, 356–364. [Google Scholar] [CrossRef]
- Jones, G.S.; Sepúlveda, V.E.; Goldman, W.E. Biodiverse Histoplasma species elicit distinct patterns of pulmonary inflammation following sublethal infection. mSphere 2020, 5, e00742-20. [Google Scholar] [CrossRef]
- Gildea, L.A.; Morris, R.E.; Newman, S.L. Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. J. Immunol. 2001, 166, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Mittal, J.; Ponce, M.G.; Gendlina, I.; Nosanchuk, J.D. Histoplasma capsulatum: Mechanisms for pathogenesis. Curr. Top. Microbiol. Immunol. 2019, 422, 157–191. [Google Scholar] [CrossRef] [PubMed]
- Garfoot, A.L.; Rappleye, C.A. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis. FEBS J. 2016, 283, 619–633. [Google Scholar] [CrossRef]
- Brechting, P.J.; Rappleye, C.A. Histoplasma responses to nutritional immunity imposed by macrophage activation. J. Fungi 2019, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.L.; Tobόn, A.; Restrepo, A.; Queiroz-Telles, F.; Nucci, M. Epidemiology of endemic systemic fungal infections in Latin America. Med. Mycol. 2011, 49, 785–798. [Google Scholar] [CrossRef]
- Wheat, L.J.; Azar, M.M.; Bahr, N.C.; Spec, A.; Relich, R.F.; Hage, C. Histoplasmosis. Infect. Dis. Clin. N. Am. 2016, 30, 207–227. [Google Scholar] [CrossRef]
- Sepúlveda, V.E.; Williams, C.L.; Goldman, W.E. Comparison of phylogenetically distinct Histoplasma strains reveals evolutionarily divergent virulence strategies. mBio 2014, 5, e01376-14. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, C.A. Histoplasmosis: A clinical and laboratory update. Clin. Microbiol. Rev. 2007, 20, 115–132. [Google Scholar] [CrossRef]
- Franklin, A.D.; Larson, L.; Rauseo, A.M.; Rutjanawech, S.; Hendrix, M.J.; Powderly, W.G.; Spec, A. A comparison of presentations and outcomes of histoplasmosis across patients with varying immune status. Med. Mycol. 2021, 59, 624–633. [Google Scholar] [CrossRef]
- Gurney, J.W.; Conces, D.J. Pulmonary histoplasmosis. Radiology 1996, 199, 297–306. [Google Scholar] [CrossRef]
- Tobón, A.M.; Gómez, B.L. Pulmonary histoplasmosis. Mycopathologia 2021, 186, 697–705. [Google Scholar] [CrossRef]
- Limaye, A.P.; Connolly, P.A.; Sagar, M.; Fritsche, T.R.; Cookson, B.T.; Wheat, L.J.; Stamm, W.E. Transmission of Histoplasma capsulatum by organ transplantation. N. Engl. J. Med. 2000, 343, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- McKinsey, D.S. Treatment and prevention of histoplasmosis in adults living with HIV. J. Fungi. 2021, 7, 429. [Google Scholar] [CrossRef]
- Azar, M.M.; Loyd, J.L.; Relich, R.F.; Wheat, J.L.; Hage, C.A. Current concepts in the epidemiology, diagnosis, and management of histoplasmosis syndromes. Semin. Respir. Crit. Care Med. 2020, 41, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.T.; Zamith-Miranda, D.; Nosanchuk, J.D. Immunization strategies for the control of histoplasmosis. Curr. Trop. Med. Rep. 2019, 6, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kischkel, B.; Boniche-Alfaro, C.; Menezes, I.G.; Rossi, S.A.; Angeli, C.B.; de Almeida, S.R.; Palmisano, G.; Lopes-Bezerra, L.; Nosanchuk, J.D.; Taborda, C.P. Immunoproteomic and immunopeptidomic analyses of Histoplasma capsulatum reveal promiscuous and conserved epitopes among fungi with vaccine potential. Front. Immunol. 2021, 12, 764501. [Google Scholar] [CrossRef]
- Kischkel, B.; Rossi, S.A.; Santos, S.R.; Nosanchuk, J.D.; Travassos, L.R.; Taborda, C.P. Therapies and vaccines based on nanoparticles for the treatment of systemic fungal infections. Front. Cell. Infect. Microbiol. 2020, 10, 463. [Google Scholar] [CrossRef]
- Mendoza, S.R.; Liedke, S.C.; Noval, C.R.L.; Ferreira, M.D.S.; Gomes, K.X.; Honorato, L.; Nimrichter, L.; Peralta, J.M.; Guimarães, A.J. In vitro and in vivo efficacies of Dectin-1-Fc(IgG)(s) fusion proteins against invasive fungal infections. Med. Mycol. 2022, 60, myac050. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef]
- McGeoch, D.J. On the predictive recognition of signal peptide sequences. Virus Res. 1985, 3, 271–286. [Google Scholar] [CrossRef]
- Consortium, T.U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2018, 47, D506–D515. [Google Scholar] [CrossRef]
- Zhang, R.; Ou, H.Y.; Zhang, C.T. DEG: A database of essential genes. Nucleic Acids Res. 2004, 32, D271–D272. [Google Scholar] [CrossRef]
- Gilmore, S.A.; Voorhies, M.; Gebhart, D.; Sil, A. Genome-wide reprogramming of transcript architecture by temperature specifies the developmental states of the human pathogen Histoplasma. PLoS Genet. 2015, 11, e1005395. [Google Scholar] [CrossRef]
- Rodriguez, L.; Voorhies, M.; Gilmore, S.; Beyhan, S.; Myint, A.; Sil, A. Opposing signaling pathways regulate morphology in response to temperature in the fungal pathogen Histoplasma capsulatum. PLoS Biol. 2019, 17, e3000168. [Google Scholar] [CrossRef]
- Edwards, J.A.; Chen, C.; Kemski, M.M.; Hu, J.; Mitchell, T.K.; Rappleye, C.A. Histoplasma yeast and mycelial transcriptomes reveal pathogenic-phase and lineage-specific gene expression profiles. BMC Genom. 2013, 14, 695. [Google Scholar] [CrossRef] [PubMed]
- Fährrolfes, R.; Bietz, S.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Otto, T.; Volkamer, A.; Rarey, M. Proteins Plus: A web portal for structure analysis of macromolecules. Nucleic Acids Res. 2017, 45, W337–W343. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef]
- Rodrigues, T.C.V.; Jaiswal, A.K.; Sarom, A.; Oliveira, L.C.; Oliveira, C.J.F.; Ghosh, P.; Tiwari, S.; Miranda, F.M.; Benevides, L.J.; Azevedo, V.A.C.; et al. Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: A causative agent of pneumonia. R. Soc. Open Sci. 2019, 6, 190907. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol. 2000, 3, 445–450. [Google Scholar] [CrossRef]
- Rappuoli, R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 2001, 19, 2688–2691. [Google Scholar] [CrossRef] [PubMed]
- Vivona, S.; Bernante, F.; Filippini, F. NERVE: New enhanced reverse vaccinology environment. BMC Biotechnol. 2006, 6, 35. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Adenis, A.A.; Aznar, C.; Couppie, P. Histoplasmosis in HIV-Infected patients: A Review of new developments and remaining gaps. Curr. Trop. Med. Rep. 2014, 1, 119–128. [Google Scholar] [CrossRef]
- Melzani, A.; Michel, R.R.S.; Ntab, B.; Djossou, F.; Epelboin, L.; Nacher, M.; Blanchet, D.; Demar, M.; Couppie, P.; Adenis, A. Incidence and trends in immune reconstitution inflammatory syndrome associated with Histoplasma capsulatum among people living with human immunodeficiency virus: A 20-year case series and literature review. Clin. Infect. Dis. 2020, 70, 643–652. [Google Scholar] [CrossRef]
- Lee, J.H.; Slifman, N.R.; Gershon, S.K.; Edwards, E.T.; Schwieterman, W.D.; Siegel, J.N.; Wise, R.P.; Brown, S.L.; Udall, J.N., Jr.; Braun, M.M. Life-threatening histoplasmosis complicating immunotherapy with tumor necrosis factor alpha antagonists infliximab and etanercept. Arthritis Rheum. 2002, 46, 2565–2570. [Google Scholar] [CrossRef]
- Allendörfer, R.; Brunner, G.D.; Deepe, G.S. Complex requirements for nascent and memory immunity in pulmonary histoplasmosis. J. Immunol. 1999, 162, 7389–7396. [Google Scholar] [CrossRef]
- Wuthrich, M.; Filutowicz, H.I.; Warner, T.; Deepe, G.S.; Klein, B.S. Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: Implications for vaccine development in immune-deficient hosts. J. Exp. Med. 2003, 197, 1405–1416. [Google Scholar] [CrossRef]
- Allen, H.L.; Deepe, G.S. B cells and CD4-CD8-T cells are key regulators of the severity of reactivation histoplasmosis. J. Immunol. 2006, 177, 1763–1771. [Google Scholar] [CrossRef]
- Scheckelhoff, M.R.; Deepe, G.S., Jr. Pulmonary V beta 4+ T cells from Histoplasma capsulatum-infected mice respond to a homologue of Sec31 that confers a protective response. J. Infect. Dis. 2006, 193, 888–897. [Google Scholar] [CrossRef]
- Gomez, A.M.; Rhodes, J.C.; Deepe, G.S. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells. Infect. Immun. 1991, 59, 330–336. [Google Scholar] [CrossRef]
- Gomez, F.J.; Gomez, A.M.; Deepe, G.S. Protective efficacy of a 62-Kilodalton antigen, HIS-62, from the cell wall and cell membrane of Histoplasma capsulatum yeast cells. Infect. Immun. 1991, 59, 4459–4464. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.J.; Gomez, A.M.; Deepe, G.S. An 80-Kilodalton antigen from Histoplasma capsulatum that has homology to Heat Shock Protein 70 induces cell- mediated immune responses and protection in mice. Infect. Immun. 1992, 60, 2565–2571. [Google Scholar] [CrossRef]
- Gomez, F.J.; Allendoerfer, R.; Deepe, G.S. Vaccination with recombinant Heat Shock Protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis. Infect. Immun. 1995, 63, 2587–2595. [Google Scholar] [CrossRef]
- Scheckelhoff, M.; Deepe, G.S. A deficiency in gamma interferon or interleukin-10 modulates T-Cell-dependent responses to heat shock protein 60 from Histoplasma capsulatum. Infect. Immun. 2005, 73, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Deepe, G.S.; Durose, G.G. Immunobiological activity of recombinant H antigen from Histoplasma capsulatum. Infect. Immun. 1995, 63, 3151–3157. [Google Scholar] [CrossRef]
- Deepe, G.S.; Gibbons, R. Protective efficacy of H antigen from Histoplasma capsulatum in a murine model of pulmonary histoplasmosis. Infect. Immun. 2001, 69, 3128–3134. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Lin, J.S.; Huang, J.H.; Wu, S.Y.; Chu, C.L.; Kung, J.T.; Wu-Hsieh, B.A. Immunization with apoptotic phagocytes containing Histoplasma capsulatum activates functional CD8(+) T cells to protect against histoplasmosis. Infect. Immun. 2011, 79, 4493–4502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepe, G.S.; Buesing, W.R.; Ostroff, G.R.; Abraham, A.; Specht, C.A.; Huang, H.; Levitz, S.M. Vaccination with an alkaline extract of Histoplasma capsulatum packaged in glucan particles confers protective immunity in mice. Vaccine 2018, 36, 3359–3367. [Google Scholar] [CrossRef]
- Khan, T.; Suleman, M.; Ali, S.S.; Sarwar, M.F.; Ali, I.; Ali, L.; Khan, A.; Rokhan, B.; Wang, Y.; Zhao, R.; et al. Subtractive proteomics assisted therapeutic targets mining and designing ensemble vaccine against Candida auris for immune response induction. Comput. Biol. Med. 2022, 145, 105462. [Google Scholar] [CrossRef]
- Pizza, M.; Scarlato, V.; Masignani, V.; Giuliani, M.M.; Aricò, B.; Comanducci, M.; Jennings, G.T.; Baldi, L.; Bartolini, E.; Capecchi, B.; et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000, 287, 1816–1820. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, P.C.; Nakayasu, E.S.; Rodrigues, M.L.; Frases, S.; Casadevall, A.; Zancope-Oliveira, R.M.; Almeida, I.C.; Nosanchuk, J.D. Vesicular transport in Histoplasma capsulatum: An effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol. 2008, 10, 1695–1710. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Nimrichter, L.; Oliveira, D.L.; Frases, S.; Miranda, K.; Zaragoza, O.; Alvarez, M.; Nakouzi, A.; Feldmesser, M.; Casadevall, A. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot. Cell 2007, 6, 48–59. [Google Scholar] [CrossRef]
- Nosanchuk, J.D.; Nimrichter, L.; Casadevall, A.; Rodrigues, M.L. A role for vesicular transport of macromolecules across cell walls in fungal pathogenesis. Commun. Integr. Biol. 2008, 1, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.J.; de Cerqueira, M.D.; Nosanchuk, J.D. Surface architecture of Histoplasma capsulatum. Front Microbiol. 2011, 2, 225. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.C.V.; Jaiswal, A.K.; Lemes, M.R.; da Silva, M.V.; Sales-Campos, H.; Alcântara, L.C.J.; Tosta, S.F.O.; Kato, R.B.; Alzahrani, K.J.; Barh, D.; et al. An immunoinformatics-based designed multi-epitope candidate vaccine (mpme-VAC/STV-1) against Mycoplasma pneumoniae. Comput. Biol. Med. 2022, 142, 105194. [Google Scholar] [CrossRef]
- Jalal, K.; Abu-Izneid, T.; Khan, K.; Abbas, M.; Hayat, A.; Bawazeer, S.; Uddin, R. Identification of vaccine and drug targets in Shigella dysenteriae sd197 using reverse vaccinology approach. Sci. Rep. 2022, 12, 251. [Google Scholar] [CrossRef]
- Noori Goodarzi, N.; Bolourchi, N.; Fereshteh, S.; Soltani Shirazi, A.; Pourmand, M.R.; Badmasti, F. Investigation of novel putative immunogenic targets against Staphylococcus aureus using a reverse vaccinology strategy. Infect. Genet. Evol. 2021, 96, 105149. [Google Scholar] [CrossRef]
- Alizadeh, M.; Amini-Khoei, H.; Tahmasebian, S.; Ghatrehsamani, M.; Ghatreh Samani, K.; Edalatpanah, Y.; Rostampur, S.; Salehi, M.; Ghasemi-Dehnoo, M.; Azadegan-Dehkordi, F.; et al. Designing a novel multi-epitope vaccine against Ebola virus using reverse vaccinology approach. Sci. Rep. 2022, 12, 7757. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Singh, A.; Upadhyay, A.K.; Mannan, M.A. Design of a multi-epitope vaccine against the pathogenic fungi Candida tropicalis using an in silico approach. J. Genet. Eng. Biotechnol. 2022, 20, 140. [Google Scholar] [CrossRef]
- Johnson, P.C.; Wheat, L.J.; Cloud, G.A.; Goldman, M.; Lancaster, D.; Bamberger, D.M.; Powderly, W.G.; Hafner, R.; Kauffman, C.A.; Dismukes, W.E. U.S. National Institute of Allergy and Infectious Diseases Mycoses Study Group. Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann. Intern. Med. 2002, 137, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Cole, G.T.; Hung, C.Y.; Sanderson, S.D.; Hurtgen, B.J.; Wüthrich, M.; Klein, B.S.; Deepe, G.S.; Ostroff, G.R.; Levitz, S.M. Novel strategies to enhance vaccine immunity against coccidioidomycosis. PLoS Pathog. 2013, 9, e1003768. [Google Scholar] [CrossRef] [PubMed]
- Garfoot, A.L.; Zemska, O.; Rappleye, C.A. Histoplasma capsulatum depends on de novo vitamin biosynthesis for intraphagosomal proliferation. Infect. Immun. 2014, 82, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assembly ID | Strain | Size (Mb) | GC% | Protein # | GenBank Number |
---|---|---|---|---|---|
ASM15011v1 | G186AR | 30.4 | 44.5 | 9.253 | GCA_000150115.1 |
ASM15103v1 | H143 | 38.9 | 41.5 | 9.547 | GCA_000151035.1 |
ASM15100v2 | H88 | 37.9 | 42 | 9.445 | GCA_000115005.2 |
GCA_000313325.1 | Tmu | 46.1 | 39.4 | * | GCA_000313325.1 |
Localization | Number of Proteins |
---|---|
Secreted protein | 45 |
Membrane protein | 49 |
Cytoplasmic protein | 224 |
Ribosomal protein | 114 |
Nuclear protein | 344 |
Total | 776 |
Protein ID | Gene Product | Limiar VaxiJen (>0.51) | Localization | TMHMM | Lenght (AA) | MW (kDa) |
---|---|---|---|---|---|---|
EEH10718.1 | Hypothetical protein | 0.5642 | MP | 14 | 759 | 81.86 |
EEH11056.1 | Hypothetical protein | 0.5578 | MP | 10 | 450 | 50.14 |
EEH04925.1 | Hypothetical protein | 0.5507 | SP | 0 | 510 | 58.28 |
EEH09124.1 | Beta-1,3-Glucanosyltransferase | 0.5239 | MP | 1 | 527 | 57.39 |
Protein ID | MHOLline G2 Group | Protein Name | Functions (MF-Molecular Function, BP-Biological Process) |
---|---|---|---|
EEH02668.1 | High | 6,7-dimethyl-8-ribityllumazine synthase | MF-6,7-dimethyl-8-ribityllumazine synthase activity. BP-riboflavin biosynthetic process. |
EEH08858.1 | High | Chorismate synthase | MF-Chorismate synthase activity. BP-Aromatic amino acid family biosynthetic process, Chorismate biosynthetic process |
EEH05968.1 | High | Imidazole glycerol phosphate synthase hisHF | MF-Glutaminase activity, Imidazole glycerol-phosphate synthase activity, Oxo-acid-lyase activity. BP-Glutamine metabolic process, Histidine biosynthetic process. |
EEH04487.1 | Good | Uricase | MF-Urate oxidase activity. BP-Purine nucleobase metabolic process, Urate catabolic process. |
Locus Tag/Name | ZINC Id | Binding Affinity (Kcal/mol) | Hydrogen Bonds | Drug Score | Interactive Residues |
---|---|---|---|---|---|
EEH02668.1/6.7-dimethyl-8-ribityllumazine synthase | ZINC03841136 | −10.1 | 4 | 0.68 | ASN 23, TRP 57, ILE 93, ILE 93 |
EEH04487.1/Uricase | ZINC04235449 | −10.0 | 2 | 0.81 | ASN 140, PHE 175 |
EEH05968.1/Imidazole glycerol phosphate synthase | ZINC04236030 | −9.7 | 1 | 0.8 | ASP 186 |
EEH08858.1/Chorismate synthase | ZINC03840440 | −12.1 | 3 | 0.8 | THR 97, 332, HIS 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, P.C.S.; Roque, B.S.; Felice, A.G.; Jaiswal, A.K.; Tiwari, S.; Azevedo, V.; Silva-Vergara, M.L.; de Castro Soares, S.; Ferreira-Paim, K.; Fonseca, F.M. Comparative Genomics of Histoplasma capsulatum and Prediction of New Vaccines and Drug Targets. J. Fungi 2023, 9, 193. https://doi.org/10.3390/jof9020193
Almeida PCS, Roque BS, Felice AG, Jaiswal AK, Tiwari S, Azevedo V, Silva-Vergara ML, de Castro Soares S, Ferreira-Paim K, Fonseca FM. Comparative Genomics of Histoplasma capsulatum and Prediction of New Vaccines and Drug Targets. Journal of Fungi. 2023; 9(2):193. https://doi.org/10.3390/jof9020193
Chicago/Turabian StyleAlmeida, Paula Cristina Silva, Bruno Stelmastchuk Roque, Andrei Giacchetto Felice, Arun Kumar Jaiswal, Sandeep Tiwari, Vasco Azevedo, Mario León Silva-Vergara, Siomar de Castro Soares, Kennio Ferreira-Paim, and Fernanda Machado Fonseca. 2023. "Comparative Genomics of Histoplasma capsulatum and Prediction of New Vaccines and Drug Targets" Journal of Fungi 9, no. 2: 193. https://doi.org/10.3390/jof9020193