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Simple Summary: Pulmonary hypertension (PH) is a progressive and refractory vascular disease
in both dogs and humans. The soluble guanylate cyclase stimulator riociguat is a relatively novel
pulmonary vasodilator used for the treatment of PH in human medicine. Although riociguat may
have beneficial effects in the treatment of PH in dogs, there is a lack of basic studies on its clinical
application in veterinary medicine. Thus, the aim of this study was to examine the effects of riociguat
on the contractility of an isolated canine pulmonary artery (PA) and the hemodynamics of acute
PH model dogs. In an isolated canine PA, riociguat endothelium independently increased cyclic
guanosine-3′,5′-monophosphate (cGMP) levels and reduced vasocontractile endothelin-1-induced
contraction. Moreover, riociguat inhibited the increased pulmonary vascular resistance and elevated
PA pressure in thromboxane A2 analog U46619-induced PH model dogs. In contrast, riociguat had
no effect on basal systemic arterial pressure. These results suggest that riociguat can inhibit the
elevation of PA pressure through PA relaxation via an endothelium-independent increase in cGMP
levels in dogs with PH. Riociguat may be a novel and safe therapeutic agent for the treatment of PH
in veterinary medicine.

Abstract: Soluble guanylate cyclase (sGC) stimulator riociguat is a relatively novel therapeutic
agent for pulmonary hypertension (PH) in human medicine. Riociguat induces endothelium-
independent pulmonary artery (PA) relaxation by directly activating the sGC-cyclic guanosine-
3′,5′-monophosphate (cGMP) pathway in muscle cells. Although riociguat may be effective in the
treatment of dogs with refractory PH, basic studies on its clinical application in veterinary medicine
are lacking. The present study aimed to explore the effects of riociguat on the contractility of an
isolated canine PA and the hemodynamics of dogs with acute PH. In an isolated endothelium-
denuded canine PA, the effects of riociguat on endothelin (ET)-1-induced contraction and cGMP
levels were investigated using the Magnus method and ELISA, respectively. The effect of riociguat
on the hemodynamics of the thromboxane A2 analog U46619-induced PH model dog was examined
by invasive catheterization. Riociguat increased cGMP levels and reduced ET-1-induced contraction
of the isolated PA. Riociguat inhibited the U46619-induced elevation of PA pressure and pulmonary
vascular resistance and increased cardiac output, but it had no effect on basal systemic blood
pressure. These results demonstrate for the first time that riociguat can inhibit the elevation of
PA pressure through PA relaxation via an endothelium-independent increase in cGMP in dogs
with PH.
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1. Introduction

Pulmonary hypertension (PH) is a progressive and refractory vascular disease charac-
terized by a persistent increase in the pulmonary artery (PA) pressure (PAP). PAP elevation
is caused by abnormal hemodynamic states, including increased pulmonary vascular
resistance (PVR), increased blood flow, and elevated PA wedge pressure (PAWP) [1–3].

PH in dogs is divided into six groups: pulmonary arterial hypertension, PH due to
left heart disease, PH secondary to respiratory disease or hypoxia, pulmonary vascular em-
bolism, parasitic disease-related PH, and PH with multifactorial or unclear mechanisms [4].
PA abnormalities, including increased contraction, medial and/or intimal wall hypertrophy,
collagen accumulation, endothelial dysfunction, and microthromboembolism can promote
PH development, which leads to right-sided heart failure and, eventually, death [5–7].

The nitric oxide (NO)-cyclic guanosine-3′,5′-monophosphate (cGMP) pathway medi-
ates PA relaxation [8]. Soluble guanylate cyclase (sGC) activated by endothelium-derived
NO promotes the conversion of guanosine-5′-triphosphate to cGMP, which leads to vascu-
lar relaxation via activation of protein kinase G and a subsequent decrease in intracellular
calcium concentration [9]. The phosphodiesterase (PDE) 5 inhibitor, a pulmonary vasodila-
tor, is mainly used to suppress the development of PH in dogs [4]. Under PH conditions,
PDE5 inhibitors can reduce PA contraction by inhibiting PDE5, which converts cGMP into
the inactive form 5′-GMP [10–12]. However, the vasorelaxant effect of PDE5 inhibitors can
be attenuated by a decrease in the endothelial NO-dependent conversion of cGMP caused
by endothelial dysfunction [13,14]. As a matter of fact, it has been reported that dogs with
PH have low reactivity to the administration of the PDE5 inhibitor sildenafil [15,16].

In human medicine, the sGC stimulator riociguat has been approved as a novel
therapeutic agent for pulmonary arterial hypertension and chronic thromboembolic PH.
sGC stimulators can induce the NO-independent activation of sGC [17], which leads to
pulmonary vasorelaxation even in the presence of endothelial dysfunction [18]. Thus,
it is possible that riociguat may have efficacy on refractory PH with resistance to PDE5
inhibitors in dogs. Since there is no basic study aiming to make riociguat a therapeutic
agent for PH in the field of veterinary clinical medicine, we examined the effects of riociguat
on the contractility of isolated canine PA and the hemodynamics of acute PH model dogs
in this study.

2. Materials and Methods
2.1. Animals

Three male beagle dogs [median (range); 11.0 (9.4–11.3) kg body weight] were used
to measure the contractility and cGMP concentration of isolated PA. Three male and two
female beagle dogs [11.0 (9.3–13.0) kg] were used for hemodynamic evaluation under
anesthesia. We confirmed that all dogs were clinically normal based on the results of the
physical examination, echocardiography, chest radiography, and blood tests. The dogs were
housed individually in cages under a 12/12 h light/dark cycle with constant temperature
and humidity.

2.2. Drugs

Riociguat (MedChemExpress, South Brunswick, NJ, USA), ET-1 (Peptide Institute, Os-
aka, Japan), and U46619 (9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α; Cayman
Chemical, Ann Arbor, MI, USA) were used. In the in vitro study, riociguat and ET-1 were
dissolved in dimethyl sulfoxide (DMSO) and sterile water, respectively. For the in vivo
study, riociguat and U46619 were diluted with sterile saline.
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2.3. Measurement of Isometric Contraction of Isolated PA

After deep anesthesia with pentobarbital (100 mg/kg, IV), dogs were euthanized by
intravenous injection of potassium chloride solution (1 mEq/mL). The intrapulmonary
arteries isolated from the accessory lobe of the lung were dissected into rings (length,
2–3 mm; diameter, 1 mm). The intima was removed from the isolated PA by rubbing with
forceps, and intimal removal was confirmed by the elimination of acetylcholine (10 mM)-
induced relaxation. Isometric contractions were measured in Krebs solution containing the
following (in mM): NaCl, 119.0; KCl, 4.8; KH2PO4, 1.2; MgSO4, 1.2; CaCl2, 2.5; NaHCO3,
24.9; glucose, 10.0. The absolute contraction was measured in a high-K+ solution containing
the following (in mM): NaCl, 70.2; KCl, 72.7; CaCl2, 1.5; NaHCO3, 23.8; MgCl2, 1.0; glucose,
5.6; ethylenediaminetetraacetic acid, 0.01. These solutions were saturated with a 95% O2–
5% CO2 mixture at 37 ◦C and pH 7.4. PA contractility was isometrically measured and
digitally recorded using a force displacement transducer (Nihon Kohden, Tokyo, Japan)
and PowerLab system (ADInstruments, Colorado Springs, CO, USA). Each PA ring was
attached to a stainless steel needle in a 3 mL organ bath under a resting tension of 0.3 g.
After equilibration for 30 min, the PA rings were repeatedly exposed to the high-K+ solution
until the responses stabilized. Concentration–response curves for ET-1 (0.1–100 nM) were
obtained by a cumulative application after pretreatment with riociguat (100 nM) or DMSO
(control) for 15 min. The pD2 value (negative log of EC50 of agonist) was calculated using
the GraphPad Prism software (GraphPad Software version 8.4.3, San Diego, CA, USA).

2.4. Measurement of cGMP Contents

After endothelium-denuded PA was soaked in Krebs solution for 30 min under resting
tension (0.3 g), 100 nM riociguat was added for 15 min. Proteins were extracted and
stored at −80 ◦C until subsequent examination. The protein concentration was determined
using the bicinchoninic acid method (Thermo Scientific, Rockford, IL, USA). The cGMP
concentration of the protein was measured using a cGMP ELISA kit (Enzo Life Sciences,
Farmingdale, NY, USA), following the manufacturer’s instructions.

2.5. Anesthesia

After premedication with midazolam (0.2 mg/kg; IV), buprenorphine (0.02 mg/kg;
IV), and atropine (0.025 mg/kg, SC), the dogs were anesthetized with propofol (6 mg/kg;
IV) and intubated. Anesthesia was maintained by the inhalation of 2% isoflurane with
100% oxygen. The end-tidal partial pressure of carbon dioxide (EtCO2) and blood oxygen
saturation (SpO2) were measured and maintained at approximately 40 mmHg and 96–100%,
respectively. Heart rate, EtCO2, and SpO2 were monitored using a biological information
monitor (BioScope AM130, Fukuda ME, Tokyo, Japan). Respiration was controlled using a
ventilator (KVS-2100, Kohken Medical, Tokyo, Japan), and respiratory rate, tidal volume,
and inspiratory time were maintained at 10 breaths/min, 20 mL/kg, and 1.4 s, respectively.
The fluid loss was replaced with lactated Ringer’s solution. After the examination, the dogs
were allowed to recover from anesthesia.

2.6. Invasive Hemodynamic Evaluation

The anesthetized dogs were positioned in right-lateral recumbency. A 4-Fr saline-filled
catheter was inserted into the left carotid artery to measure systemic arterial pressure (SAP)
using a transducer (Edwards Lifesciences, Irvine, CA, USA) and a biological information
monitor (BP-608 Evolution, Omron Healthcare, Kyoto, Japan). A saline-filled Swan–Ganz
catheter (5-Fr thermodilution catheter 132F5, Edwards Lifesciences) was inserted through
the left jugular vein and advanced into the main PA. The Swan–Ganz catheter was con-
nected to a PowerLab system (AD Instruments), and PAP, central venous pressure (CVP),
PAWP, and cardiac output (CO) were measured. The CO was calculated using a thermodi-
lution method based on previous reports [19,20]. The average of the three measurements is
presented as the result.
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The PVR and systemic vascular resistance (SVR) indices were calculated using the
following formulas [21,22]:

Body surface area
(

BSA; m2
)
=

10.1× body weight (g)
2
3

104

PVR index
(

dynes·s·cm−5·m2
)
=

(mean PAP − mean PAWP)
CO

× 80× BSA

SVR index
(

dynes·s·cm−5·m2
)
=

(mean SAP − mean CVP)
CO

× 80× BSA

2.7. Study Protocol

After catheter insertion, blood pressure and CO were measured at baseline. To es-
tablish the acute PH model, U46619 (0.9 µg/kg/min) was infused into the cephalic vein.
After pretreatment with riociguat at a rate of 3 or 10 µg/kg/min for 10 min, U46619 was
infused simultaneously for another 10 min. The drug sequences were randomized for each
dog. A hemodynamic evaluation was performed 6 min after the beginning of each drug
administration. The equilibrium time was established as 30 min between the drug infusions
and before baseline measurement (Figure 1).
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Figure 1. Timeline of the study protocol. The drug sequences 1 to 3 were randomized for each dog.

2.8. Statistical Analysis

Data were analyzed using GraphPad Prism software (GraphPad Software version
8.4.3). All data are shown as the mean ± SD. The results of the in vitro studies were
statistically analyzed using an unpaired t-test. Differences between groups in in vivo
studies were assessed using one-way repeated measures ANOVA (equal sample sizes
between the groups) or linear mixed model estimated by the restricted maximum likelihood
method (unequal sample sizes between the groups) followed by post hoc Tukey’s test.
Statistical significance was set at p < 0.05.

3. Results
3.1. Effect of Riociguat on ET-1-Induced Contraction of Isolated Canine PA

In isolated endothelium-denuded canine PA, the cumulative administration of ET-1
induced dose-dependent contractions (n = 4 rings; Figure 2). Pretreatment with riociguat
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significantly inhibited ET-1 (30 nM)-induced contractions [from 208.6 ± 74.6% (DMSO,
solvent of riociguat, n = 4 rings) to 103.8± 33.4% (riociguat, n = 5 rings), p < 0.05; Figure 2a].
On the other hand, riociguat (pD2:7.7 ± 0.2, n = 5 rings; Figure 2b) had no effect on the
contractile response to ET-1 (pD2:7.8 ± 0.2, n = 4 rings; Figure 2b). These results indicate
that riociguat reduces the ET-1-induced contraction of canine PA without affecting the
binding between ET-1 and its receptors.
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Figure 2. Effect of soluble guanylate cyclase stimulator riociguat on concentration–contraction
relationship for endothelin (ET)-1 in an isolated endothelium-denuded canine pulmonary artery.
Riociguat (100 nM, n = 5 rings) or dimethyl sulfoxide (DMSO; solvent of riociguat, n = 5 rings) was
pretreated for 15 min before the application of ET-1. ET-1 (0.1 nM to 100 nM) was cumulatively
applied. Each contraction was normalized to the (a) high-concentrated KCl- or (b) ET-1-induced
maximal contraction. Results were expressed as means ± SD. * p < 0.05 vs. DMSO.

3.2. Effect of Riociguat on cGMP Content in Isolated Canine PA

We further examined the effect of riociguat on cGMP levels in isolated endothelium-
denuded canine PA. In contrast with the DMSO group (10.2 ± 1.6 pmol/mg protein, n = 3
rings; Figure 3), riociguat increased cGMP content in the PA (57.7 ± 37.7 pmol/mg protein,
p = 0.09, n = 4 rings; Figure 3).
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Figure 3. Effect of riociguat on production of cyclic guanosine monophosphate (cGMP) in an isolated
endothelium-denuded canine pulmonary artery. After the vessels were treated with riociguat (100 nM,
n = 4 rings) for 15 min, its total protein lysates were harvested. The cGMP levels were determined by
ELISA. Result was expressed as means ± SD.
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3.3. Effects of Riociguat on Elevated PAP in U46619-Induced Acute PH Model Dog

In contrast with the baseline [systolic pressure (sys):18.3 ± 2.8 mmHg, mean pressure
(mean): 8.6 ± 1.1 mmHg, diastolic pressure (dia): 3.7 ± 1.3 mmHg, n = 5; Figure 4a–c and
Table 1], U46619 increased the PAP (sys: 30.0 ± 4.3 mmHg, mean: 19.9 ± 4.4 mmHg,
dia: 14.8 ± 4.8 mmHg, p < 0.01, n = 5; Figure 4a–c and Table 1). Riociguat (infusion
rate: 10 µg/kg/min) inhibited it (sys: 27.2 ± 3.7 mmHg, mean: 15.7 ± 1.8 mmHg, dia:
9.9 ± 1.6 mmHg, n = 5; Figure 4a–c and Table 1). In addition, U46619 (285.6 ± 103.8 dynes·s·
cm−5·m2, p < 0.05, n = 5; Figure 4d and Table 1) significantly increased the PVR in-
dex compared to baseline (115.8 ± 18.1 dynes·s·cm−5·m2, n = 5; Figure 4d and Table 1),
which was significantly inhibited by riociguat (infusion rate:10 µg/kg/min; 158.3 ± 59.7
dynes·s·cm−5·m2, p < 0.05, n = 5; Figure 4d and Table 1).

Vet. Sci. 2023, 10, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 3. Effect of riociguat on production of cyclic guanosine monophosphate (cGMP) in an iso-
lated endothelium-denuded canine pulmonary artery. After the vessels were treated with riociguat 
(100 nM, n = 4 rings) for 15 min, its total protein lysates were harvested. The cGMP levels were 
determined by ELISA. Result was expressed as means ± SD. 

3.3. Effects of Riociguat on Elevated PAP in U46619-Induced Acute PH Model Dog 
In contrast with the baseline [systolic pressure (sys):18.3 ± 2.8 mmHg, mean pressure 

(mean): 8.6 ± 1.1 mmHg, diastolic pressure (dia): 3.7 ± 1.3 mmHg, n = 5; Figure 4a–c and 
Table 1], U46619 increased the PAP (sys: 30.0 ± 4.3 mmHg, mean: 19.9 ± 4.4 mmHg, dia: 
14.8 ± 4.8 mmHg, p < 0.01, n = 5; Figure 4a–c and Table 1). Riociguat (infusion rate:10 
μg/kg/min) inhibited it (sys:27.2 ± 3.7 mmHg, mean: 15.7 ± 1.8 mmHg, dia: 9.9 ± 1.6 mmHg, 
n = 5; Figure 4a–c and Table 1). In addition, U46619 (285.6 ± 103.8 dynes·s·cm−5·m2, p < 0.05, 
n = 5; Figure 4d and Table 1) significantly increased the PVR index compared to baseline 
(115.8 ± 18.1 dynes·s·cm−5·m2, n = 5; Figure 4d and Table 1), which was significantly inhib-
ited by riociguat (infusion rate:10 μg/kg/min; 158.3 ± 59.7 dynes·s·cm−5·m2, p < 0.05, n = 5; 
Figure 4d and Table 1). 

  
(a) (b) 

Vet. Sci. 2023, 10, x FOR PEER REVIEW 7 of 11 
 

 

  
(c) (d) 

Figure 4. Effect of riociguat on pulmonary arterial pressure of dogs with U46619-induced pulmo-
nary hypertension. A Swan–Ganz thermodilution catheter was inserted through the jugular vein 
and advanced into the pulmonary artery in anesthetized dogs. Thromboxane A2 analog U46619 (U; 
0.9 μg/kg/min) was infused under simultaneous injection of riociguat (Rio; 3 or 10 μg/kg/min). Sys-
tolic (a) and diastolic (c) pulmonary arterial pressure (PAP) were measured, and mean PAP (b) and 
pulmonary vascular resistance (PVR) index (d) were calculated. In the box plots, the box indicates 
the interquartile range (25th to 75th percentiles), and the inner line indicates the median (50th per-
centile); the whiskers are located at the maximum and minimum observation. The PVR index of 
U46619 + riociguat infusion of 3 μg/kg per minute (U + Rio3) group (n = 2) was shown as dot plot. * 
p < 0.05, ** p < 0.01. 

Table 1. Effects of riociguat on the hemodynamics of dogs with U46619-induced pulmonary hyper-
tension. CO: cardiac output; CVP: central venous pressure; d: diastolic; HR: heart rate; m: mean; 
PAP: pulmonary arterial pressure; PAWP: pulmonary arterial wedge pressure; PVR: pulmonary 
vascular resistance; Rio 3: riociguat infusion of 3 μg/kg per minute; Rio 10: riociguat infusion of 10 
μg/kg per minute; SAP: systemic arterial pressure; SVR: systemic vascular resistance; s: systolic; U: 
U46619 alone; U + Rio 3: U46619 + riociguat infusion of 3 μg/kg per minute; U + Rio 10: U46619 + 
riociguat infusion of 10 μg/kg per minute. The data are shown as mean ± SD. * p < 0.05 vs. baseline, 
** p < 0.01 vs. baseline, # p < 0.05 vs. U. 

 Baseline U U + Rio 3 U + Rio 10 Rio 3 Rio 10 

HR (bpm) 
114.0 ± 11.8 

(n = 5) 
119.0 ± 18.2 

(n = 5) 
132.8 ± 24.8 

(n = 5) 
138.0 ± 19.2 

(n = 5) 
139.2 ± 30.5 

(n = 5) 
134.0 ± 23.8 

(n = 5) 

sPAP (mmHg) 18.3 ± 2.8 
(n = 5) 

30.0 ± 4.3 ** 
(n = 5) 

31.3 ± 3.8 
(n = 5) 

27.2 ± 3.7 
(n = 5) 

20.7 ± 4.5 
(n = 5) 

21.7 ± 2.6 
(n = 5) 

mPAP (mmHg) 8.6 ± 1.1 
(n = 5) 

19.9 ± 4.4 * 
(n = 5) 

18.8 ± 4.4 
(n = 5) 

15.7 ± 1.8 
(n = 5) 

9.9 ± 3.9 
(n = 5) 

10.3 ± 1.1 
(n = 5) 

dPAP (mmHg) 
3.7 ± 1.3 
(n = 5) 

14.8 ± 4.8 
(n = 5) 

12.6 ± 4.9 
(n = 5) 

9.9 ± 1.6 
(n = 5) 
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(n = 5) - - 

Figure 4. Effect of riociguat on pulmonary arterial pressure of dogs with U46619-induced pulmonary
hypertension. A Swan–Ganz thermodilution catheter was inserted through the jugular vein and
advanced into the pulmonary artery in anesthetized dogs. Thromboxane A2 analog U46619 (U;
0.9 µg/kg/min) was infused under simultaneous injection of riociguat (Rio; 3 or 10 µg/kg/min).
Systolic (a) and diastolic (c) pulmonary arterial pressure (PAP) were measured, and mean PAP (b) and
pulmonary vascular resistance (PVR) index (d) were calculated. In the box plots, the box indicates the
interquartile range (25th to 75th percentiles), and the inner line indicates the median (50th percentile);
the whiskers are located at the maximum and minimum observation. The PVR index of U46619 +
riociguat infusion of 3 µg/kg per minute (U + Rio3) group (n = 2) was shown as dot plot. * p < 0.05,
** p < 0.01.
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Table 1. Effects of riociguat on the hemodynamics of dogs with U46619-induced pulmonary hyper-
tension. CO: cardiac output; CVP: central venous pressure; d: diastolic; HR: heart rate; m: mean; PAP:
pulmonary arterial pressure; PAWP: pulmonary arterial wedge pressure; PVR: pulmonary vascular
resistance; Rio 3: riociguat infusion of 3 µg/kg per minute; Rio 10: riociguat infusion of 10 µg/kg
per minute; SAP: systemic arterial pressure; SVR: systemic vascular resistance; s: systolic; U: U46619
alone; U + Rio 3: U46619 + riociguat infusion of 3 µg/kg per minute; U + Rio 10: U46619 + riociguat
infusion of 10 µg/kg per minute. The data are shown as mean ± SD. * p < 0.05 vs. baseline, ** p < 0.01
vs. baseline, # p < 0.05 vs. U.

Baseline U U + Rio 3 U + Rio 10 Rio 3 Rio 10

HR (bpm) 114.0 ± 11.8
(n = 5)

119.0 ± 18.2
(n = 5)

132.8 ± 24.8
(n = 5)

138.0 ± 19.2
(n = 5)

139.2 ± 30.5
(n = 5)

134.0 ± 23.8
(n = 5)

sPAP (mmHg) 18.3 ± 2.8
(n = 5)

30.0 ± 4.3 **
(n = 5)

31.3 ± 3.8
(n = 5)

27.2 ± 3.7
(n = 5)

20.7 ± 4.5
(n = 5)

21.7 ± 2.6
(n = 5)

mPAP (mmHg) 8.6 ± 1.1
(n = 5)

19.9 ± 4.4 *
(n = 5)

18.8 ± 4.4
(n = 5)

15.7 ± 1.8
(n = 5)

9.9 ± 3.9
(n = 5)

10.3 ± 1.1
(n = 5)

dPAP (mmHg) 3.7 ± 1.3
(n = 5)

14.8 ± 4.8
(n = 5)

12.6 ± 4.9
(n = 5)

9.9 ± 1.6
(n = 5)

4.5 ± 3.8
(n = 5)

4.6 ± 1.1
(n = 5)

sSAP (mmHg) 88.2 ± 10.0
(n = 5)

101.8 ± 12.9 *
(n = 5)

96.8 ± 8.1
(n = 5)

95.8 ± 8.0
(n = 5)

90.4 ± 12.0
(n = 5)

90.6 ± 10.6
(n = 5)

mSAP (mmHg) 74.4 ± 10.8
(n = 5)

86.2 ± 15.1
(n = 5)

80.2 ± 8.1
(n = 5)

81.0 ± 8.7
(n = 5)

76.2 ± 13.4
(n = 5)

75.2 ± 11.7
(n = 5)

dSAP (mmHg) 62.8 ± 9.7
(n = 5)

74.8 ± 12.4
(n = 5)

66.2 ± 8.4
(n = 5)

66.6 ± 8.4
(n = 5)

61.2 ± 12.3
(n = 5)

61.6 ± 11.1
(n = 5)

mPAWP (mmHg) 1.6 ± 0.8
(n = 5)

4.2 ± 1.7
(n = 5)

3.5 ± 2.8
(n = 4)

3.5 ± 1.1
(n = 5)

1.4 ± 1.5
(n = 5)

2.1 ± 1.5
(n = 5)

mCVP (mmHg) 0.5 ± 1.0
(n = 5)

2.8 ± 1.9
(n = 5)

3.0 ± 2.0
(n = 5)

1.3 ± 1.0
(n = 5)

−0.6 ± 2.4
(n = 5)

0.2 ± 1.4
(n = 5)

CO (L/min) 2.4 ± 0.6
(n = 5)

2.3 ± 0.9
(n = 5)

2.9 ± 0.7
(n = 3)

3.5 ± 1.8
(n = 5) - -

PVR index
(dynes·s·cm−5·m2)

115.8 ± 18.1
(n = 5)

285.6 ± 103.8 *
(n = 5)

200.9 ± 7.8
(n = 2)

158.3 ± 59.7 #
(n = 5) - -

SVR index
(dynes·s·cm−5·m2)

1228.2 ± 190.5
(n = 5)

1559.7 ± 657.2
(n = 5)

1054.0 ± 331.2
(n = 3)

1016.2 ± 294.5
(n = 5) - -

3.4. Effects of Riociguat on SAP in U46619-Induced Acute PH Model Dog

In contrast with baseline (sys: 88.2 ± 10.0 mmHg, mean: 74.4 ± 10.8 mmHg, dia:
62.8 ± 9.7 mmHg, n = 5; Table 1), U46619 increased the SAP (sys: 101.8± 12.9 mmHg, mean:
86.2 ± 15.1 mmHg, dia: 74.8 ± 12.4 mmHg, n = 5; Table 1). Riociguat slightly inhibited it
[(3 µg/kg/min; sys: 96.8 ± 8.1 mmHg, mean: 80.2 ± 8.1 mmHg, dia: 66.2 ± 8.4 mmHg,
n = 5), (10µg/kg/min; sys: 95.8± 8.0 mmHg, mean: 81.0± 8.7 mmHg, dia: 66.6 ± 8.4 mmHg,
n = 5); Table 1]. In addition, U46619 (1559.7 ± 657.2 dynes·s·cm−5·m2, n = 5; Table 1) in-
creased the SVR index compared to baseline (1228.2 ± 190.5 dynes·s·cm−5·m2, n = 5;
Table 1), which was inhibited by riociguat [(3 µg/kg/min; 1054.0 ± 331.2 dynes·s·cm−5·m2,
n = 5), (10 µg/kg/min; 1016.2 ± 294.5 dynes·s·cm−5·m2, n = 5); Table 1]. On the other
hand, SAP was not affected by the administration of riociguat alone [(3 µg/kg/min;
sys: 90.4 ± 12.0 mmHg, mean: 76.2 ± 13.4 mmHg, dia: 61.2 ± 12.3 mmHg, n = 5),
(10 µg/kg/min; sys: 90.6 ± 10.6 mmHg, mean: 75.2 ± 11.7 mmHg, dia: 61.6 ± 11.1 mmHg,
n = 5); Table 1].

3.5. Effects of Riociguat on CO in U46619-Induced Acute PH Model Dog

In contrast with baseline (2.4 ± 0.6 L/min, n = 5; Table 1), U46619 had no effect on CO
(2.3 ± 0.9 L/min, n = 5; Table 1). Riociguat (infusion rate:10 µg/kg/min) increased CO
under U46619 administration (3.5 ± 1.8 L/min, n = 5; Table 1).
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4. Discussion

The sGC stimulator riociguat is a pulmonary vasodilator used to treat pulmonary
arterial hypertension and chronic thromboembolic PH in humans. However, basic and
clinical studies on the efficacy of riociguat against PH have not been performed in veterinary
medicine. Thus, in this study, we investigated the effects of riociguat on the contractility of
isolated canine PA and hemodynamics of PH model dogs.

In endothelium-denuded canine PA, riociguat significantly inhibited ET-1 (30 nM)-
induced contractions without affecting the contractile response to ET-1 (Figure 2). ET-1
is a vasoconstrictor of PA, which promotes the pathogenesis of PH. It has been reported
that in dogs with PH, serum pro-ET-1 levels [23] and ET-1 expression in the lung tissue [24]
increased compared to those in the control group. In addition, the cGMP content in isolated
canine PA was increased by the riociguat treatment (Figure 3). sGC stimulators, including
riociguat, induce the endothelium-independent relaxation of PA smooth muscle cells via direct
activation of sGC and subsequent elevation of intracellular cGMP concentration [17,18]. An
sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-1]-quinoxalin-1-one attenuated NO donor-induced
relaxation of isolated canine PA through the inhibition of cGMP generation [25]. These
results demonstrated that riociguat has an endothelium-independent relaxant effect on
canine PA via an increase in cGMP content. In the pathologic condition of PH with vascular
endothelial dysfunction, the cGMP content of PA is decreased due to the depletion of
endothelium-derived NO [14,26], which can lead to diminishing the vasorelaxant effect of
PDE5 inhibitors. Therefore, riociguat may have clinical efficacy against dogs with refractory
PH that is resistant to PDE5 inhibitors.

We also examined the effects of riociguat on the hemodynamics of dogs with U46619-
induced PH. An acute and transient PH animal model was established by injection of
U46619, a thromboxane A2 analog [19,20]. Thromboxane A2 is an endogenous contracting
factor for PA. U46619 induced the elevation of the PVR index and PAP in dogs, which was
inhibited by prior infusion of riociguat (Figure 4 and Table 1). However, riociguat inade-
quately inhibited U46619-induced elevation of systolic PAP, regardless of the decreased
PVR index. This may be due to a riociguat-induced increase in CO, as will be described
later. In fact, riociguat inhibited the diastolic PAP elevation induced by the U46619 injection.
Riociguat has been reported to decrease PVR and PAP in clinical examinations of patients
with PH [27]. In addition, it has been shown that riociguat inhibited right ventricular fibro-
sis and dysfunction in mice with PA constriction-induced right heart failure [28], which
demonstrates that riociguat has inhibitory effects on the development of PH. Although
riociguat slightly diminished the U46619-induced elevation of SAP, it had no effect on
the basal SAP (Table 1). The U46619-induced increase in the SVR index was decreased
by riociguat injection, whereas CO was increased (Table 1). Because SAP is equal to the
product of SVR and CO [29], increased CO caused by riociguat may cancel out the decrease
in basal SAP associated with decreasing SVR. In human PH patients, riociguat increased
right ventricular contraction, measured by echocardiography, without affecting the mean
PAP [27], indicating that the increased cardiac contraction was caused by the direct effect
of riociguat, but not secondary to a decrease in the pressure road. Thus, it is possible that
riociguat directly increased CO. The present results suggest that riociguat can be used as a
pulmonary vasodilator with almost no effect on basal SAP in dogs.

In an in vitro study using isolated canine PA, 100 nM riociguat inhibited the ET-1-
induced increase in PA contraction. Since the normal circulating blood volume of dogs is
estimated to be 85 mL/kg [30], the concentration of riociguat was converted to approxi-
mately 3.6 µg/kg in dogs. Therefore, the infusion rate of riociguat was determined to be
3–10 µg/kg/min in vivo.

This study has several limitations. Firstly, we only investigated the acute effects of
riociguat on hemodynamics in dogs. Secondly, combined administration of riociguat and
other vasodilators was not examined. In fact, in veterinary clinical medicine, the patients
with PH have already taken some vasodilators. In human medicine, a concomitant use of
riociguat with other vasodilators including PDE5 inhibitor and NO donor was reported to
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induce significant hypotension [31]. Then, further study to investigate the chronic effect
and/or combined use of riociguat is warranted in dogs.

5. Conclusions

The present study revealed for the first time that riociguat inhibited the ET-1-induced
contraction of isolated endothelium-denuded canine PA, possibly by increasing intracellular
cGMP. Moreover, riociguat attenuated the elevation of PAP without decreasing the basal
SAP in U46619-induced acute PH model dogs. These results suggest that riociguat could
be used as a novel pulmonary vasodilator without lowering SAP in veterinary clinical
medicine.
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