Degradation Kinetics of Betacyanins during the Pasteurization and Storage of Cactus Pear (Opuntia dillenii Haw.) Juice Using the Arrhenius, Eyring, and Ball Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Juice Preparation
2.2. Quantification of Betacyanin
2.3. Measurement of the Browning of the Juice
2.4. Impact of Heat Treatment on Betacyanin Degradation
2.5. Impact of Storage Temperature on Betacyanin Degradation and Color Evolution
2.6. Modelling Kinetics of Betacyanin Degradation
2.7. Calculation of the Optimal Time/Temperature Combination
3. Results and Discussion
3.1. Kinetics of Betacynins Degradation and Model Validation
3.2. Model Predictions of Time/Temperature Combinations
3.3. Impact of the Storage Temperature on the Degradation of Betacyanin and the Browning of Cactus Pear Juice
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castellar, R.; Obón, J.M.; Alacid, M.; Fernández-López, J.A. Color Properties and Stability of Betacyanins from Opuntia Fruits. J. Agric. Food Chem. 2003, 51, 2772–2776. [Google Scholar] [CrossRef] [PubMed]
- Cissé, M.; Sow, A.; Poucheret, P.; Margout, D.; Ayessou, N.C.; Faye, P.G.; Sakho, M.; Diop, C.M.G. Impact of Extraction Method on Physicochemical Characteristics and Antioxidant Potential of Adansonia digitata Oil. Food Nutr. Sci. 2018, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Diop, A.G.; Sakho, M.; Dornier, M.; Cisse, M.; Reynes, M. Le baobab africain (Adansonia digitata L.): Principales caractéristiques et utilisations. Fruits 2006, 61, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Cissé, M.; Bohuon, P.; Sambe, F.; Kane, C.; Sakho, M.; Dornier, M. Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. J. Food Eng. 2012, 109, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Sinela, A.; Rawat, N.; Mertz, C.; Achir, N.; Fulcrand, H.; Dornier, M. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food Chem. 2017, 214, 234–241. [Google Scholar] [CrossRef]
- Ndiaye, N.D.; Dhuique-Mayer, C.; Cisse, M.; Dornier, M. Identification and Thermal Degradation Kinetics of Chlorophyll Pigments and Ascorbic Acid from Ditax Nectar (Detarium senegalense J.F. Gmel). J. Agric. Food Chem. 2011, 59, 12018–12027. [Google Scholar] [CrossRef]
- Robert, P.; Torres, V.; García, P.; Vergara, C.; Sáenz, C. The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide-proteins as encapsulating agents. LWT Food Sci. Technol. 2015, 60, 1039–1045. [Google Scholar] [CrossRef]
- Strack, D.; Vogt, T.; Schliemann, W. Recent advances in betalain research. Phytochemistry 2003, 62, 247–269. [Google Scholar] [CrossRef]
- Azeredo, H.M.C. Betalains: Properties, sources, applications, and stability—A review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Betalain Stability and Degradation—Structural and Chromatic Aspects. J. Food Sci. 2006, 71, R41–R50. [Google Scholar] [CrossRef]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; De Bellis, L.; Blando, F. Betalains, Phenols and Antioxidant Capacity in Cactus Pear [Opuntia ficus-indica (L.) Mill.] Fruits from Apulia (South Italy) Genotypes. Antioxidants 2015, 4, 269. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, K.; Saw, N.M.M.T.; Mohdaly, A.A.; Gabr, A.M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of processing of red beet on betalain content and antioxidant activity. Food Res. Int. 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Kumar, S.S.; Manoj, P.; Giridhar, P.; Shrivastava, R.; Bharadwaj, M. Fruit extracts of Basella rubra that are rich in bioactives and betalains exhibit antioxidant activity and cytotoxicity against human cervical carcinoma cells. J. Funct. Foods 2015, 15, 509–515. [Google Scholar] [CrossRef]
- Naselli, F.; Tesoriere, L.; Caradonna, F.; Bellavia, D.; Attanzio, A.; Gentile, C.; Livrea, M.A. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16INK4a gene in human colorectal carcinoma (Caco-2) cells. Biochem. Biophys. Res. Commun. 2014, 450, 652–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, D.A.; Kaffa, N.; George, T.W.; Methven, L.; Lovegrove, J.A. Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects. Br. J. Nutr. 2012, 108, 2066–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, P.J.; López-Nicolás, J.M.; Gandía-Herrero, F.; García-Carmona, F. Inactivation of lipoxygenase and cyclooxygenase by natural betalains and semi-synthetic analogues. Food Chem. 2014, 154, 246–254. [Google Scholar] [CrossRef]
- Woo, K.K.; Ngou, F.H.; Ngo, L.S.; Soong, W.K.; Tang, P.Y. Stability of Betalain Pigment from Red Dragon Fruit (Hylocereus polyrhizus). Am. J. Food Technol. 2011, 2, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Vergara, C.; Saavedra, J.; Sáenz, C.; García, P.; Robert, P. Microencapsulation of pulp and ultrafiltered cactus pear (Opuntia ficus-indica) extracts and betanin stability during storage. Food Chem. 2014, 157, 246–251. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Impact of Thermal Treatment on Color and Pigment Pattern of Red Beet (Beta vulgaris L.) Preparations. J. Food Sci. 2004, 69, C491–C498. [Google Scholar] [CrossRef]
- Güneşer, O. Pigment and color stability of beetroot betalains in cow milk during thermal treatment. Food Chem. 2016, 196, 220–227. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Angosto, J.M.; Giménez, P.J.; León, G. Thermal Stability of Selected Natural Red Extracts Used as Food Colorants. Plant Foods Hum. Nutr. 2013, 68, 11–17. [Google Scholar] [CrossRef]
- Chávez, W.S.; Cortez-Arredondo, J.; Cornejo, M.Á.S.; Vidaurre-Ruiz, J. Kinetics of thermal degradation of betacyanins, betaxantins and vitamin C in a juice-based drink beet (Beta vulgaris L.) and honey. Sci. Agropecu. 2015, 6, 111–118. [Google Scholar]
- Peleg, M.; Normand, M.D.; Corradini, M.G. The Arrhenius Equation Revisited. Crit. Rev. Food Sci. Nutr. 2012, 52, 830–851. [Google Scholar] [CrossRef]
- Labuza, V.S.T.P. Temperature dependence of thermal inactivation rate constants of bacterial spores in a glassy state. J. Ind. Microbiol. 1993, 12, 247–250. [Google Scholar] [CrossRef]
- Tamba, A.; Servent, A.; Mertz, C.; Cissé, M.; Dornier, M. Coupling of pressure-driven membrane technologies for concentrating, purifying and fractionizing betacyanins in cactus pear (Opuntia dillenii Haw.) juice. Innov. Food Sci. Emerg. Technol. 2019, 52, 244–255. [Google Scholar] [CrossRef]
- Cassano, A.; Marchio, M.; Drioli, E. Clarification of blood orange juice by ultrafiltration: Analyses of operating parameters, membrane fouling and juice quality. Desalination 2007, 212, 15–27. [Google Scholar] [CrossRef]
- Cassano, A.; Conidi, C.; Drioli, E. Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination 2010, 250, 1101–1104. [Google Scholar] [CrossRef]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, Phenolics, and Color of Cabernet Franc, Merlot, and Pinot Noir Wines from British Columbia. J. Agric. Food Chem. 1999, 47, 4009–4017. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Temperature and Pressure Effects. In Kinetic Modeling of Reactions in Foods; CRC Press: Boca Raton, FL, USA, 2008; pp. 5-1–5-43. [Google Scholar]
- De Levie, R. Nonisothermal Analysis of Solution Kinetics by Spreadsheet Simulation. J. Chem. Educ. 2012, 89, 79–86. [Google Scholar] [CrossRef]
- Zuber, F.; Biton, M.; Cazier, A.; Conception et Validation des Barèmes D’appertisation. Conception et Validation des Barèmes D’appertisation. Techniques de L’ingénieur Génie Industriel Alimentaire Base Documentaire: TIB469DUO, no ref. Article: f2032. Available online: https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/genie-industriel-alimentaire-42469210/conception-et-validation-des-baremes-d-appertisation-f2032/ (accessed on 12 December 2020).
- Cisse, M.; Vaillant, F.; Acosta, O.; Dhuique-Mayer, C.; Dornier, M. Thermal Degradation Kinetics of Anthocyanins from Blood Orange, Blackberry, and Roselle Using the Arrhenius, Eyring, and Ball Models. J. Agric. Food Chem. 2009, 57, 6285–6291. [Google Scholar] [CrossRef]
- Merin, U.; Gagel, S.; Popel, G.; Bernstein, S.; Rosenthal, I. Thermal Degradation Kinetics of Prickly-Pear-Fruit Red Pigment. J. Food Sci. 1987, 52, 485–486. [Google Scholar] [CrossRef]
- Khrapunov, S. The Enthalpy-entropy Compensation Phenomenon. Limitations for the Use of Some Basic Thermodynamic Equations. Curr. Protein Pept. Sci. 2018, 19, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Caldas-Cueva, J.P.; Morales, P.; Ludeña, F.; Betalleluz-Pallardel, I.; Chirinos, R.; Noratto, G.; Campos, D. Stability of Betacyanin Pigments and Antioxidants in Ayrampo (Opuntia soehrensii Britton and Rose) Seed Extracts and as a Yogurt Natural Colorant. J. Food Process. Preserv. 2016, 40, 541–549. [Google Scholar] [CrossRef]
Composition | Raw Juice |
---|---|
Total dry matter (g·kg−1) | 65.6 (0.5) |
Total soluble solids (g·kg−1) | 72 (1) |
pH | 3.35 (0.05) |
Citric acid(g·kg−1) | 12.4 (0.4) |
Glucose (g·kg−1) | 22.8 (0.1) |
Fructose (g·kg−1) | 22.8 (0.2) |
Betacyanins (g·kg−1) | 0.76 (0.02) |
Turbidity (TU) | 1428 (37) |
Conductivity (mS·cm−1) | 3.72 (0.22) |
L | 8.89 (0.17) |
a | 16.5 (0.4) |
b | −1.8 (0.1) |
Model | Parameters | Estimate (CI 95%) | Correlation Matrix | SSE | |
---|---|---|---|---|---|
Arrenhius | 56.12 (8.26) | 1 | −1 | 0.0964 | |
1.01 (0.08) | −1 | 1 | |||
Eyring | 53.20 (9.80) | 1 | 0.999 | 0.0964 | |
176.42 (27.84) | 0.999 | 1 | |||
z | D | ||||
Ball | 42.21 (6.23) | 1 | −0.859 | 0.0974 | |
6.79 (0.892) | −0.859 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassama, J.; Tamba, A.; Ndong, M.; Sarr, K.D.D.; Cissé, M. Degradation Kinetics of Betacyanins during the Pasteurization and Storage of Cactus Pear (Opuntia dillenii Haw.) Juice Using the Arrhenius, Eyring, and Ball Models. Beverages 2021, 7, 2. https://doi.org/10.3390/beverages7010002
Bassama J, Tamba A, Ndong M, Sarr KDD, Cissé M. Degradation Kinetics of Betacyanins during the Pasteurization and Storage of Cactus Pear (Opuntia dillenii Haw.) Juice Using the Arrhenius, Eyring, and Ball Models. Beverages. 2021; 7(1):2. https://doi.org/10.3390/beverages7010002
Chicago/Turabian StyleBassama, Joseph, Abdoulaye Tamba, Moussa Ndong, Khakhila Dieu Donnée Sarr, and Mady Cissé. 2021. "Degradation Kinetics of Betacyanins during the Pasteurization and Storage of Cactus Pear (Opuntia dillenii Haw.) Juice Using the Arrhenius, Eyring, and Ball Models" Beverages 7, no. 1: 2. https://doi.org/10.3390/beverages7010002
APA StyleBassama, J., Tamba, A., Ndong, M., Sarr, K. D. D., & Cissé, M. (2021). Degradation Kinetics of Betacyanins during the Pasteurization and Storage of Cactus Pear (Opuntia dillenii Haw.) Juice Using the Arrhenius, Eyring, and Ball Models. Beverages, 7(1), 2. https://doi.org/10.3390/beverages7010002