The Development and Consumer Acceptance of Functional Fruit-Herbal Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Beverages
2.2. Physicochemical Analysis of Beverages
2.3. Sensory Analysis and Consumer Aceptability Tests of Beverages
2.4. Statistical Analysis
3. Results and Discussions
3.1. Recipes and Fuctions of Fruit-Herbal Beverages
3.2. Physicochemical Properties of the Beverages
3.3. Consumer Acceptability Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Benvenuit, S.; Pellati, E.; Melegari, M.; Bertelli, D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of rubus, ribes, and aronia. J. Food Sci. 2004, 69, FCT165–FCT169. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobek, L.; Seruga, M.; Medvidovic-Kosanovic, M.; Novak, I. Antioxidant activity and polyphenols of aronia in comparison to other berry species. Agric. Conspec. Sci. 2007, 72, 301–306. [Google Scholar]
- Gralec, M.; Wawer, I.; Zawada, K. Aronia melanocarpa berries: Phenolics composition and antioxidant properties changes during fruit development and ripening. Emir. J. Food Agric. 2019, 31, 214–221. [Google Scholar]
- Graversen, H.B. Antioxidant synergizm between fruit juice and α-tocopherol. A comparison between high phenolic black chokeberry (Aronia melanocarpa) and high ascorbic black currant (Ribes nigrum). Eur. Food Res. Technol. 2008, 226, 737–743. [Google Scholar] [CrossRef]
- Gao, X.; Olhander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Ecclesten, C.; Baoru, Y.; Tahvonen, R.; Kallio, H.; Rimbach, G.H.; Minihane, A.M. Effects of antioxidant rich juice (sea buckthorn) on risk factors for coronary heart disease in humans. J. Nutr. Biochem. 2002, 13, 346–354. [Google Scholar] [CrossRef]
- Mezadri, T.; Villano, D.; Fernandez, P.M.S.; Garcia, P.M.C.; Troncoso, A.M. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. J. Food Compos. Anal. 2008, 21, 282–290. [Google Scholar] [CrossRef]
- Blessy, S.B.; Kavitha, C.; Kuna, A. Antioxidant properties of acerola (Malpighia Emarginata Dc.) and acerola squash. Int. J. Sci. Res. 2014, 3, 2176–2179. [Google Scholar]
- Zuo, Y.; Wang, C.; Zhan, J. Separation, characterization and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC-MS. J. Agric. Food Chem. 2002, 50, 3789–3794. [Google Scholar] [CrossRef]
- Larsen, E.; Kharazmi, A.; Lars, P.C.; Brogger, C.S. An anti-inflammatory galactolipid from rose hip (Rosa canina) that inhibits chemotaxis of human peripheral blood neutrophils in vitro. J. Nat. Prod. 2003, 7, 994–995. [Google Scholar] [CrossRef] [PubMed]
- Arimboor, R.; Venugopalan, V.V.; Sarinkumar, K.; Arumughan, C.; Sawhney, R.C. Integrated processing of fresh Indian sea buckthorn (Hippophae rhamnoides) berries and chemical evaluation of products. J. Sci. Food Agric. 2006, 86, 2345–2353. [Google Scholar] [CrossRef]
- Beveridge, T.; Harrison, J.E.; Drover, J. Processing effects on the composition of sea buckthorn juice from Hippophae rhamnoides L. J. Agric. Food Chem. 2002, 50, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Seglina, D.; Karklina, D.; Ruisa, S.; Krasnova, I. The effect of processing on the composition of sea buckthorn juice. J. Fruit Ornam. Plant. Res. 2006, 14 (Suppl. 2), 257–264. [Google Scholar]
- Rosso, V.V.; Mercadante, A.Z. The high ascorbic acid content is the main cause of the low stability of anthocyanin extracts from acerola. Food Chem. 2007, 103, 935–943. [Google Scholar] [CrossRef]
- Vasileiou, I.; Katsargyris, A.; Theocharis, S.; Giaginis, C. Current clinical status on the preventive effects of cranberry consumption against urinary tract infections. Nutr. Res. 2013, 33, 595–607. [Google Scholar] [CrossRef]
- Makanjuola, S.A.; Enujiugha, V.N. Enhancing sensory perception of plant based nutraceutical drinks by combining plants from different sources: A preliminary study of tea and ginger blend. Prev. Nutr. Food Sci. 2017, 2, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Sengun, I.Y.; Kirmizigul, A.; Atlama, K.; Yilmaz, B. The viability of Lactobacillus rhamnosus in orange juice fortified with nettle (Urtica dioica L.) and bioactive properties of the juice during storage. LWT 2020, 118, 108707. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef]
- Veiga, M.; Costa, E.M.; Silva, S.; Pintado, M. Impact of plant extracts upon human health: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Chowdhury, A.R. Development of ready to serve beverage with the inclusion of herbal components. Int. J. Latest Trends Eng. Technol. 2019, 8, 147–154. [Google Scholar]
- Harsha, H.; Aarti, S. Quality evaluation of herbal juice developed from traditional Indian medicinal plants using citrus limetta as base. J. Nutr. Food Sci. 2015, 5, 1000396. [Google Scholar]
- Verma, A. Blending quality of mint and orange based nutritious herbal beverages. J. Pharm. Innov. 2017, 6, 81–84. [Google Scholar]
- Maya, D.; Ritu, P. Formulation of fruit (guava fruit juice) and whey based beverages flavoured with different herbs using natural sweetener as ‘stevia’. Int. J. Adv. Res. 2014, 4, 2183–2187. [Google Scholar]
- Kumar, K.; Singh, J.; Chandra, S.; Samsher. Formulation of whey based pineapple herbal beverages and its storage conditions. Chem. Sci. Rev. Lett. 2017, 6, 198–203. [Google Scholar]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bretoni, source of a high potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Marszałek, K.; Skąpska, S. Influence of steviol glycosides on the stability of vitamin C and anthocyanins. J. Agric. Food Chem. 2014, 62, 11264–11269. [Google Scholar] [CrossRef]
- Sabbe, S.; Verbeke, W.; Deliza, R.; Matta, V.M.; van Demme, P. Consumer liking of fruit juices with different acai (Euterpe oleracea Mart.) concentrations. J. Food Sci. 2009, 74, S171–S176. [Google Scholar] [CrossRef]
- Pollard, J.; Kirk, S.F.L.; Cade, J.E. Factors affecting food choice in relation to fruit and vegetable intake: A review. Nutr. Res. Rev. 2002, 15, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Luckow, T.; Delahunty, C. Which juice is “healthier”? A consumer study of probiotic non-diary juice drinks. Food Qual. Pref. 2004, 15, 751–759. [Google Scholar] [CrossRef]
- Verbeke, W. Functional foods: Consumer willingness to compromise on taste for health? Food Qual. Pref. 2006, 17, 126–131. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radicalcation decolorization ssay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sanna, D.; Delogu, G.; Mulas, M.; Schirra, M.; Fadda, A. Determination of free radical scavenging activity of plant extracts through DPPH assay: An EPR and UV–Vis study. Food Anal. Methods 2012, 5, 759–766. [Google Scholar] [CrossRef]
- Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agric. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Oszmiański, J. Stabilization and application of anthocyanin chokeberry dye to colouring of beverages. Acta Sci. Pol. Technol. Aliment. 2002, 1, 37–45. [Google Scholar]
- ISO 4121:1998. Sensory Analysis—Methodology—Evaluation of Food Products by Methods Using Scales; International Organization for Standardization (ISO): Geneva, Switzerland, 1998. [Google Scholar]
- ISO 8589:2007. Sensory Analysis—General Guidance for the Design of Test Rooms; International Organization for Standardization (ISO): Geneva, Switzerland, 2007. [Google Scholar]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1924&from=EN (accessed on 27 October 2020).
- Howard, L.R.; Prior, R.L.; Liyanage, R.; Lay, J.O. Processing and storage effect on berry polyphenols: Challenges and implications for bioactive properties. J. Agric. Food Chem. 2012, 60, 6678–6693. [Google Scholar] [CrossRef]
- Azofeifa, G.; Quesada, S.; Pérez, A.M.; Vaillant, F.; Michel, A. Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals. J. Food Compos. Anal. 2015, 42, 56–62. [Google Scholar] [CrossRef]
- Hager, T.J.; Howard, L.R.; Prior, R.L. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products. J. Agric. Food Chem. 2008, 56, 689–695. [Google Scholar] [CrossRef]
- Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color stability of commercial anthocyanin—Based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. J. Agric. Food Chem. 2001, 49, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, K.; Howard, L.R.; Brownmiller, C.; Prior, R.L. Changes in chokeberry (Aronia melanocarpa L.) polyphenols during juice processing and storage. J. Agric. Food Chem. 2014, 62, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- White, B.L.; Howard, L.R.; Prior, R.L. Impact of different stages of juice processing on the anthocyanin, flavonol, and procyanidin contents of cranberries. J. Agric. Food Chem. 2011, 59, 4692–4698. [Google Scholar] [CrossRef] [PubMed]
- Skąpska, S.; Marszałek, K.; Woźniak, Ł.; Zawada, K.; Wawer, I. Aronia dietary drinks fortified with selected herbal extracts preserved by thermal pasteurization and high pressure carbon dioxide. LWT 2017, 85, 423–426. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Mercali, G.D.; Jaeschke, D.P.; Tessaro, I.C.; Marczak, L.D.F. Study of vitamin C degradation in acerola pulp during ohmic and conventional heat treatment. LWT 2012, 47, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Cvetković, B.R.; Jokanović, M.R. Effect of preservation method and storage condition on ascorbic acid loss in beverages. Acta Period. Technol. 2009, 40, 1–7. [Google Scholar] [CrossRef]
- Herbig, A.L.; Maingonnat, J.F.; Renard, C.M.G.C. Oxygen availability in model solutions and purées during heat treatment and the impact on vitamin C degradation. LWT 2017, 85, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Aaby, K.; Martinsen, B.K.; Borge, G.I.A.; Røen, D. Bioactive compounds and color of sea buckthorn (Hippophae rhamnoides L.) purees as affected by heat treatment and high-pressure homogenization. Int. J. Food. Prop. 2020, 23, 651–664. [Google Scholar] [CrossRef] [Green Version]
- Gama, J.J.T.; de Sylos, C.M. Effect of thermal pasteurization and concentration on carotenoid composition of Brazilian Valencia orange juice. Food Chem. 2007, 100, 1686–1690. [Google Scholar] [CrossRef]
- Tolić, M.-T.; Landeka, I.; Krbavčić, I.P.; Marković, K.; Vahčić, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E.; Przygoński, K. Antioxidant properties and phenolic compounds of vitamin C—Rich juices. J. Food Sci. 2018, 83, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef] [PubMed]
- Payet, B.; Sing, A.S.C.; Smadja, J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. J. Agric. Food Chem. 2005, 53, 10074–10079. [Google Scholar] [CrossRef] [PubMed]
- Bender, C.; Killermann, K.V.; Rehmann, D.; Weidlich, H.H. Effect of Stevia rebaudiana Bert. addition on the antioxidant activity of red raspberry (Rubus idaeus L.) juices. Beverages 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.I.V.; Bowers, J.A.; Dayton, A.D. Statistical designs and panel training/experience for sensory analysis. J. Food Sci. 1981, 46, 1902–1906. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J. Application of sensory descriptive analysis and consumer studies to investigate traditional and authentic foods: A Review. Foods 2019, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Stone, H.; Siedel, J.L. Sensory Evaluation Practices, 2nd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Reis, F.; Alcaire, F.; Deliza, R.; Ares, G. The role of information on consumer sensory, hedonic and wellbeing perception of sugar-reduced products: Case study with orange/pomegranate juice. Food Qual. Prefer. 2017, 62, 227–236. [Google Scholar] [CrossRef]
- Verbeke, W. Consumer acceptance of functional foods: Socio-demographic, cognitive and attitudinal determinants. Food Qual. Pref. 2005, 16, 45–57. [Google Scholar] [CrossRef]
- Küster-Boludaa, I.; Vidal-Capilla, I. Consumer attitudes in the selection of functional foods. Span. J. Mark. 2017, 21, 65–79. [Google Scholar]
- Batyk, I.M. Effect of age on the perception of functional foods by residents of Polish. In 2nd International Conference on Food and Agricultural Sciences, IPCBEE; IACSIT Press: Singapore, 2014; Volume 77, pp. 11–15. [Google Scholar]
- Menezes, E.; Deliza, R.; Chan, H.L.; Guinard, J.-H. Preferences and attitudes towards açaí-based products among North American consumers. Food Res. Int. 2011, 44, 1997–2008. [Google Scholar] [CrossRef] [Green Version]
- Pereira, G.S.; Honorio, A.R.; Gasparetto, B.R.; Lopes, C.M.A.; Lima, D.C.N.d.; Tribst, A.A.L. Influence of information received by the consumer on the sensory perception of processed orange juice. J. Sens. Stud. 2019, 34, e12497. [Google Scholar] [CrossRef]
- Pappalardo, G.; Lusk, J. The role of beliefs in purchasing process of functional foods. Food Qual. Prefer. 2016, 53, 151–158. [Google Scholar] [CrossRef]
Kind of Beverage | Juice (g/kg) | Version | Sweetener (g/kg) | Herbal and Plant Extracts | |
---|---|---|---|---|---|
Sugar | Steviol Glycoside | ||||
Aronia | 800 | T | 35 | - | cistus, green tea, nettle, artichoke |
D | - | 0.175 | |||
Rosehip and acerola | 600:200 | T | 30 | - | Siberian ginseng, ginger, purple coneflower, aloe |
D | - | 0.15 | |||
Cranberry | 800 | T | 15 | - | horsetail, lingonberry, silver birch, chamomile |
D | - | 0.75 | |||
Sea buckthorn | 800 | T | 50 | - | horsetail, chamomile, nettle |
D | - | 0.25 |
Type of Beverage | Vitamin C (mg/L) | Carotenoids (mg/L) | Polyphenols (mg GA/L) | Anthocyanins (mg/L) | Antioxidant Capacity (µM Trolox/g) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABTS | DPPH | ORAC | |||||||||||||
O | P | O | P | O | P | O | P | O | P | O | P | O | P | ||
Aronia | T | - | - | - | - | 696 ± 9 a | 691 ± 5 a | 220 ± 4 a | 137 ± 3 b | 48.0 ± 8.0 a | 47.3 ± 0.9 a | 79.0 ± 2.0 a | 66.3 ± 0.6 b | 79.5 ± 1.0a | 73.0 ± 8.0 ab |
D | - | - | - | - | 677 ± 20 a | 668 ± 19 a | 145 ± 3 b | 116 ± 3 c | 54.1 ± 0.2 b | 57.6 ± 1.9 c | 71.4 ± 3.4 c | 71.4 ± 0.4 c | 68.3 ± 5.3b | 66.6 ± 0.6 b | |
Rosehip−acerola | T | 3597 ± 4 a | 3439 ± 1 b | 82 ± 3 a | 78 ± 2 a | 803 ± 9 a | 807 ± 13 a | - | - | 58.8 ± 2.7 a | 63.2 ± 1.9 b | 89.0 ± 7.0 a | 75.7 ± 2.6 b | 101.1 ± 9.3ab | 104.9 ± 2.5 a |
D | 3707 ± 2 c | 3540 ± 6 d | 80 ± 1 a | 75 ± 3 a | 817 ± 7 a | 812 ± 9 a | - | - | 64.1 ± 1.1 b | 65.0 ± 4.2 b | 70.0 ± 5.0 c | 94.0 ± 8.0 a | 94.0 ± 7.0bc | 91.0 ± 1.9 c | |
Cranberry | T | - | - | - | - | 245 ± 9 a | 230 ± 9 ab | 43.6 ± 0.1 a | 22.4 ± 0.2 b | 16.3 ± 0.3 a | 15.5 ± 2.1 abc | 20.0 ± 1.1 a | 17.9 ± 1.4 bc | 45.9 ± 9.0ab | 41.3 ± 1.4 a |
D | - | - | - | - | 250 ± 13 a | 213 ± 6 b | 39.7 ± 0.6 c | 24.4 ± 0.2 d | 14.0 ± 0.2 b | 15.5 ± 0.3 c | 15.1 ± 3.2 b | 19.1 ± 1.8 ac | 39.1 ± 0.9b | 31.0 ± 2.2 c | |
Sea buckthorn | T | 1206 ± 4 a | 1194 ± 9 a | 65 ± 3 ab | 60 ± 3 a | 339 ± 6 a | 341 ± 5 a | - | - | 22.0 ± 1.1 a | 21.3 ± 0.3 a | 18.9 ± 0.8 a | 18.9 ± 2.5 ab | 45.9 ± 1.4ab | 45.3 ± 1.6 ab |
D | 1111 ± 7 b | 1094 ± 8 b | 68 ± 2 b | 59 ± 1 a | 341 ± 10 a | 331 ± 8 a | - | - | 20.2 ± 0.7 b | 19.5 ± 0.8 b | 18.8 ± 1.0 a | 17.6 ± 0.7 b | 44.0 ± 3.0a | 46.8 ± 0.7 b |
Age | Gender (%) | Care for Body Mass and Health (%) | ||||
---|---|---|---|---|---|---|
Male | Female | Yes | Rather Yes | Rather No | No | |
18–24 | 50 | 50 | 41.7 | 50 | 8.3 | - |
25–34 | 50 | 50 | 50 | 50 | - | - |
35–44 | 50 | 50 | 16.7 | 75 | 8,3 | - |
45–54 | 50 | 50 | 25 | 50 | 16.7 | 8.3 |
>55 | 50 | 50 | 58.3 | 41.7 | - | - |
all | 50 | 50 | 38.3 | 53.3 | 6.7 | 1.7 |
Kind of Beverage | Taste (0–10 Point) F0.05(7472) = 50.950 | Odour (0–10 Point) F0.05(7472) = 26.956 | Colour (0–10 Point) F0.05(7472) = 39.706 | Overall Acceptance (0–10 Point) F0.05(7472) = 45.965 | Willingness to Purchase (%) | |
---|---|---|---|---|---|---|
Aronia | T | 7.3 ± 1.7 c | 6.2 ± 2.1 b | 8.3 ± 1.4 c | 7.3 ± 1.4 c | 53.3 |
D | 6.6 ± 1.8 c | 5.7 ± 2.1 b | 8.0 ± 1.8 c | 7.0 ± 1.9 c | 56.7 | |
Rosehip−acerola | T | 5.5 ± 2.0 b | 5.9 ± 2.0 b | 6.2 ± 1.8 b | 5.6 ± 1.9 b | 30.0 |
D | 5.6 ± 2.2 b | 5.8 ± 2.0 b | 5.7 ± 1.7 ab | 5.7 ± 2.2 b | 36.7 | |
Cranberry | T | 4.9 ± 1.9 b | 7.3 ± 1.7 d | 8.0 ± 1.4 c | 5.9 ± 1.8 b | 26.7 |
D | 5.1 ± 1.9 b | 7.0 ± 1.9 cd | 8.0 ± 1.5 c | 6.0 ± 1.6 b | 23.3 | |
Sea buckthorn | T | 2.4 ± 1.7 a | 3.7 ± 2.1 a | 5.1 ± 2.2 a | 3.0 ± 1.7 a | 0 |
D | 2.7 ± 1.9 a | 3.8 ± 1.9 a | 5.1 ± 2.0 a | 3.2 ± 1.8 a | 5.0 |
Type of Beverage | Overall Acceptance (0–10 Point) | Willingness to Purchase (%) | |||||
---|---|---|---|---|---|---|---|
Male | Female | Male | Female | ||||
Average | F0.05(1,58) | Average | F0.05(1,58) | ||||
Aronia | T | 7.1 ± 1.7 a | 1.540 | 7.5 ± 1.1 a | 0.010 | 60.0 | 46.7 |
D | 6.5 ± 2.1 a | 7.5 ± 1.5 a | 50.0 | 63.3 | |||
Rosehip−acerola | T | 5.3 ± 1.9 a | 0.256 | 6.0 ± 2.0 a | 0.422 | 26.7 | 33.3 |
D | 5.0 ± 2.2 a | 6.3 ± 2.0 a | 33.3 | 40.0 | |||
Cranberry | T | 5.8 ± 1.7 a | 0.145 | 6.0 ± 1.9 a | 0.006 | 30.0 | 23.3 |
D | 5.9 ± 1.7 a | 6.0 ± 1.6 a | 30.0 | 16.7 | |||
Sea buckthorn | T | 3.0 ± 1.7 a | 0.089 | 3.0 ± 1.8 a | 0.518 | 0 | 0 |
D | 3.1 ± 1.7 a | 3.3 ± 1.8 a | 6.7 | 3.3 | |||
Average | 5.2 ± 2.3 a | - | 5.7 ± 2.3 b | - | 29.6 | 28.3 |
Type of Beverage | Age | Average | Aronia | Rosehip−Acerola | Cranberry | Sea Buckthorn | ||||
---|---|---|---|---|---|---|---|---|---|---|
T | D | T | D | T | D | T | D | |||
18–24 | 5.5 ± 2.5 ab | 8.3 ± 0.7 b | 7.5 ± 1.4 a | 5.4 ± 1.8 a | 5.3 ± 2.3 a | 6.3 ± 2.3 a | 6.2 ± 1.5 a | 2.6 ± 1.5 a | 2.8 ± 1.9 a | |
Overall acceptance (0–10 point) | 25–34 | 6.1 ± 2.2 b | 7.0 ± 1.6 ab | 7.7 ± 2.1 a | 6.3 ± 1.6 a | 6.9 ± 2.0 a | 6.3 ± 1.9 ba | 6.7 ± 1.7 a | 3.6 ± 1.8 a | 4.2 ± 1.8 a |
35–44 | 5.2 ± 2.6 ab | 7.2 ± 1.6 ab | 6.7 ± 2.2 a | 5.5 ± 2.8 a | 5.5 ± 2.7 a | 5.6 ± 1.8 a | 5.8 ± 1.9 a | 2.8 ± 2.1 a | 2.8 ± 1.6 a | |
45–54 | 5.4 ± 2.1 ab | 7.3 ± 1.1 ab | 6.8 ± 1.0 a | 6.1 ± 1.4 a | 6.1 ± 1.6 a | 5.3 ± 1.5 a | 5.5 ± 1.5 a | 3.0 ± 2.0 a | 3.3 ± 2.0 a | |
≥55 | 5.0 ± 2.0 a | 6.7 ± 1.6 a | 6.3 ± 2.2 a | 4.8 ± 1.6 a | 4.5 ± 1.7 a | 5.8 ± 1.4 a | 5.8 ± 5.8 a | 2.9 ± 1.2 a | 3.1 ± 1.4 a | |
F0.05(4,55) | 3.124 | 2.612 | 1.155 | 1.256 | 2.290 | 0.831 | 0.979 | 0.530 | 1.347 | |
18–24 | 32.3 | 58.3 | 83.3 | 33.3 | 50.0 | 16.7 | 8.3 | 0.0 | 8.3 | |
Willingness to purchase (%) | 25–34 | 27.1 | 25.0 | 58.3 | 16.7 | 50.0 | 16.7 | 33.3 | 0.0 | 16.7 |
35–44 | 32.3 | 75.0 | 41.7 | 33.3 | 25.0 | 50.0 | 33.3 | 0.0 | 0.0 | |
45–54 | 27.1 | 58.3 | 58.3 | 41.7 | 41.7 | 8.3 | 8.3 | 0.0 | 0.0 | |
≥55 | 26.0 | 50.0 | 41.7 | 25.0 | 16.7 | 41.7 | 33.3 | 0.0 | 0.0 |
Willingness to Purchase (%) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes | No | ||||||||||||||||
Type of Beverage | Aronia | Rosehip−Acerola | Cranberry | Sea Buckthorn | Aronia | Rosehip−Acerola | Cranberry | Sea Buckthorn | |||||||||
Attitude Toward Proper Body Mass and Health | T | D | T | D | T | D | T | D | T | D | T | D | T | D | T | D | |
% care for proper body mass and health | 25.0 | 38.2 | 38.9 | 40.9 | 37.5 | 42.9 | 0 | 66.7 | 53.6 | 38.5 | 38.1 | 36.8 | 38.6 | 37 | 36.8 | 36.8 | |
% rather care for proper body mass and health | 62.5 | 55.9 | 50.0 | 50 | 56.3 | 57.1 | 0 | 33.3 | 42.9 | 50 | 54.8 | 55.3 | 52.3 | 52.2 | 54.4 | 54.4 | |
% rather do not care for proper body mass and health | 9.4 | 2.9 | 11.1 | 9.1 | 6.3 | 0 | 0 | 0 | 3.6 | 11.5 | 4.8 | 2.6 | 6.8 | 8.7 | 7.0 | 7.0 | |
% do not care for proper body mass and health | 3.1 | 2.9 | 0 | 0 | 0 | 0 | 0 | 0 | 2.4 | 36.8 | 2.3 | 2.2 | 1.8 | 1.8 | |||
Chi^2(Chi-square) | 2.1575 | 0.5050 | 0.9296 | 1.9686 | 0.0243 | 0.1197 | 0.0299 | ||||||||||
df | 3 | 2 | 2 | 2 | 3 | 3 | 3 | ||||||||||
p | 0.540 | 0.975 | 0.628 | 0.374 | 0999 | 0.989 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skąpska, S.; Marszałek, K.; Woźniak, Ł.; Szczepańska, J.; Danielczuk, J.; Zawada, K. The Development and Consumer Acceptance of Functional Fruit-Herbal Beverages. Foods 2020, 9, 1819. https://doi.org/10.3390/foods9121819
Skąpska S, Marszałek K, Woźniak Ł, Szczepańska J, Danielczuk J, Zawada K. The Development and Consumer Acceptance of Functional Fruit-Herbal Beverages. Foods. 2020; 9(12):1819. https://doi.org/10.3390/foods9121819
Chicago/Turabian StyleSkąpska, Sylwia, Krystian Marszałek, Łukasz Woźniak, Justyna Szczepańska, Joanna Danielczuk, and Katarzyna Zawada. 2020. "The Development and Consumer Acceptance of Functional Fruit-Herbal Beverages" Foods 9, no. 12: 1819. https://doi.org/10.3390/foods9121819
APA StyleSkąpska, S., Marszałek, K., Woźniak, Ł., Szczepańska, J., Danielczuk, J., & Zawada, K. (2020). The Development and Consumer Acceptance of Functional Fruit-Herbal Beverages. Foods, 9(12), 1819. https://doi.org/10.3390/foods9121819