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Abstract: Lichens are unique extremophilic organisms due to their phenomenal resistance to adverse
environmental factors, including ultraviolet (UV) irradiation. Melanization plays a special role in the
protection of lichens from UV-B stress. In the present study, we analyzed the binding of melanins
with the components of cell walls of the mycobiont of the upper cortex in the melanized lichen thalli
Lobaria pulmonaria. Using scanning electron and atomic force microscopy, the morphological and
nanomechanical characteristics of the melanized layer of mycobiont cells were visualized. Melaniza-
tion of lichen thalli led to the smoothing of the surface relief and thickening of mycobiont cell walls, as
well as the reduction in adhesion properties of the lichen thallus. Treatment of thalli with hydrolytic
enzymes, especially chitinase and lichenase, enhanced the yield of melanin from melanized thalli
and promoted the release of carbohydrates, while treatment with pectinase increased the release of
carbohydrates and phenols. Our results suggest that melanin can firmly bind with hyphal cell wall
carbohydrates, particularly chitin and 1,4-β-glucans, strengthening the melanized upper cortex of
lichen thalli, and thereby it can contribute to lichen survival under UV stress.

Keywords: lichen; UV-induced melanization; melanin; topography; hydrolytic enzymes; microscopy

1. Introduction

Lichens are supraorganismal symbiotic systems, comprising a thallus formed by
two major partners, a fungus (the mycobiont) and an alga and/or a cyanobacterium (the
photobiont) [1]. These two organisms are closely linked morphologically, physiologically,
and biochemically [2,3]. Lichens may cover up to 100% of the ground at the sites where
vascular plants are at their physiological limits [4]. Lichens are classified as extremophilic
organisms due to their phenomenal resistance to adverse environmental factors, including
ultraviolet (UV) stress [5]. Among the various defense mechanisms, the synthesis of
secondary metabolites, including melanin pigments, plays a special role [6]. Melanization
of the cortical layer of the lichen thallus prevents the damage of intracellular components
during the exposure of lichen thallus to UV irradiation and high-intensity light. Melanins
are dark pigments produced through the oxidation and polymerization of phenolic or
indolic precursors [7,8]. The application of a combination of transmission and scanning
electron microscopy methods has shown that melanins have a granular structure and occur
as dark granules of different sizes [9,10]. The microstructure of melanins has been studied
in several pathogenic fungi [11,12] and human melanosomes [13,14]. In fungi, melanins can
be either secreted into the external environment or accumulate in the fungal cell wall [15].
High-resolution solid-state NMR has shown that, in Cryptococcus neoformans, melanins are
probably covalently bound to cell wall chitin [16]. A close association between melanin and
chitin has also been reported for Aspergillus nidulans [17], Exophilia dermatitides [18], and
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Candida albicans [19]. Fungi with mutated genes that are involved in the biosynthesis of
the cell wall chitin or chitosan display a “leaky melanin” phenotype or possess enhanced
pigment deposition [19]. The incorporation of melanin into the fungal cell wall decreases
the pore size, reducing the conductivity of the wall, e.g., to water [20,21]. In our earlier
study on UV-induced melanization of the lichen Lobaria pulmonaria, we visualized stages
in the formation of melanin-like granules, including the formation of melanin vesicles,
their transport, aggregation, and deposition of granules in cell walls of hyphae of the
upper cortex [8,10]. However, information about the ability of melanin to bind with cell
wall components of lichen mycobionts is scarce. This is likely a result of the complexity
of the anatomical structure of the lichen thallus, the interactions between the fungal and
photosynthetic symbionts, and the diversity of metabolite biosynthesis pathways that occur
in lichens. Furthermore, lichen melanins can form complexes with metals and the elements
of lichen cell walls, making them difficult to study [6,22]. Previous studies on melanin
complexes isolated from two lichen species used infrared (IR) spectroscopy to reveal the
presence of aromatic and aliphatic functional groups [23]. It is known that treatment of
the cell wall with hydrolytic enzymes is a relatively mild but effective method of breaking
down cell walls with high specificity [24]. For example, treatment of the fungi Inonotus
hispidus with complex hydrolyzing enzymes resulted in an increased yield of extracted
melanin [25].

Understanding the structure and properties of melanin associations in the cell walls is
important for understanding how melanin strengthens lichen thalli and facilitates tolerance
of lichen to UV stress. The aim of the present study was to visualize the topography of
UV-melanized thalli and to analyze the binding of melanins with the components of cell
walls in Lobaria pulmonaria (L.) Hoffm., a large leafy epiphytic lichen, which predominantly
grows at a height of 1–2 m on wet bark of the lower part of the trunks of deciduous and
coniferous trees. The species has an extensive range, covering Europe, Asia, Africa, North
America and Australia. The thallus of the lichen L. pulmonaria represents an association of
mycobiont hyphae (ascomycetes) with photobiont cells (green algae Symbiochloris reticulata
and cyanobacteria Nostoc) [26,27]. Cyanobacteria of the genus Nostoc are included in special
structures termed cephalodia and carry out biological fixation of atmospheric nitrogen. The
upper cortex of sun-exposed thalli of L. pulmonaria can be dark brown, while shade-adapted
thalli are normally bright green. The lower cortex is beige or light brown. Field experiments
have shown that exposing shade-adapted L. pulmonaria to normal solar radiation induces
L-DOPA melanin synthesis [28,29].

To study the morphological and nanomechanical characteristics of the melanized layer
of mycobiont cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM)
were applied. SEM reproduces the lateral dimensions of thalli, while AFM can provide
direct information on the relief or “height” and adhesion of the surface. We hypothesized
that the changes in the relief and adhesion of the surface of thalli that have melanized
following exposure to UV-B result from the association of melanins with polysaccharides,
especially chitin and β-glucans, and proteins in the cell walls. To test this, hydrolyzing
enzymes were applied to melanized lichen thalli. The ability of the enzymes to break
down the bonds was assessed by measuring the release of carbohydrates, proteins, and
phenols, and the yield of melanin. Changes caused in the ultrastructure of the cells in the
upper cortex following enzyme treatments were visualized using transmission electron
microscopy (TEM).

2. Results
2.1. Morphology

Analysis of the surface topography of cross sections from the upper cortex of pale and
melanized L. pulmonaria thalli by SEM revealed that the relief of the anticlinal cell walls
of the pale thallus was heterogeneous and rough and characterized by a large number of
depressions and bulges (Figure 1A). The anticlinal cell walls of melanized thallus were
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smoother, with fewer differences in height. Cell walls of the melanized thallus were visibly
thicker than those in the pale thallus (Figure 1A,B).
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Figure 1. SEM images of the anticlinal (stars) and periclinal cell walls (triangles) of cross sections of
pale (A) and melanized (B) thalli of L. pulmonaria. Scale bar corresponds to 10 µm.

By qualitative reactions using Calcofluor staining and Lugol staining, we visualized
the presence of carbohydrates, including chitin, in the cell walls of cortical cells in the cross
sections of pale and melanized L. pulmonaria thalli. Interestingly, while in the pale thalli
Calcofluor staining was very bright (Figure 2B), fluorescence in the melanized thallus was
much weaker (Figure 2E). Lugol staining of chitin demonstrated the presence of the small
light purple grains in the upper cortex of pale thalli (Figure 2C), whereas pigmentation of
the upper cortex of melanized thalli was darker (Figure 2F).
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To study the topographical features of the upper cortex, we analyzed the 3D relief
and adhesion of the surface of the cross sections of Lobaria pale and melanized thalli
using AFM (Figure 3). Melanized samples displayed approximately twice the variation
in height variations, while adhesion values were reduced by 0.6 compared to those of
the pale samples. An increase in height variation of the upper cortex of melanized thalli
measured by AFM (vertical dimension, Figure 3A,E) corresponded to an increase in their
SEM widths (lateral dimension, Figure 1A,B). Visualized differences in the adhesion in pale
(Figure 3B–D) and melanized thalli (Figure 3F–H) corresponded to the differences in the
morphology of the cell walls in pale and melanized thalli, as shown in Figure 1A,B. Thus,
SEM and AFM imaging gave complementary information.
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2.2. The Effect of Enzyme Treatment on the Release of Components

To characterize the binding of melanins with the components of cell walls in L. pul-
monaria, discs of pale and melanized lichen thalli were incubated in the solutions with
enzymes that hydrolyze the bonds between melanin and carbohydrates, proteins, and
phenols. The list of enzymes, their specific activity, corresponding buffers and concen-
trations are presented in Table 1. After treatment of pale and melanized thalli with en-
zymes, the absorbance of the incubation solutions was analyzed at a wavelength of 490 nm
(Figure 4A,B), which corresponds to the absorbance of melanins [22] and some other phe-
nolic compounds such as quinones [30]. After treatment of thalli with chitinase, lichenase,
endoglucanase, and pectinase, the absorbance of incubation solutions was low, and there
was no difference between pale and melanized thalli. However, treatment of the thalli with
protease caused a significant increase in absorbance, especially of the incubation solution
of melanized lichen (Figure 4B). Interestingly, incubating both types of lichen thalli in the
buffer without protease also increased the absorbance. Following incubation in solutions
containing buffer only, the absorbance of melanized thalli was more than double that of pale
thalli (Figure 4A,B).

Table 1. List of enzymes.

Enzyme Specific Activity Source Buffer Units mL−1

Chitinase 1
Hydrolysis of N-acetyl-

β-D-glucosaminide (1→4)-β-linkages
in chitin and chitodextrins

Trichoderma viride 50 mM sodium phosphate,
pH 6.0 0.5

Lichenase 2
Hydrolysis of (1,4)-β-D-glucosidic
linkages in β-D-glucans containing

(1,3)- and (1,4)-bonds
Bacillus subtilis 10 mM sodium phosphate,

pH 6.0 5

Endoglucanase 2 Hydrolysis of (1,3)-β-D-glucosidic
linkages in (1,3)-β-D-glucans Trichoderma sp. 100 mM sodium acetate,

pH 4.5 0.5

Pectinase 1 Hydrolysis of pectin-containing
substances

Aspergillus
aculeatus

100 mM sodium acetate,
pH 4.5 1

Protease 1
Hydrolysis of peptide bonds in

proteins with conversion to shorter
polypeptides and amino acids

Bacillus
licheniformis

100 mM sodium phosphate,
pH 7.4 1

1 Sigma-Aldrich, St. Louis, MO, USA. 2 Megazyme, Chicago, IL, USA.
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Figure 4. Absorbance of the incubation solutions at wavelength 490 nm (λ490, (A,B)), the content
of total phenolic compounds (C,D) and total carbohydrates (E,F) of pale (A,C,E) and melanized
(B,D,F) thalli of lichen L. pulmonaria treated with buffer solutions with and without enzymes (n = 3).
Statistically significant differences are indicated as p ≤ 0.05 (*), ≤0.01 (**), ≤0.001 (***).

Treatment of the pale thalli with pectinase and protease increased the release of phe-
nolic compounds into incubation solutions (Figure 4C). The release of phenolic compounds
from melanized thalli was highly stimulated by pectinase (Figure 4D). The significant
release of phenolic compounds from melanized thalli was observed following incubation
of discs in the solutions with and without protease (Figure 4D). After the incubation of
lichen thalli in the solutions containing chitinase, lichenase, and endogluconase, the release
of phenolic substances to the incubation solutions was low and similar to their release into
solutions containing only buffers.

Treatment of pale thalli with buffers with or without chitinase releases small amounts
of carbohydrates (Figure 4E), while the release of total carbohydrates from melanized
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lichen thalli doubled after treatment with chitinase (Figure 4F). The treatment of pale
and melanized lichen thalli with buffers with and without lichenase greatly increased the
release of carbohydrates (Figure 4E,F). The release of carbohydrates was not observed
after treatment of pale and melanized thalli with endogluconase and protease, while the
incubation with pectinase resulted in the significant release of carbohydrates (Figure 4E,F).

Measuring the melanin after enzyme treatments showed that the general contents were
lower in pale than melanized thalli (Figure 5A,B). After treatment of melanized thalli with
chitinase, and especially lichenase, the yield of melanin was much higher compared to that
of solutions that contained only buffer (Figure 5B). Endoglucanase marginally increased
the amount of melanin that could be extracted, while pectinase and protease faciliated the
increase of more melanins from both pale and melanized thalli.
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2.3. The Ultrastructural Characteristics of the Cross Sections of Melanized Lichen Thalli

After treatment of melanized L. pulmonaria thalli with chitinase, endoglucanase, pecti-
nase, and protease, we analyzed the ultrastructural properties of cross sections of these
thalli by TEM (Figure 6). In melanized thallus, the fungal hyphae had thick cell walls with
a clearly visualized melanic layer and an intact plasma membrane (Figure 6A).
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Figure 6. Transmission electron microscopy images of cross sections of melanized L. pulmonaria thalli:
without enzyme treatment (A), after treatment with chitinase (B), endoglucanase (C), pectinase (D),
and protease (E). Cell wall (CW), plasma membrane (PM), nucleus (N). Scale bar corresponds to
0.5 µm.

Treatment of the thalli with enzymes caused significant changes in the cellular ul-
trastructure. In particular, layering and loosening of the cell walls (Figure 6C–E), and
decondensation of interhyphal space (Figure 6C,D), were observed. Furthermore, the
integrity of the plasma membrane was disrupted (Figure 6B–E), and it became detached
from the cell wall of the hyphae; significant plasmolysis of the cellular contents was
visualized (Figure 6B–E).
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3. Discussion

The ability of lichens to synthesize darkly pigmented melanins contributes to their
survival in hostile environments, including UV stress and desiccation [31,32]. In the present
study, by applying advanced imaging techniques such as AFM, we discovered that UV-B
irradiation causes changes in the topography of thalli of the lichen L. pulmonaria. Following
UV irradiation, L. pulmonaria becomes melanized, and compared to pale thalli, anticlinal
and periclinal cell walls of melanized upper cortex become visibly thicker and display a
smoother relief (Figure 1). In our previous paper, we showed that UV induces the formation
of melanin-like granules in the hyphae in the melanized upper cortex of lichen thallus [10].
We suggest that the changes in morphology of thallus surface during melanization result
from the formation of melanin complex polymers in the cell walls of the fungal hyphae in
the upper cortex.

Studying the structure of melanins is challenging, because they are complex polymers,
insoluble, amorphous, and heterogeneous, comprising a mixture of proteins, carbohydrates,
including chitin/chitosan, and lipid moieties [33,34]. These compounds appear to serve as
scaffolds for melanin synthesis [16,35]. Wall-bound electron-dense melanin granules may
occur in the outer or inner part of the cell walls of fungal hyphae [36]. In melanized thalli
of Lobaria, the upper cortex is visibly much darker than that of pale thalli (Figure 2A,D).
To visualize the association of melanin with other components of the hyphal cell walls,
qualitative stains such as Calcofluor for carbohydrates and Lugol for chitin were used.
Compared to melanized thalli, pale thalli displayed more intense Calcofluor staining
in the upper cortex (Figure 2B,E). It seems likely that bonding between melanins and
polysaccharides impedes the normal interaction of the stain with its target molecules. In
cross sections of the melanized thalli of L. pulmonaria, staining with Lugol results in a dark
purple stippling (Figure 2C,F), indicating the presence of chitin in the upper cortex. Chitin,
a long-chain polymer of N-acetylglucosamine, provides mechanical strength to fungal cell
walls and is therefore an important structural component of the cell wall [37,38]. Several
studies suggest that chitin is a primary effector for melanin polymer deposition within the
fungal cell wall [39–42].

Investigating the mechanical properties of tissues at the cellular level by AFM can
greatly assist in understanding the processes of growth and morphogenesis [43]. For
example, in maize primary roots, stiffness and elasticity of the stele vascular parenchyma
periclinal cell walls are correlated with cell wall mechanical properties [44]. There have been
several studies on the conformation of melanins using ASM, for example, the ultrastructural
characteristics of eumelanin from Sepia officinalis [45,46]. In the present study, imaging
the topography and mechanical properties of melanins in the thallus of L. pulmonaria by
ASM demonstrates that UV-B-induced melanization changes the physical parameters of
the upper cortex. The height of the surface of melanized samples increases, while adhesion
is reduced compared to that in the pale thalli (Figure 3). Adhesion is an integral parameter
comprising both the adherence of the thalli to the AFM probe and the contribution of the
interfacial water film. Yet, we see that the adhesion force is different for these two types of
thalli. This observation indirectly supports the difference in the topography of two thalli
at the nanoscale. In the green alga Enteromorpha linza (L.), AFM was used to show that
glycoprotein is a natural adhesive and provides firm anchorage to the substratum [47]. It
is likely that the changes in the height and adhesion of the surface of melanized samples
result from the association of melanins with polysaccharides and proteins in the cell walls.

To study the nature of the link between melanins and cell wall components, we treated
pale and melanized lichen thalli with chitinase, lichenase, endoglucanase, pectinase, and
protease. These enzymes can hydrolyze the glucosidic bonds of structural carbohydrates of
the cell wall and also proteins (Table 1). Treatment with pectinase causes a significant re-
lease of carbohydrates and phenols, although pectin substances are not common in lichens
(Figure 4). However, some lichens, e.g., Evernia prunastri (L.) Ach. [48] and Peltigera canina
(L.) Willd. [49], contain pectinases, specifically polygalacturonase, which may indicate that
some pectins are present. Lobaria pulmonaria may contain pectin or pectin-like polysaccha-
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rides that can be target molecules for pectinase. Interestingly, incubation in buffer solutions
with a pH of 7.4 can induce the release of phenolic compounds from melanized lichen thalli,
possibly indicating that they are soluble in alkaline solutions [50,51].

Lichen polysaccharides are mainly linear or weakly substituted α- or β-glucans [52].
Therefore, it is not surprising that treatment of melanized lichen thalli with chitinase and
lichenase increases the release of carbohydrates (Figure 4E,F). Furthermore, the yield of
melanin from melanized thalli was much higher following treatment with chitinase, and
even more so lichenase, which hydrolyzes 1,4-β-glucosidic bonds (Figure 5). By contrast,
endoglucanase, which hydrolyzes 1,3-β-glucosidic bonds, did not increase in the yield of
melanin extracted (Figure 5). Therefore, these results suggest the presence of chitin and
1,4-β-glucans in the cell wall of mycobiont. Protease only had a small effect on the release of
melanin. It seems likely that melanin is strongly associated with the structural components
of the cell wall that are targeted by hydrolytic enzymes. Hydrolytic enzymes also cause
changes in the ultrastructure of hyphal cells of the upper cortex, such as layering and
loosening of the cell walls, decondensation of interhyphal space, and significant plasmolysis
of the cellular content (Figure 6). Taken together, the observed ultrastructural changes and
the effects of hydrolytic enzymes on the release of compounds from the thalli strongly
suggest that bonds exist between melanin and structural polysaccharides in the cell wall.
Future research is required to determine the structure, morphology, and physicochemical
properties of isolated associations of lichen melanins with cell wall polysaccharides.

4. Materials and Methods
4.1. Sample Preparation

Pale and melanized thalli of L. pulmonaria (L.) Hoffm. were collected from the bark
of poplar trees growing in the outskirts of Syktyvkar, Komi Republic, Russia (latitude
61′34’ N, longitude 50′33’ E). Lichen material was cleaned, slowly dried at room tempera-
ture, and then stored at −20 ◦C. Samples were chosen from the medial zone of the thallus,
away from the margins and the basal thalline zone attached to the substratum. Before
experiments, 1 cm disks were cut, their dry mass determined, and then placed on wet
filter paper and hydrated in a climate chamber at +15 ◦C and 12/12 h (light/dark). The
thalli were irradiated by UV-B (λ = 280–315 nm) fluorescent erythema lamps (3 W m−2) for
80 min daily for 14 d. During this time, the controls were taken out of the climate chamber
and kept under regular laboratory conditions without UV irradiation.

4.2. Scanning Electron Microscopy

To image melanin of L. pulmonaria by scanning and transmission electron microscopy,
thalli were embedded in 3% agarose blocks and cut using a vibratome (Leica VT 1000S,
Wetzlar, Germany), resulting in 50 µm cross sections from the upper cortex. The cross
sections of pale and melanized lichen thalli were subsequently fixed in 2.5% glutaraldehyde
in 0.1 M Na phosphate buffer, pH 7.4, and 1% osmium tetroxide, and further dehydrated as
described by Daminova et al. (2022) [10]. Sections were then sputter-coated with gold using
the Q150T ES Coater (Quorum Technologies, Lewes, UK), and anticlinal and periclinal
cell walls were viewed using a high-resolution scanning electron microscope (Merlin, Carl
Zeiss, Oberkochen, Germany) at a voltage of 5 kV.

4.3. Atomic Force Microscopy

Disks of lichen thalli were fixed according to standard protocols [53]. Briefly, the
samples were fixed in glutaraldehyde (Sigma, St. Louis, MO, USA), post-fixed in osmium
tetroxide (Sigma, USA), dehydrated in a graded aqueous ethanol series and acetone, embed-
ded in LR White resin (Medium Grade Acrylic Resin; Ted Pella, Redding, CA, USA), and
polymerized at 60 ◦C for 24 h. Samples were carefully inserted in a vertical orientation in
beam capsules, which were then filled with LR White resin before polymerization [54]. The
top of the sample blocks was leveled using a diamond knife (Electron Microscopy Sciences,
Hatfield, PA, USA). The upper cortex was visualized using the Bruker Dimension FastScan
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microscope (Bruker, Billerica, MA, USA) in PeakForceQNM (quantitative nanomechanical
mapping) mode [55]. To obtain high-quality images of the topography and nanomechani-
cal characteristics of the sections, the standard silicon cantilevers ScanAsyst-Air (Bruker,
Billerica, MA, USA) with curvature 2 nm and stiffness 0.4 N m−1 were used. Images were
acquired at a resolution of 512 lines per scan [56].

4.4. Light Microscopy

For light microscopy, pale and melanized lichen thalli were incubated in 2 M NaOH
for 1 h at 100 ◦C, the pH adjusted to 7.0 with 5 M sulfuric acid, and then thalli were
rinsed three times with distilled water. Cross sections were vibratome-cut, stained with
Lugol solution and 10% sulfuric acid as described by Yajima et al. (2001) [57], and viewed
with a bright-field epifluorescence microscope (Leica DM1000, Leica Biosystems, Wetzlar,
Germany).

For fluorescence microscopy, cross sections of pale and melanized thalli were stained
with 0.1% Calcofluor White (Sigma-Aldrich, St. Louis, MO, USA) for 15 min in the dark
and visualized using an excitation wavelength of 380 nm and an emission wavelength of
475 nm using the epifluorescence microscope Leica DM1000. Images were taken by digital
camera at a magnification of ×40.

4.5. Enzyme Treatments

Hydrated discs (on average c. 1.1 g) of L. pulmonaria thalli were vacuum-infiltrated in
a 3 mL solution of the enzymes chitinase, lichenase, endoglucanase, pectinase, and protease
(Table 1) three times for 1 min. After that, discs in solutions were shaken in the incubator
(ES-20/60, BioSan, Riga, Latvia) at 170 rpm for 12–14 h in the dark at 37–40 ◦C for lichenase
and at 25 ◦C for chitinase, endogluconase, pectinase, and protease. As a control, hydrated
discs of lichen thalli were incubated in 3 mL of the corresponding buffer without enzyme.

4.6. Determination of the Content of Compounds Released into Incubation Solutions

After enzyme treatment, discs of lichen thalli were removed from the incubation solu-
tions, rinsed with 5 mL of distilled water, and gently blotted with filter paper. Incubation
solutions were centrifuged at 8000 rpm for 1.5 min using an Eppendorf MiniSpin (Eppen-
dorf, Germany). The absorbance of the incubation solution was determined at 490 nm using
the UV-1900 spectrophotometer (Shimadzu, Kyoto, Japan). The content of the total phenolic
compounds was determined using the Folin–Ciocalteu reagent (Sigma-Aldrich, St. Louis,
MO, USA) [58], calibrated with gallic acid (20–200 µg ml−1) (DiaM, Moscow, Russia). The
content of nonreducing sugars was determined using the anthrone method [59], calibrated
with glucose solutions (20–100 µg ml−1) (Reakhim, Moscow, Russia).

4.7. Content of Melanin in Lichen Thalli

Alkali-soluble metabolites were extracted from the thallus discs of L. pulmonaria after
enzyme treatment using the protocol outlined by [51] with modifications. Initially, discs
were homogenized with liquid N2 and then 2 M NaOH added in the ratio of 1:10. After
alkaline extraction for 12 h at room temperature, the resulting homogenate was centrifuged
at 8000 rpm for 10 min (Hermle, Gosheim, Germany). Melanin was precipitated from the
alkaline extracts by adding HCl till pH 2 and incubating for 12 h at room temperature.
After centrifugation, the resulting precipitate was oven-dried at 60 ◦C for 1 h and weighed.
Melanin content was calculated in mg ml−1 of alkali extracts.

4.8. Transmission Electron Microscopy

The discs of melanized lichen thalli of L. pulmonaria after enzyme treatment were
fixed according to the standard protocol (see above section AFM). After ultrathin section-
ing of samples using an ultramicrotome (Leica, Wetzlar, Germany), cross sections were
stained with 2% aqueous uranyl acetate (w/v) for 20 min and Reynolds’ lead citrate for
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7 min [60]. Finally, the cross sections were examined using the Excellence transmission
electron microscope (Hitachi HT 7700, Tokyo, Japan) at an accelerating voltage of 100 kV.

4.9. Statistical Analysis

Microscopical observations were performed using at least 6 representative samples,
while all biochemical measurements were conducted in triplicate (n = 3). The values are
expressed as mean ± standard deviation (SD). Statistical analyses were performed using
the Student’s t test. The difference is statistically significant at p ≤ 0.05 (*), ≤0.01 (**),
≤0.001 (***).

5. Conclusions

The present study demonstrates that UV-B irradiation induces melanization and
changes the topography of the lichen L. pulmonaria thalli. Accumulation of melanin results
in a smoother relief with visibly thicker cell walls of the mycobiont upper cortex. Further-
more, melanization increases the height value and reduces the adhesion properties of the
thallus. Treatment of thalli with hydrolytic enzymes, especially chitinase, lichenase, and
pectinase, enhances the yield of melanin and the release of carbohydrates and phenols from
melanized thalli, confirming the existence of bonds between melanins and cell wall compo-
nents. Therefore, these results confirm our hypothesis that the association of melanins with
polysaccharides, especially chitin and β-glucans, and proteins in the mycobiont cell walls
can change the topography of the surface and properties of the melanized upper cortex.
These findings shed light on the complex biomechanical mechanisms, by which melanins
can strengthen lichen thalli and contribute to lichen survival under UV stress.
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