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Simple Summary: Captive birds of prey have played an important role in human history since
classical societies, and falconry has been on the List of Intangible Cultural Heritage of Humanity
since 2021. In addition to their close relationship with humans, these animals are also in contact with
wildlife, as many modern falconry practices depend on this link, such as pest control and hunting.
The main objective of this review is to summarize the existing literature on the bacteria found in
captive birds of prey and try to understand how these connections affect the dissemination of relevant
pathogens in both human and veterinary medicine.

Abstract: Falconry has been practiced for thousands of years and is nowadays frequently employed
in activities such as pest control, hunting, falcon racing, and environmental education. Antimicrobial
resistance levels have risen in the past years, constituting an emerging global problem with a direct
impact on public health. Besides both topics being studied on their own, information on the role of
captive birds of prey in the potential dissemination of virulence factors and antimicrobial resistance
determinants of bacterial origin is scarce. Multidrug-resistant bacteria, including some extended-
spectrum β-lactamase producers, have already been found in several captive birds of prey. Most
of the virulence factors found in captive raptors’ bacteria were related to adherence and invasion
abilities, toxin production, and flagella. These birds may acquire these bacteria through contaminated
raw food and the exchange of animals between keepers and zoological facilities. More studies are
required to confirm the role of captive birds of prey in disseminating resistant bacteria and on the
routes of interaction between synanthropic species and humans.

Keywords: antibiotic resistance; virulence factors; captivity; birds of prey; One Health

1. Review Methodology

For this review article, NIH PubMed was used to ensure coverage of the topic. Key-
words relevant to this research were identified, enabling the establishment of the search
string employed in the initial research process, which included (“Birds of Prey” OR “Rap-
tors”) AND (“Captive” OR “Captivity”) OR “Falconry”, and yielded 239 results. Articles
about categories not related to veterinary sciences or microbiology were eliminated. After
examining the research titles and excluding articles related to other species or out of the
scope of this review, an exhaustive reading of all the abstracts was performed to select the
articles to be included. Other references were later obtained to support the information
presented, using the snowball search method, obtaining a final number of 101 references.
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2. History of Falconry

According to the United Nations Educational, Scientific and Cultural Organization
(UNESCO), falconry is described as the traditional art and practice of training and flying
all species of birds of prey (also known as raptors), now protected as intangible cultural
heritage [1]. The role of birds of prey in history and human culture has been well known
since classical societies, with representations of birds of prey observed in Sumerian, Greek,
and Roman mythology [2]. Besides these religious expressions, falconry as we know it today
has been practiced for thousands of years, dating back to 4000 B.C., most likely originating
in the Middle East. It largely concentrated on the hunting aspect of the sport, in which
hawks, eagles, and falcons would be trained to gather food for human populations [3].
This practice promptly spread throughout Europe and Asia, where these birds began to be
raised as a representation of status, being considered that the size and grace of a bird were
proportional to its owner’s prestige [4]. Frederick II of Hohenstaufen, the Holy Roman
Emperor, wrote the 1240s De Arte Venandi cum Avibus, an important treatise recognized
as one of the earliest accounts of raptor medicine, in which the role of good hygiene,
diet, and exercise in the wellbeing of falconry animals is underlined [5]. The golden age
of falconry occurred in the 13th century, right before suffering its first decline with the
development and popularization of firearms. By the eighteenth century, only a small
nucleus of falconers remained committed to carrying on the tradition of hunting with the
aid of these animals [3,6].

3. Modern Falconry

Nowadays, falconry has found a new revival as novel uses have been uncovered,
namely pest management, falcon racing, and environmental education, marking the be-
ginning of a new chapter for this noble activity and expanding the definition of falconry,
previously associated with hunting and racing, to the one used today by UNESCO [1,3].

From the very first moment these birds start to be trained for falconry, their behavior
changes, and the veterinary approach to them must also differ from that to their wild
counterparts [7].

It is important to establish which animals can be defined as birds of prey, as there are
no reliable or official criteria for this nomenclature, and the groups included under this
umbrella term may vary. In this review, the definition proposed by McClure based on the
“ancestral raptorial condition” of the orders was used and includes Accipitriforms (hawks
and eagles), Cathartiforms (New World vultures), Cariamiforms (seriemas), Falconiforms
(falcons and caracaras), and Strigiforms (owls), with the latter group being composed of
nocturnal raptors [8].

The early 2000s saw the beginning of falcon racing, a new sport established in the
United Arab Emirates, whose popularity has encouraged the breeding and trading of
captive birds of prey worldwide [1,9].

Another relevant use of falconry nowadays is avifauna control in both urban and rural
areas, allowing for contact with synanthropic species, most of which are commonly labeled
as pests [10–12]. These species are becoming more widespread in urban settings as they
become adapted to anthropogenic environments and may pose substantial health risks
since they have been previously linked to diseases that may be transmitted to humans,
along with safety issues [12]. In an attempt to manage this emerging problem, integrated
falconry programs have been established with success as an alternative to other pest control
strategies, with the benefit of not culminating in animal death as the use of firearms does,
but allowing for the establishment of a direct link between these animals and humans [11].

Lastly, falconry can be also employed in educational settings since these animals tend
to easily capture attention from the community, establishing an emotional connection and
helping organizations to raise awareness and interest in wildlife [13,14].
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4. One Health: Antimicrobial Resistance

The planet’s sustainability relies on symbiotic interactions between humans, animals,
and the ecosystems in which they live, so its challenges must be addressed from multiple
angles, promoting closer cooperation and removing academic and professional barriers
between these three areas [15]. As a result, the One Health concept was developed, being
described as an integrated and unified strategy aimed at achieving a sustainable balance
between human, animal, and environmental health [16]. In 2021, Aarestrup’s team empha-
sized the relevance and necessity of a One Health surveillance program to prevent future
pandemics, citing the COVID-19 pandemic as an example of how sensitive society is to
these challenges [17].

Antimicrobial resistance constitutes a serious global problem with a major impact on
public health, as the use of these compounds is crucial to the safeguarding of both human
and animal health. It is considered a critical global threat by the World Health Organization
that could kill up to ten million people by 2050 [18], making it vital to tackle this problem by
adopting a One Health perspective worldwide. One of the measures that must be applied
is the promotion of antibiotic stewardship in the three One Health settings, which has as
its main challenges the limited motivation and information of not only health personnel
but also the community, the improper use of antibiotics, and insufficient or inadequate
establishment of regulatory and monitoring measures in many countries [19].

It is important to understand that antibiotic resistance is a natural phenomenon that
occurs even without human interference, as a wide spectrum of antibiotic-resistant genes
were identified in environmental bacteria isolated before the discovery of antibiotics [20].
Bacteria can present intrinsic resistance to antibiotics due to their inherent properties,
such as the barrier to drug entry found in Gram-negative bacteria, promoted by the outer
membrane in their cell envelope [21]. Despite this, the main cause of today’s global crisis is
acquired resistance, defined as the resistance gained when previously susceptible bacteria
acquire the ability to express a resistance mechanism, which can happen due to mutation
or the acquisition of additional genetic material [22].

Some of the proposals for controlling this crisis include increasing the research on
promising new strategies to combat these bacteria, such as bacteriophages; the development
of synergistic and hybrid antibiotics, enhancing their bioactivity; and education of society
about antibiotic use and resistance drivers and consequences. It is indispensable to recall
that bacterial resistance and resistance genes are present in a wide range of environments,
also including air and migratory bird feces. As such, these ecosystems should be deeply
studied to better understand these relationships [23].

5. Bacteria Found in Captive Birds of Prey

Despite the centuries-old influence of falconry in our culture, much remains unknown
about the bacteria found in captive birds of prey [24]. Although attacks from birds of
prey are much less common than attacks from other pets (only 11.6% of cases reported
in Qatar were related to falconry, whereas cats were responsible for 53.5% of these cases),
these animals can carry a broad spectrum of zoonotic bacteria, making it important to
understand the diversity of microbial pathogens that may be transmitted to those in contact
with them [25]. Some reports, although quite uncommon when considering the full scope
of the observed interactions between these specimens and humans, already show that
transmission of zoonotic diseases can occur due to attacks from both wild and captive
raptors [25,26], as well as outbreaks of infectious diseases promoted by contact with their
pellets [27].

The most common diseases presented by these animal species, as well as the prevalence
of agents linked with infectious diseases, are highly influenced by the maintenance of birds
of prey in wild or captive conditions and by their use for falconry, education programs, or
display in parks and zoological settings [28–31].

Anthropogenic conditions, coupled with exposure to pollutants found in urban ar-
eas, are associated with higher stress levels in raptor species, which trigger a poor body
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condition and microbiota dysbiosis-related diseases, which can subsequently be worsened
by opportunistic pathogens [32]. Captivity is also linked with increased contact with
sources of potential pathogens from agricultural, industrial, and urban settings, including
multidrug-resistant bacteria, which may be acquired through the ingestion of raw food
provided by handlers [27,32,33]. Furthermore, falconers who hunt may feed wild prey to
their raptors, which raises the chance of contamination since game birds are important
carriers of foodborne pathogens [34,35].

5.1. Bacterial Diseases

Despite them being exposed to many diverse bacteria, primary bacterial diseases are
not common in raptors in captivity [36].

Pododermatitis is a chronic disease associated with captivity, also called bumblefoot.
This condition is associated with poor-quality perches and diet, a lack of hygiene, and
exercise and trauma [36–41]. The severity of this condition can be intensified by the
presence of multiple infectious agents or cardiovascular disorders and, when left untreated,
can aggravate and lead to osteomyelitis, septic arthritis, generalized tetanus, and even
death [35–38]. Cardiac diseases in raptors can be frequently caused by bacterial infections,
resulting in endocarditis, myocarditis, and pericarditis, and can also be secondary to
bumblefoot [30].

Mycobacterium avium, the agent of avian tuberculosis, is potentially zoonotic for im-
munocompromised individuals [36], and one case report has previously described the
transmission of the Mycobacterium avium subsp. avium from infected domestic fowl to rap-
tors raised in a nearby falcon breeding facility [42]. Besides the economic constraints caused
by the dissemination of infections by this bacterial species in livestock herds, when transmit-
ted from avian species to humans, Mycobacterium avium causes zoonotic and occupational
diseases, being often associated with illnesses such as Crohn’s disease, inflammatory bowel
diseases, diabetes mellitus, and even immune-related diseases [43].

As for salmonellosis, clinical symptoms are rarely found in captive birds of prey
and, when present, are associated with reduced immunity. The transmission of Salmonella
spp. in captive reproduction facilities has been attributed to shell contamination, ovarian
transmission, or the direct infection of chicks with contaminated food [24,36,44,45]. A
study conducted in scavenger raptors near urban centers found that birds trapped in
rubbish dumps, a more anthropogenic environment, tended toward a higher prevalence of
Salmonella spp. than birds from the same species living in wild steppes [46]. This study also
showed that the most common Salmonella serovars isolated from birds in urban areas belong
to zoonotic strains and that almost half of the Salmonella spp. isolates obtained presented
resistance to at least one of the antibiotics tested, with a relevant increase in resistance
to quinolones when compared to isolates from animals of the same species living in the
wild [47]. Animal carriers of Salmonella serovars can transmit non-typhoidal salmonellosis
to humans, which is in most cases related to food contamination. However, pets can also
act as vehicles of Salmonella spp., and although cases of Salmonella transmission from pet
birds to humans are rare, their potential role as Salmonella vehicles increases after contact
with wild birds [48].

Despite Chlamydia psittaci being previously found in these animals, diseases related
to this agent are not often reported [36,49,50]. However, the transmission of this agent to
humans can occur through exposition to domestic, pet, and wild birds [51–53]. Human
psittacosis can either be asymptomatic or lead to respiratory or systemic disease and, if left
untreated, can be lethal [54].

Also, Mycoplasma spp. can be isolated from tracheal swabs and semen samples, and
their relevancy in captivity is connected to the ability of this genus to negatively affect
semen quality and diminish artificial insemination success [55–58].

The antibiotic drugs most used in birds of prey for the treatment of infectious dis-
eases are summarized in Table 1, as well as their respective dose, frequency, and route of
administration applied in these birds [36,59]. However, the most important measures for
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keeping raptor centers free of infectious agents are mainly related to keeping exposure
to potential pathogens to a minimum by avoiding contact with wild birds when possible,
evading avian-derived food like one-day-old chicks, and applying quarantine and other
biosecurity measures to every new animal admitted to a center or to every diseased bird
suspected of infectious disease [36].

Table 1. Antibiotic drugs commonly used in captive birds of prey [36,59].

Antibiotic Dosage and Administration Reference

Amikacin 15–20 mg/kg i.m. q24 h [59]

Amoxicillin 150 mg/kg i.m. q24 h
150 mg/kg orally q12 h [36]

Amoxicillin/Clavulanate 150 mg/kg orally
150 mg/kg i.v. q12h or i.m. q24 h [36]

Azithromycin 50 mg/kg orally q24 h 5 days for
Chlamydophilosis [36]

Cefalexin 40–100 mg/kg i.m. or orally q6–8 h [59]

Cefazolin 50–100 mg/kg i.m. or orally q12 h [59]

Clindamycin 100 mg/kg orally q24 h [36]

Doxycycline 50–75 mg/kg orally q12 h
100 mg/kg i.m. for 5–7 days [36]

Enrofloxacin 15 mg/kg orally or i.m. q12 h [36]

Marbofloxacin 10–15 mg/kg i.m. or orally q12–24 h [59]

Gentamicin 2.5 mg/kg i.m. q8 h [59]

Oxytetracycline 16 mg/kg i.m. q24 h in great horned owls
[59]48 mg/kg i.m. q48 h in owls

25–50 mg/kg i.m. or orally q8 h for 5–7 days
50–200 mg/kg i.m. q3–5 days

Legend: intramuscular (i.m.); intravascular (i.v.); each (q); hour (h).

5.2. Microbiome

Captivity is presently known to affect gut and oral microbiome diversity in birds of
prey when compared to their wild counterparts, with observable changes within just one
month of direct human contact, and diet is being pointed to as the main factor responsible
for alterations in the oral microbiome [60–65]. For example, studies have shown that birds
who are fed chicken are linked to a wider diversity of Gram-negative bacteria [66], and
that the diet commonly provided to captive animals increases the levels of Salmonella in
falcons [65]. Some other factors responsible for altering the microbiome in birds of prey are
also shown in Figure 1.

Resistance rates were proven to be higher in isolates from captive birds of prey than
in ones from other zoo birds, and although their prevalence is yet to be determined, the
occurrence of ESKAPE pathogens and extended-spectrum β-lactamase (ESBL) producers
has already been described in these animals [67]. ESKAPE is an acronym for the group
of pathogens presently considered by the World Health Organization (WHO) to be the
most relevant as research targets regarding antimicrobial resistance control and includes
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp. [68,69]. As for ESBL production, strains with
this ability show resistance to most β-lactam antibiotics and are frequently associated with
the failure of antibiotic therapy [70].
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Figure 1. Some variables suspected to alter the microbiome of birds of prey in captivity: contact with
wildlife; direct contact with human and animal waste; contact with synanthropic species; contact
with domestic waterfowl; contact with other pet birds; diet; and previous exposure to antibiotics.
Based on [25,27,32–36,60–65] and created using BioRender (https://www.biorender.com/).

A study conducted in a European zoological park described that, in healthy raptors,
all the isolates obtained from cloacal and conjunctival swabs were multidrug-resistant [71].
Another study revealed that the most common proteins coded by the genome of isolates
from captive raptors were associated with the expression of antimicrobial resistance genes,
including β-lactamases and efflux pumps. Most genes associated with antibiotic resistance
found in captive vultures were coded for resistance against fluoroquinolones (23.94%),
tetracyclines (19.72%), and bacteriolytic beta-lactam antibiotics (19.72%) [72].

Two studies on Salmonella spp. showed that bird isolates from this genus presented a
high resistance to streptomycin and nalidixic acid [44,45].

Cationic antimicrobial peptides (CAMPs) are known for their microbicidal properties
by destabilizing bacterial membranes. Several genes related to CAMP resistance were also
found in the gut microbiome of condors [72].

The main hypothesis presented for the high prevalence of multidrug-resistant bacteria
in these birds is the contamination of the food given to these individuals, with day-old
chicks, rabbits, and mice being the most mentioned food items [27,32,33,45,71]. Other
factors may be the frequent shift of birds between enclosures inside the same facility or
even their exchange between zoos [60].

To the best of our knowledge, only one study describing the virulence factors present in
bacteria from these animals has been published. This work claims that the most significant
virulence determinants present within the 1786 associated genes identified were related to
bacteria adherence and invasion, toxin production, and flagella [72].

To avoid bacterial transmission from these animals to humans and the environment,
bird-keepers should be educated about these potential pathogens and adopt proper hygiene
and nutrition practices, as well as protection measures while handling birds of prey, such
as the use of falconry gloves, which are of particular relevance since hands are the most
frequently injured body parts [25,32]. The implementation of biosecurity measures seems
to be the best method of preventing infectious disease outbreaks in captivity facilities [36].
Moreover, more studies are required to confirm the importance of captive birds of prey in
resistant bacteria dissemination, as the information available is still scarce.

6. Pet Birds as Reservoirs of Resistant and Zoonotic Bacteria

Despite pet ownership being common worldwide, with almost half of European house-
holds possessing at least one companion animal, 15.7% of which are birds (the largest group of

https://www.biorender.com/
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exotic animals in Europe), awareness of the risks that such close contact with family members
pose, especially to immunocompromised people, is not always taken seriously [73,74]. One
study demonstrated that even some medical professionals are not aware of the zoonotic risks
associated with keeping a pet bird, neglecting important and common zoonotic events, such
as the previously mentioned salmonellosis and psittacosis [73].

Even though a lack of knowledge regarding the transmission of infectious diseases
from birds to owners is evident in most recent investigations, pet birds have already been
indicated as potential reservoirs for zoonotic bacterial agents as dangerous as the aforemen-
tioned ESKAPE pathogens, with isolates from pet birds being clustered together with those
from their human owners through the determination of bacterial–genetic relationships. As
such, it is crucial to monitor pet birds regarding their potential to serve as reservoirs of
zoonotic bacterial pathogens to preserve human health [75].

7. Impact of Synanthropic Species and Humans: A One Health Approach

Human activity has an essential role in the dissemination of drug-resistant bacteria
since domestic, farm, and industrial sewage allows for the accumulation and spreading of
antimicrobial resistance genes at a faster pace than other materials [76–78]. Antimicrobial-
resistant bacteria have reportedly increased in wild animals over the last decade, but the
origin of such strains remains unclear, as wildlife is not exposed directly to antibiotics.
These strains can emerge due to contact with resistant bacteria or antimicrobial residues
present in sewage or domestic animal manure; therefore, the potential of these animal
species to act as reservoirs for resistant bacteria should not be underestimated [79,80].
When not in captivity, birds can easily travel long distances between nesting and foraging
sites, allowing them to broadly spread antibiotic-resistant bacteria and genes. The fecal
resistome of wild birds is highly interconnected with that of their habitat, supporting the
idea of their important role in disseminating resistant strains and determinants [81].

Birds of prey are carnivorous, and, when living free, they hunt other animals and
avoid human interaction, which makes them important sentinels of the distribution of
multidrug-resistant genes in the environment [82]. Several studies have already unveiled
the presence of multidrug-resistant bacteria in wild raptors [83–85].

On the other hand, synanthropic birds are also known to carry pathogenic and
antibiotic-resistant genes, and therefore may spread these genes to other birds and humans
due to the close interactions that may occur inside urban ecosystems [86]. Anthropogenic
factors have an evident impact on synanthropic species as the exponential growth of the hu-
man population’s size is associated with an increase in the frequency of antibiotic-resistant
bacteria [87].

In recent years, the occurrence of multidrug-resistant bacteria in synanthropic species,
like pigeons [88,89] and gulls [90,91], has been frequently described. A study identified
multidrug-resistant Escherichia coli strains in synanthropic birds, with the most frequent
form of resistance being tetracycline [86]. Another study detected the presence of quinolone-
resistant E. coli in gulls and established a connection between these strains and the ones
isolated from near water habitats, where fecal contamination was detected, suggesting that
quinolone-resistant E. coli occurring in water may be dispersed by this animal species. The
same study also concluded that gulls are important vectors, as most migrate, allowing for
antibiotic resistance genes to be spread over long distances [92]. ESBL-producing bacteria
have also already been described in these species [93].

As these studies suggest, the transmission of bacteria between wild, synanthropic,
and captive species may be possible, although more studies are required to confirm the
importance of captive birds of prey in resistant bacteria dissemination and the role they
play in interactions between different bird species.

8. Disease and Bacterial Transmission Prevention

In captive conditions, hygiene measures are of the utmost importance, with strong
evidence corroborating the idea that poor hygiene conditions can lead to a buildup of a
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wide range of microorganisms in birds’ habitats [94]. Good hygiene procedures are then
considered by researchers as a key part of preventing infectious disease [94]. Pathogenic
bacteria in aviaries spread over time, with disease transmission being augmented in cases
where enclosures are smaller [95].

In closed aviaries, the transmission of bacteria can be controlled by restricting the
movements of birds and humans, but this is not possible in the context often found in
enclosures with captive birds of prey [94,96]. A preventive health program with accurate
records on all transactions and medical conditions should always be established to identify
early signs of disease in resident birds, as well as establish quarantine procedures for newly
acquired birds, with disease screenings included [96].

When cleaning the spaces dedicated to avian species, it is important to keep in mind
that it is extremely challenging to truly disinfect enclosures with vegetation, with exposure
to both rain and sunlight being a good measure to reduce the number of pathogens in these
types of aviaries [94]. At least once a year, the enclosures should be examined for the need
for more in-depth cleaning, and materials that can easily become contaminated, such as
logs and bark, should be replaced [94].

All leftover food should be removed at least once daily, ideally at the same time as
water changes are also performed [94]. As previously mentioned, food can be an important
vector of pathogenic bacteria and should always be checked for contamination and spoilage
before storage, and good hygiene practices should be applied when meal prepping to avoid
cross-contamination [64,65,96].

Proper hygiene can protect both animals and handlers and can be sufficient to stop
outbreaks of, for instance, salmonellosis [94]. It is important to encourage prophylactic mea-
sures for those directly handling these birds and their products, starting with immunization
against tetanus [94]. When working with birds, using protective gloves and washing hands
reduces the risk of handlers contracting zoonotic diseases [97]. If possible, keepers could
also benefit from the use of specific shoes and clothing when entering these enclosures or
when handling these birds [98]. All professionals in contact with birds should be informed
of the potential health risks and be educated on how to avoid and detect early signs of
disease [99].

Nowadays, due to their common use, it is difficult to reduce contact between these
falconry birds and both wild birds and humans; therefore, these animals should be subjected
to screening tests more frequently than other birds [99]. Important pathogens, such as
Yersinia pseudotuberculosis, can also be introduced into aviaries by rodents, either acting as
mechanical or biological vectors, which should and can be avoided when planning the
construction of these spaces [98,100].

Together, good nutrition, management, and husbandry practices should be sufficient
to maintain the health of captive species [96]. When needed, the prescription of any
antimicrobial compounds should be exclusively carried out by a veterinarian. These health
professionals must opt for antibiotherapy after performing a careful evaluation of each
clinical case, which must include an accurate diagnosis and, if possible, susceptibility tests
for the associated bacteria [98,101].

9. Conclusions

Captivity for birds of prey affects microbiota diversity and has been related to high
rates of antibiotic resistance, with the main reason presented being the transmission of
bacteria through raw food. Despite some reports on human infections being transmitted
by these birds, much remains unknown about how the contrary can also happen and how
contact with humans or even synanthropic species can promote this dissemination.

Prevention seems to be the key factor in controlling this eminent issue, with biosecu-
rity measures being essential when it comes to stopping the spread of zoonotic pathogens.
Awareness and education on the importance of antimicrobial resistance and how to reduce its
impact on our ecosystems are also necessary for those directly in contact with these birds.
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As such, the main conclusion from this review is that additional research is needed to
understand the importance of captive birds of prey in resistant bacteria transmission and
how they interact with synanthropic animals and humans, as the information on this link
is still very limited.

Possible future directions to improve our understanding regarding falconry birds
include (1) the design of studies focusing on samples from both falconry birds and their
handlers being evaluated in parallel; (2) the development of more studies on the virulence
traits present in the microbiome of captive birds of prey; and (3) the design of comparative
analyses between the resistance genes detected in the food supplied to birds of prey and
those identified within the gastrointestinal microbiota of these same animals.
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