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Abstract: We derive the enhanced Lie group classification for a general class of variable coefficient
Boiti–Leon–Manna–Pempinelli equations. This task is achieved with the use of the equivalence
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1. Introduction

The parameters that appear in physical models may change in time and, therefore,
the coefficients in partial differential equations can be functions of time. Usually, such
equations describe physical phenomena with more accuracy. In recent decades, many
variable coefficient equations appear in the literature that are studied from various points
of view. Obviously, the study of these equations is more difficult than the study of the
corresponding equations with constant coefficients. Before considering a variable coefficient
equation, it will be useful if we can find a similar simpler equation. We call two differential
equations similar if they are connected by a point transformation. In fact, many variable
coefficient equations that appear in the literature are similar to constant coefficient equations
and, in most cases, are similar to simpler equations.

The task of the simplification of variable coefficient equations can be achieved in most
cases with the employment of the equivalence transformations. These are non-degenerate
point transformations that preserve the differential structure of the equation, might change
only the coefficient functions (arbitrary elements), and also form a group. There exist four
kinds of equivalence groups. The simplest is the usual equivalence group where the point
transformations of the dependent and independent variables do not depend on arbitrary
elements [1]. If the transformations of the dependent and independent variables depend
on arbitrary elements, then it is called generalized equivalence group [2,3]. The extended
equivalence group consists of transformations that include nonlocalities with respect to
arbitrary elements [4]. The generalized extended equivalence group has the properties of
both generalized and extended equivalence groups.

In the present work, we consider the variable coefficient nonlinear partial differen-
tial equation

a(t)utx + b(t)uty + c(t)uxy + d(t)uyy + k(uxuy)x + uxxxy = 0, (1)
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where a(t), b(t), c(t), d(t) are smooth functions and k is an arbitrary constant. This class
of equations appeared recently in the literature [5–7] as a generalization of the Boiti–Leon–
Manna–Pempinelli equation

uty − 3uxuxy − 3uyuxx + uxxxy = 0,

which was introduced as a generalization of a two-dimensional KdV equation [8]. In [5],
the problem of Lie group classification for (1) was considered; in [6], wave-type solutions
were derived; and in [7] Bäcklund transformations were constructed. We use equivalence
groups to simplify Equation (1). We show that it is similar to an equation with only one
variable coefficient. Initially, we perform the Lie group classification for the simplified
equation and, using the equivalence transformations, we obtain the corresponding results
for the general class (1). The Lie group classification of class (1) that has been derived
here completes the results in [5]. Furthermore, we present a number of non-Lie reduction
operators (nonclassical symmetries) for the simplified equation. Finally, some remarks are
pointed out for the original Boiti–Leon–Manna–Pempinelli equation.

2. Equivalence Transformations and Their Applications

We derive the equivalence transformations of class (1) with the ultimate goal to derive
a mapping that transforms it into a simpler form. The usual equivalence group G consists
of non-degenerate point transformations in the space (t, x, y, u, a, b, c, d, k) that are projected
on the space of (t, x, y, u). That is, they have the form

(t̃, x̃, ỹ, ũ) = (Tt, Tx, Ty, Tu)(t, x, y, u),

(ã, b̃, c̃, d̃, k̃) = (Ta, Tb, Tc, Td, Tk)(t, x, y, u, a, b, c, d, k)

and map any differential equation from class (1) with dependent function u(t, x, y) and
arbitrary elements (a, b, c, d, k) to a differential equation from the same class with dependent
variable ũ(t̃, x̃, ỹ) and arbitrary elements (ã, b̃, c̃, d̃, k̃).

In the following two theorems, we present the equivalence transformations for class (1).
We state that equivalence transformations have been derived using the direct method [9].
We give a brief sketch of the proofs. Most of the calculations were performed with the
assistance of the algebraic manipulation package REDUCE.

Theorem 1. The usual equivalence group G admitted by class (1) is formed by the non-degenerate
point transformations

t̃ = Q(t), x̃ = β1x + β5, ỹ = β2y + ψ(t), ũ = β3u + β4x + η(t),

ã(t̃) =
Q′(t)a(t)

β2
1β2

, b̃(t̃) =
Q′(t)b(t)

β3
1

, d̃(t̃) =
β2d(t)

β3
1

+
ψ′(t)b(t)

β3
1

,

c̃(t̃) =
c(t)
β2

1
+

ψ′(t)a(t)
β2

1β2
− β4k

β2
1β3

, k̃ =
k

β1β3
,

where β1, β2, β3, β4, β5 are arbitrary constants and Q(t), ψ(t), η(t) are arbitrary smooth functions
of t. For non-degenerate transformations, we require that β1β2β3Q′(t) ̸= 0.

Proof. We consider the point transformation

t̃ = Q(t, x, y, u), x̃ = P(t, x, y, u), ỹ = S(t, x, y, u), ũ = R(t, x, y, u),

which connects the class

ã(t̃)ũt̃x̃ + b̃(t̃)ũt̃ỹ + c̃(t̃)ũx̃ỹ + d̃(t̃)ũỹỹ + k̃(ũx̃ũỹ)x̃ + ũx̃x̃x̃ỹ = 0 (2)
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with (1). We assume that this transformation is non-degenerate, ∂(Q,P,S,R)
∂(t,x,y,u) ̸= 0. We use the

formulaes of the derivatives of ũ in terms of the derivatives of u [9] and we substitute in (2).
We eliminate uxxxy from (1) and Equation (2) takes the form

E(t, x, y, u, Q, P, S, R, ut, ux, . . . ) = 0,

where E is a multi-variable polynomial in the derivatives of u. Because the connected
classes are polynomials in the derivatives of u and ũ, the transformation is of the restricted
form [9]

t̃ = Q(t), x̃ = l1(t)x + ϕ(t), ỹ = l2(t)y + ψ(t), ũ = H1(t, x, y)u + H2(t, x, y).

Coefficients of uxxx, uxxy, uxyy in E = 0 give H1 = constant = β3. Coefficients of utx and

uty in E = 0 give ã = Q′(t)a(t)
l2
1(t)l2(t)

and b̃ = Q′(t)b(t)
l3
1(t)

, respectively. Coefficients of uxyux give

l1(t) = constant = β1 and k̃ = k
β1β3

. Coefficients of uxx, uxy, uyy, ux, uy and the terms
independent of derivatives give the following six equations:

β1k
∂H2

∂y
− β3a(t)ϕ′(t) = 0, (3)

β1kl2(t)
∂H2

∂x
− β1β3a(t)l′2(t)y − β3b(t)l2(t)ϕ′(t)

−β1β3a(t)ψ′(t) + β3
1β3l2(t)c̃(t̃)− β1β3l2(t)c(t) = 0, (4)

b(t)l′2(t)y + b(t)ψ′(t)− β3
1d̃(t̃) + l2(t)d(t) = 0, (5)

∂2H
∂x∂y

= 0, (6)

kl2(t)
∂2H2

∂x2 − β3l′2(t)b(t) = 0, (7)

β1β3l2(t)
∂4H2

∂x3∂y
+ β1β3l2(t)a(t)

∂2H2

∂t∂x
+ β1β3l2(t)b(t)

∂2H2

∂t∂y

+

[
β1kl2(t)

∂H2

∂y
− β3l2(t)a(t)ϕ′(t)

]
∂2H2

∂x2

+
[

β4
1β3d̃(t̃)− β1β3b(t)l′2(t)y − β1β3b(t)ψ′(t)

]∂2H2

∂y2 (8)

+

[
β1kl2(t)

∂H2

∂x
− β1β3a(t)l′2(t)y − β3l2(t)b(t)ϕ′(t)

+ β3
1β3l2(t)c̃(t̃)− β1β3a(t)ψ′(t)

]∂2H2

∂x∂y
− β1β3b(t)l′2(t)

∂H2

∂y
= 0.

Coefficient of y in (4) gives l2(t) = constant = β2. From the definition of usual equiv-
alence group, H2 cannot depend on arbitrary elements and, hence, from (3) we have
ϕ(t) = constant = β5 and H2(t, x, y) = H2(t, x). From (7) and (9), we deduce that
H2(t, x) = β4x + η(t). We solve for d̃(t̃) in (5) and for c̃(t̃) in (4) to find d̃(t̃) = β2d(t)

β3
1

+

ψ′(t)b(t)
β3

1
and c̃(t̃) = c(t)

β2
1
+ ψ′(t)a(t)

β2
1β2

− β4k
β2

1β3
, respectively. The derived forms of Q, P, S, and R

give ∂(Q,P,S,R)
∂(t,x,y,u) = β1β2β3Q′(t). Hence, for non-degenerate transformation, we assume that

β1β2β3Q′(t) ̸= 0. This completes the proof.

Furthermore, class (1) admits generalized extended equivalence transformations. The
results are tabulated in the following theorem.



Axioms 2024, 13, 82 4 of 10

Theorem 2. The generalized extended equivalence group Ĝ of class (1) consists of the non-
degenerate point transformations

t̃ = Q(t), x̃ = β1x + ϕ(t), ỹ = β2y + ψ(t), ũ = β3u + θ(t)x +
β3ϕ′(t)a(t)

kβ1
y + η(t),

ã(t̃) =
Q′(t)a(t)

β2
1β2

, b̃(t̃) =
Q′(t)b(t)

β3
1

, d̃(t̃) =
β2d(t)

β3
1

+
ψ′(t)b(t)

β3
1

,

c̃(t̃) =
c(t)
β2

1
+

ϕ′(t)b(t)
β3

1
+

ψ′(t)a(t)
β2

1β2
− θ(t)k

β2
1β3

, k̃ =
k

β1β3
,

where β1, β2, β3 are arbitrary constants, Q(t), ψ(t), θ(t), η(t) are arbitrary smooth functions of
t, and ϕ′(t) = kβ1

β3a(t)

(
β4 −

∫ θ′(t)a(t)
b(t) dt

)
. For non-degenerate transformations, we require that

β1β2β3Q′(t) ̸= 0.

Proof. We use the initial steps of the proof of Theorem 1 to deduce that the equivalence
transformations are of the restricted form

t̃ = Q(t), x̃ = β1x + ϕ(t), ỹ = l2(t)y + ψ(t), ũ = β3u + H2(t, x, y),

where the functions H2(t, x, y), ϕ(t), ψ(t), and l2(t) satisfy the system of Equations (3)–(9).
Also, we have the relations

ã =
Q′(t)a(t)

β2
1l2(t)

, b̃ =
Q′(t)b(t)

β3
1

, k̃ =
k

β1β3
.

Coefficient of y in (4) gives l2(t) = β2. From Equations (3), (6) and (7), we find that
H2(t, x, y) = θ(t)x + β3ϕ′(t)a(t)

kβ1
y + η(t). Equations (4) and (5) give c̃(t̃) = c(t)

β2
1
+ ϕ′(t)b(t)

β3
1

+

ψ′(t)a(t)
β2

1β2
− θ(t)k

β2
1β3

and d̃(t̃) = β2d(t)
β3

1
+ ψ′(t)b(t)

β3
1

, respectively. As before, ∂(Q,P,S,R)
∂(t,x,y,u) = β1β2β3Q′(t).

Finally, from (9), ϕ′(t) = kβ1
β3a(t)

(
β4 −

∫ θ′(t)a(t)
b(t) dt

)
, and this completes the proof of

Theorem 2.

From Theorem 1, we deduce that, for the appropriate choice of the function Q(t),
we can set b̃(t̃) = 1 (or ã(t̃) = 1). Furthermore, with the suitable choice of ψ(t), we
can take c̃(t̃) = 0 (or d̃(t̃) = 0). However, from Theorem 2, we have an additional
simplification. More precisely, the generalized extended equivalence transformations
enable us to fix the functions b̃(t̃), c̃(t̃), and d̃(t̃). That is, the tilded class has a simpler form
with b̃(t̃) = 1, c̃(t̃) = d̃(t̃) = 0, which means that it has only one variable coefficient, the
function ã(t̃). Therefore, using Theorem 2, we deduce that the transformation

t̃ =
∫ dt

b(t)
, x̃ = x + ϕ(t), ỹ = y −

∫ d(t)dt
b(t)

,

ũ = ku +

(
bϕ′(t) +

b(t)c(t)− a(t)d(t)
b(t)

)
x + ϕ′(t)a(t)y, ã =

a(t)
b(t)

, (9)

where ϕ′(t) = 1
2
√

|a(t)b(t)|

∫ √
| a(t)

b(t) |
(

a(t)d(t)−b(t)c(t)
b(t)

)′
dt reduces (1) into

ã(t̃)ũt̃x̃ + ũt̃ỹ + (ũx̃ũỹ)x̃ + ũx̃x̃x̃ỹ = 0.

In the subsequent analysis, we consider this reduced equation without tildes,

a(t)utx + uty + (uxuy)x + uxxxy = 0. (10)
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Another observation from Theorem 2 is that the general class (1) can be mapped into a
constant coefficient only if a(t) = κb(t), whereas the functions c(t) and d(t) can take any
form. This mapping can be obtained from (9) by setting a(t) = κb(t).

In the following theorem, we provide the generalized equivalence group for class (10).
We omit the proof, which is similar to those of Theorems 1 and 2.

Theorem 3. The generalized extended equivalence group Ĝ1 of class (10) consists of the transfor-
mations

t̃ = β3
1t + β3, x̃ = β1x + β5

∫ dt√
|a(t)|

+ β6, ỹ = β2y + β4,

ũ =
1
β1

u +
β5

β2
1

√
|a(t)|

x +
β5
√
|a(t)|

β2
1

y + η(t), ã(t̃) =
β1a(t)

β2

where β1, β2, β3, β4, β5, β6 are arbitrary constants with β1β2 ̸= 0 and η(t) is an arbitrary smooth
function.

The usual equivalence group G1 of class (10) can be obtained from Theorem 3 by
setting β5 = 0. Equivalence transformations can be used to simplify the form of a(t) in the
analysis of the group classification of (10). For example, if a(t) = (µ1t + µ2)

n, then it can be
taken as a(t) = tn, without loss of generality.

3. Lie Group Classification

We perform the Lie group classification for the simplified class (10). Using these
results and the equivalence transformations in Theorem 2, we derive the corresponding
classification for the general class (1), which is presented in the Appendix A. The Lie
symmetry method is well known and regularly used in recent decades [1,10–14]. For this
reason, we omit the analysis for obtaining the desired Lie symmetries. We search for Lie
operators of the form

Γ = T(t, x, y, u)∂t + X(t, x, y, u)∂x + Y(t, x, y, u)∂y + U(t, x, y, u)∂u (11)

corresponding to the infinitesimal transformations: t̃ = t + ϵT, x̃ = x + ϵX, ỹ = y + ϵY,
ũ = u + ϵU, to the first order of ϵ. The analysis leads to four cases:

1. If a(t) is arbitrary, the Lie algebra is spanned by the operators

X1 = ∂x, X2 = ∂y, X3 =

(∫ dt√
|a(t)|

)
∂x +

(
x + a(t)y√

|a(t)|

)
∂u, Xη = η(t)∂u.

Additional Lie symmetries exist in the cases where a(t) = tn, ent, 1.
2. If a(t) = tn, the additional Lie operator is of the form

X4 = 3t∂t + x∂x + (1 − 3n)y∂y − u∂u.

3. If a(t) = ent, the additional Lie operator is of the form

Y4 = ∂t − ny∂y.

4. If a(t) = 1, we have two additional Lie operators: X4(n = 0) and Y4(n = 0),

X4 = 3t∂t + x∂x + y∂y − u∂u, Y4 = ∂t.

We use the above Lie symmetries in the next section to derive few similarity reductions.

4. Examples of Similarity Reductions

The main application of Lie symmetries is the construction of similarity mappings that
have the property of reducing the number of independent variables of the equation under
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study. The complete list of reductions can be obtained using the one- and two-dimensional
subalgebras of the Lie invariance algebra admitted by the equation. The mappings obtained
from one-dimensional subalgebras reduce the number of independent variables by one,
whereas the two-dimensional algebras reduce the number by two. Detailed analysis of how
to construct these subalgebras can be found in recent work [15]. Here, we present certain
examples of similarity reductions using one-dimensional subalgebras. These mappings are
derived solving the invariance surface condition

T(t, x, y, u)ut + X(t, x, y, u)ux + Y(t, x, y, u)uy = U(t, x, y, u). (12)

For the case of a(t) being arbitrary, we give two examples. The Lie symmetry X2 + cX1
produces the similarity mapping u(t, x, y) = w(t, x − cy), which reduces (10) to

a(t)wtξ − cwtξ − cwξξξξ − 2cwξwξξ = 0, ξ = x − cy

and integrating with respect to ξ, taking the integrating function equal to zero, we find the
variable coefficient potential KdV equation

[a(t)− c]wt − cwξξξ − cw2
ξ = 0.

Lie symmetries of a similar equation are presented in [16]. The Lie symmetry X3 + X2 leads
to the reduction

u(t, x, y) =
1
2

(
1

ϕ′(t)
− ϕ(t)ϕ′(t)

)
y2 + ϕ′(t)xy + w(t, ξ), ξ = x − ϕ(t)y, a(t) =

1

ϕ′(t)2

that maps (10) into(
1 − ϕϕ′2

)
wtξ − ϕϕ′2wξξξξ − 2ϕϕ′2wξ wξξ + ϕ′3ξwξξ + ϕ′2ϕ′′ξ = 0,

which can be integrated once with respect to ξ.
In the case a(t) = 1, Lie symmetry Y4 + c1X1 + c2X2 produces the similarity mapping

u = w(ξ, η), ξ = x − c1t, η = y − c2t, which transforms (10) (a(t) = 1) into

wηξξξ + (wηwξ)ξ − (c1 + c2)wηξ − c2wηη − c1wξξ = 0.

This last equation admits four Lie symmetries, ∂η , ∂ξ , ∂w, and 3η∂η + ξ∂ξ + [4c1η + 2(c1 +
c2)ξ − w]∂w, which can be employed for further reductions. For example, using the Lie
symmetry ∂η + c3∂ξ and the above mapping, we construct the double reduction u =
F(θ), θ = x − c1y − c2t, which reduces (10) (a(t) = 1) into

c1F(iv)(θ) + 2c1F′(θ)F′′(θ) + c2(1 − c1)F′′(θ) = 0.

We integrate and rename the constants to find

G′′(θ) + G2(θ) + k1G(θ) + k2 = 0, G(θ) = F′(θ)

and we set G(θ) = H(θ)− k1
2 to get

H′′(θ) + H2(θ) + k2 − 1
4 k2

1 = 0.

We integrate again to give

1
2 [H

′(θ)]2 + 1
3 H3(θ) + (k2 − 1

4 k2
1)H(θ) = k3.
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5. A Note on Non-Lie Reductions

Bluman and Cole [17,18] introduced a method to derive non-Lie reductions. In this
approach, we require invariance of Equation (10) in conjunction with the invariant surface
condition (12) under the infinitesimal transformations generated by the Lie operator (11).
Motivated by the work in reference [16], we state that, for Equation (10), we can search for
three forms of reduction operators:

1. Γ = ∂t + X(t, x, y, u)∂x + Y(t, x, y, u)∂y + U(t, x, y, u)∂u
2. Γ = X(t, x, y, u)∂x + ∂y + U(t, x, y, u)∂u
3. Γ = ∂x + U(t, x, y, u)∂u

Unlike the Lie symmetries, the determining system for the coefficient functions of the
operator is nonlinear. This makes the task for deriving such non-Lie operators very difficult.
Here, we do not carry out the complete analysis for deriving these forms of operators, but
we only present some examples of the second and third forms. The search of operators of
the first form leads to equivalent Lie operators.

As a first example, we have the operator of the above form 2,

Γ = ∂y + ψ(t, x)∂u, a(t)ψtx + (ψψx)x = 0.

This operator produces the ansatz u(t, x, y) = ψ(t, x)y + ϕ(t, x) that reduces Equation (10)
to the system

a(t)ϕtx + (ψϕx)x + ψt + ψxxx = 0, a(t)ψtx + (ψψx)x = 0.

Both above equations can be integrated once with respect to x. The second example is
the non-Lie operator Γ = ∂y + a(t)∂x, which produces the ansatz u(t, x, y) = ϕ(t, ξ), ξ =
x − a(t)y that maps (10) into

a′(t)ϕξ + a(t)ϕξξξξ + 2a(t)ϕξ ϕξξ = 0.

This differential equation can be integrated once with respect to ξ.
A trivial example of the third form is the operator ∂x + [ f (t) + g(y)]∂u, which leads to

the trivial ansatz u(t, x, y) = [ f (t) + g(y)]x + ϕ(t, y), and the reduced equation is

ϕty + [ f (t) + g(y)]g′(y) + a(t) f ′(t) = 0,

which can be integrated and the solution is expressed in terms of the arbitrary functions
a(t), f (t), and g(y).

6. Final Remarks

The difficult task of the Lie group classification of the variable coefficient Boiti–Leon–
Manna–Pempinelli Equation (1) has been achieved with the aid of the equivalence group.
Equivalence transformations provides the tools to fix a number of variable coefficients,
which makes the symmetry analysis simpler. As another example, in order to show the
significance of the equivalence group, we consider (1) with a(t) = 0,

b(t)uty + c(t)uxy + d(t)uyy + k(uxuy)x + uxxxy = 0. (13)

The variable coefficient Equation (13) can be mapped into the standard Boiti–Leon–Manna–
Pempinelli equation

ũt̃ỹ + (ũx̃ũỹ)x̃ + ũx̃x̃x̃ỹ = 0 (14)

under the mapping

t̃ = t, x̃ = [b(t)]
1
3 x, ỹ = y −

∫ d(t)
b(t)

dt, ũ =
1
6
[b(t)]−

1
3

[
6ku + b′(t)x2 + 6c(t)x

]
.
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Lie symmetries admitted by Boiti–Leon–Manna–Pempinelli Equation (14) can be
found in [19]. The Lie group classification of class (13) can be achieved using the above
mapping and the Lie symmetries of (14). To our knowledge, non-Lie reduction operators
do not exist in the literature. We list four examples of such operators that have been derived
by the method of Bluman and Cole:

∂y + ϕ(t)ψ(y)∂u,

∂y +
√

ϕ1(t)x + ϕ2(t)∂u,

∂x + [ϕ(t) + ψ(y)]∂u,

∂x +
2x

2ψ(y) + 3t
∂u,

where all the functions that appear in the reduction operators are arbitrary. An open
problem, although not an easy one, is the classification of all such reduction operators for
Boiti–Leon–Manna–Pempinelli Equation (14).

7. Conclusions

Recently, a generalization of the Boiti–Leon–Manna–Pempinelli equation has appeared
in the literature [8]. This general equation has four coefficients as functions of time, which
makes it difficult to be studied. However, before studying such equations, it is very useful
to attempt to simplify it. Equivalence transformations are good tools that enable us, in most
cases, to simplify variable coefficient equations. Here, we have derived the equivalence
transformations for class (1) and used them to transform it to the simplified class (10) with
only one variable coefficient. We present the group classification of both classes (1) and (10)
with the employment of the equivalence transformations. This completes the existing
results for the group classification of the general class (1) that appear in the literature.

The present work can be extended to find exact or numerical solutions for the gener-
alized Boiti–Leon–Manna–Pempinelli equation. Lie reductions in Section 4 and non-Lie
reductions in Section 5 can be used to derive solutions for (10). It is pointed out that in
both sections we have only presented partial results. Another future task is to complete
the analysis in these two sections. However, finding the complete list of non-Lie reduc-
tion operators (nonclassical symmetries) is an extremely difficult task because most of the
determining equations are of a nonlinear form.
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Appendix A

We apply transformations (9) that are derived from Theorem 2 and the Lie symmetry
classification of (10) to obtain the corresponding results of the general class of variable
coefficient Boiti–Leon–Manna–Pempinelli Equations (1).

1. If a(t), b(t), c(t), d(t), and k are arbitrary, the Lie algebras admitted by (1) is
spanned by the operators

X1 = ∂x, X2 = ∂y, X3 =

(∫ dt√
|a(t)b(t)|

)
∂x +

1
k

(
b(t)x + a(t)y√

|a(t)b(t)|

)
∂u, Xη = η(t)∂u.

The above Lie symmetries agree with the results in [5].
Additional Lie symmetries exist in the cases where a(t) = b(t)(

∫
b)n, b(t)en(

∫
b), and b(t);

and c(t)and d(t) are arbitrary. The following cases do not appear in the literature.
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2. If a(t) = b(t)(
∫

b)n, the additional Lie operator is of the form

X4 = 3(2 − n)b(t)
(∫ 1

b
dt
)

∂t + (2 − n)
[
(1 − 3n)y + 3d(t)

∫ 1
b

dt + (3n − 1)
∫ d

b
dt
]

∂y

+

{
(2 − n)x +

1
4

[
6(n − 2)d(t)

(∫ 1
b

dt
)n+1

+ 4
∫ d

b

(∫ 1
b

dt
)n

dt − 4
∫ c

b
dt

−6(n − 2)c(t)
(∫ 1

b
dt
)

+(3n2 − 4n)
(∫ 1

b
dt
)1− n

2
∫ ( c

b

(∫ 1
b

dt
) n

2 −1
− d

b

(∫ 1
b

dt
) 3n

2 −1
)

dt

]}
∂x

+(n − 2)

{
u +

1
8k

[
12b(t)c′(t)

(∫ 1
b

dt
)
− 12b(t)d′(t)

(∫ 1
b

dt
)n+1

− (18n + 8)d(t)
(∫ 1

b
dt
)n

+(6n + 8)c(t) + (3n2 − 4n)
(∫ 1

b
dt
)− n

2
∫ ( d

b

(∫ 1
b

dt
) 3n

2 −1
− c

b

(∫ 1
b

dt
) n

2 −1
)

dt

]
x

− 1
8k

[
12b(t)c′(t)

(∫ 1
b

dt
)n+1

− 12b(t)d′(t)
(∫ 1

b
dt
)2n+1

− (6n + 8)d(t)
(∫ 1

b
dt
)2n

−(6n − 8)c(t)
(∫ 1

b
dt
)n

−(3n2 − 4n)
(∫ 1

b
dt
) n

2
∫ ( d

b

(∫ 1
b

dt
) 3n

2 −1
− c

b

(∫ 1
b

dt
) n

2 −1
)

dt

]
y

}
∂u.

3. If a(t) = b(t)en(
∫

b), the additional Lie operator is of the form

Y4 = 6b(t)∂t + 6
[

n
∫ d

b
dt + d − ny

]
∂y

+
3
2

e−
n
2
∫ 1

b dt
[

2c(t)e
n
2
∫ 1

b dt − 2d(t)e
3n
2
∫ 1

b dt + n
∫ d

b
e

3n
2
∫ 1

b dtdt − n
∫ c

b
e

n
2
∫ 1

b dtdt
]

∂x

+
3
4k

e−
n
2
∫ 1

b dt
{[

(4b(t)d′(t) + 6nd′(t))e
n
2
∫ 1

b dt − (4b(t)c′(t) + 2nc(t))e
3n
2
∫ 1

b dt

+n2
∫ c

b
e

n
2
∫ 1

b dtdt − n2
∫ d

b
e

3n
2
∫ 1

b dtdt
]

x

+en
∫ 1

b dt
[
(4b(t)c′(t)− 2nc(t))e

n
2
∫ 1

b dt − (4b(t)d′(t) + 2nd(t))e
3n
2
∫ 1

b dt

+n2
∫ c

b
e

n
2
∫ 1

b dtdt − n2
∫ d

b
e

3n
2
∫ 1

b dtdt
]

y
}

∂u.

4. If a(t) = b(t), we have two additional Lie operators: X4(n = 0) and Y4(n = 0),

X4 = 6b(t)
(∫ 1

b
dt
)

∂t +

[
2x + 3(c(t)− d(t))

(∫ 1
b

dt
)
+

(∫ d − c
b

dt
)]

∂x

+2
[

y + 3d(t)
(∫ 1

b
dt
)
−
(∫ d

b
dt
)]

∂y

+
1
k

{
−2ku +

[
3b(t)(c′(t)− d′(t))

(∫ 1
b

dt
)
+ 2(c(t)− d(t))

]
[y − x]

}
∂u,

Y4 = 6b(t)∂t + 3[c(t)− d(t)]∂x + 6d(t)∂y +
3
k

b(t)[c′(t)− d′(t)][y − x]∂u.

As we pointed out in Section 2, case 4 is equivalent to the constant coefficient equation.
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