Trends in Precipitation and Air Temperature Extremes and Their Relationship with Sea Surface Temperature in the Brazilian Midwest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Precipitation and Temperature Data
2.2.2. SST Anomalies Indices
2.3. Climate Extreme Indices
2.4. Statistical Analysis
3. Results
3.1. Precipitation Extremes
3.1.1. Spatiotemporal Variability
3.1.2. Decadal Variability
3.1.3. Precipitation Extremes and SST Anomalies
3.2. Temperature Extremes
3.2.1. Spatiotemporal Variability
3.2.2. Decadal Variability
3.2.3. Temperature Extremes and SST Anomalies
4. Discussion
4.1. Precipitation and Temperature Extremes Trends
4.2. Precipitation and Temperature Extremes and SST Anomalies
4.3. Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, P.S.P.; Dallacort, R.; Santos Galvanin, E.A.; Neves, R.J.; Carvalho, M.A.C.; Barbieri, J.D. Ciclo diário de variáveis meteorológicas nos biomas do estado de Mato Grosso (meteorological variables daily cycle in Mato Grosso state biomes. Rev. Bras. Climatol. 2015, 17, 173–188. [Google Scholar]
- Castellanos, E.J.; Lemos, M.F. IPCC Sixth Assessment Report (AR6): Climate Change 2022-Impacts, Adaptation and Vulnerability: Regional Factsheet Central and South America. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 3 January 2023).
- Almagro, A.; Oliveira, P.T.S.; Nearing, M.A.; Hagemann, S. Projected Climate Change Impacts in Rainfall Erosivity over Brazil. Sci Rep 2017, 7, 8130. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. Chapter 11: Weather and Climate Extreme Events in a Changing Climate. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter11.pdf/ (accessed on 3 January 2023).
- Machado, N.G.; Biudes, M.S.; Querino, C.A.S.; Danelichen, V.H.d.M.; Velasque, M.C.S. Seasonal and Interannual Pattern of Meteorological Variables in Cuiabá, Mato Grosso State, Brazil. Rev. Bras. Geofis. 2015, 33, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Sein, K.K.; Chidthaisong, A.; Oo, K.L. Observed Trends and Changes in Temperature and Precipitation Extreme Indices over Myanmar. Atmosphere 2018, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Ely, D.F.; Fortin, G. Trend Analysis of Extreme Thermal Indices in South Brazil (1971 to 2014). Theor. Appl. Climatol. 2020, 139, 1045–1056. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Min, S.-K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 Multi-Model Ensemble for Climate Extreme Indices. Weather. Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Benezoli, V.; Justino, F.; Torres, R.; Wilson, A. Assessing Current and Future Trends of Climate Extremes across Brazil Based on Reanalyses and Earth System Model Projections. Clim. Dyn. 2020, 55, 1403–1426. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Alexander, L.V.; Donat, M.G.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.; Aguilar, E.; Barry, A.A.; et al. Development of an Updated Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125, e2019JD032263. [Google Scholar] [CrossRef]
- Thielen, D.; Schuchmann, K.-L.; Ramoni-Perazzi, P.; Marquez, M.; Rojas, W.; Quintero, J.I.; Marques, M.I. Quo Vadis Pantanal? Expected Precipitation Extremes and Drought Dynamics from Changing Sea Surface Temperature. PLoS ONE 2020, 15, e0227437. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; et al. Climate Impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Viegas, J.; Andreoli, R.V.; Kayano, M.T.; Candido, L.A.; de Souza, R.A.F.; Hall, D.H.; de Souza, A.C.; Garcia, S.R.; Temoteo, G.G.; Valentin, W.I.D. Caracterização dos Diferentes Tipos de El Niño e seus Impactos na América do Sul a Partir de Dados Observados e Modelados. Rev. Bras. Meteorol. 2019, 34, 43–67. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Qian, T. A New Picture of the Global Impacts of El Nino-Southern Oscillation. Sci. Rep. 2019, 9, 17543. [Google Scholar] [CrossRef] [Green Version]
- Wainer, I.; Prado, L.F.; Khodri, M.; Otto-Bliesner, B. The South Atlantic Sub-Tropical Dipole Mode since the Last Deglaciation and Changes in Rainfall. Clim. Dyn. 2021, 56, 109–122. [Google Scholar] [CrossRef]
- Costa, R.L.; Macedo de Mello Baptista, G.; Gomes, H.B.; Daniel dos Santos Silva, F.; Lins da Rocha Júnior, R.; de Araújo Salvador, M.; Herdies, D.L. Analysis of Climate Extremes Indices over Northeast Brazil from 1961 to 2014. Weather. Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Da Silva, P.E.; Santos e Silva, C.M.; Spyrides, M.H.C.; Andrade, L.d.M.B. Precipitation and Air Temperature Extremes in the Amazon and Northeast Brazil. Int. J. Climatol. 2019, 39, 579–595. [Google Scholar] [CrossRef]
- Dereczynski, C.; Chan Chou, S.; Lyra, A.; Sondermann, M.; Regoto, P.; Tavares, P.; Chagas, D.; Gomes, J.L.; Rodrigues, D.C.; Skansi, M.d.l.M. Downscaling of Climate Extremes over South America—Part I: Model Evaluation in the Reference Climate. Weather. Clim. Extrem. 2020, 29, 100273. [Google Scholar] [CrossRef]
- Marengo, J.A.; Camargo, C.C. Surface Air Temperature Trends in Southern Brazil for 1960–2002. Int. J. Climatol. 2008, 28, 893–904. [Google Scholar] [CrossRef]
- Marrafon, V.H.; Reboita, M.S. Características da precipitação na América do Sul reveladas através de índices climáticos. Rev. Bras. Climatol. 2020, 26, 663–676. [Google Scholar] [CrossRef]
- dos Santos, C.A.C.; de Brito, J.I.B.; Júnior, C.H.F.d.S.; Dantas, L.G. Trends in precipitation extremes over the Northern part of Brazil from ERA40 dataset. Rev. Bras. Geogr. Física 2012, 5, 836–851. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- INMET Meteorological Database for Teaching and Research (BDMEP). Available online: https://bdmep.inmet.gov.br/ (accessed on 5 February 2023).
- WMO. Manual on the Global Observing System, Volume I, Global Aspects; WMO: Geneva, Switzerland, 2013; ISBN 978-92-63-10544-8. [Google Scholar]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- World Climate Research Programme (WCRP). Available online: https://www.wcrp-climate.org/ (accessed on 5 February 2023).
- Zhang, X.; Yang, F. RClimDex (1.0) User Manual; Climate Research Branch Environment Canada: Downsview, ON, Canada, 2004.
- Climdex Indices. Available online: https://www.climdex.org/learn/indices/ (accessed on 5 February 2023).
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V. A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation. J. Clim. 2021, 34, 243–258. [Google Scholar] [CrossRef]
- Ohlson, J.A.; Kim, S. Linear Valuation without OLS: The Theil-Sen Estimation Approach. Rev. Account. Stud. 2015, 20, 395–435. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- He, Y.-L.; Ye, X.; Huang, D.-F.; Huang, J.Z.; Zhai, J.-H. Novel Kernel Density Estimator Based on Ensemble Unbiased Cross-Validation. Inf. Sci. 2021, 581, 327–344. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Carvalho, L.M.V. de Práticas Simples em Análises Climatológicas: Uma Revisão. Rev. Bras. Meteorol. 2017, 32, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cobb, K.M.; Song, H.; Li, Q.; Li, C.-Y.; Nakatsuka, T.; An, Z.; Zhou, W.; Cai, Q.; Li, J.; et al. Recent Enhancement of Central Pacific El Niño Variability Relative to Last Eight Centuries. Nat. Commun. 2017, 8, 15386. [Google Scholar] [CrossRef] [Green Version]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.M.; Bladé, I. The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Loriaux, J.M.; Lenderink, G.; Siebesma, A.P. Large-Scale Controls on Extreme Precipitation. J. Clim. 2017, 30, 955–968. [Google Scholar] [CrossRef]
- Ruiz-Alvarez, O.; Singh, V.P.; Enciso-Medina, J.; Ontiveros-Capurata, R.E.; dos Santos, C.A.C. Observed Trends in Daily Extreme Precipitation Indices in Aguascalientes, Mexico. Meteorol. Appl. 2020, 27, e1838. [Google Scholar] [CrossRef] [Green Version]
- Biudes, M.S.; Geli, H.M.E.; Vourlitis, G.L.; Machado, N.G.; Pavão, V.M.; dos Santos, L.O.F.; Querino, C.A.S. Evapotranspiration Seasonality over Tropical Ecosystems in Mato Grosso, Brazil. Remote Sens. 2022, 14, 2482. [Google Scholar] [CrossRef]
- Hanlon, H.M.; Bernie, D.; Carigi, G.; Lowe, J.A. Future Changes to High Impact Weather in the UK. Climatic Chang. 2021, 166, 50. [Google Scholar] [CrossRef]
- Ivo, I.O.; Biudes, M.S.; Vourlitis, G.L.; Machado, N.G.; Martim, C.C. Effect of Fires on Biophysical Parameters, Energy Balance and Evapotranspiration in a Protected Area in the Brazilian Cerrado. Remote Sens. Appl. Soc. Environ. 2020, 19, 100342. [Google Scholar] [CrossRef]
- Biudes, M.S.; Vourlitis, G.L.; Machado, N.G.; de Arruda, P.H.Z.; Neves, G.A.R.; de Almeida Lobo, F.; Neale, C.M.U.; de Souza Nogueira, J. Patterns of Energy Exchange for Tropical Ecosystems across a Climate Gradient in Mato Grosso, Brazil. Agric. For. Meteorol. 2015, 202, 112–124. [Google Scholar] [CrossRef]
- Barkhordarian, A.; Saatchi, S.S.; Behrangi, A.; Loikith, P.C.; Mechoso, C.R. A Recent Systematic Increase in Vapor Pressure Deficit over Tropical South America. Sci. Rep. 2019, 9, 15331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, N.G.; Biudes, M.S.; Angelini, L.P.; Querino, C.A.S.; da Silva Angelini, P.C.B. Impact of Changes in Surface Cover on Energy Balance in a Tropical City by Remote Sensing: A Study Case in Brazil. Remote Sens. Appl. Soc. Environ. 2020, 20, 100373. [Google Scholar] [CrossRef]
- Kharol, S.K.; Kaskaoutis, D.G.; Sharma, A.R.; Singh, R.P. Long-Term (1951–2007) Rainfall Trends around Six Indian Cities: Current State, Meteorological, and Urban Dynamics. Adv. Meteorol. 2013, 2013, e572954. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, S.; Fu, Q. A Drier Future? Science 2014, 343, 737–739. [Google Scholar] [CrossRef]
- Kuczyński, T.; Staszczuk, A. Experimental Study of the Influence of Thermal Mass on Thermal Comfort and Cooling Energy Demand in Residential Buildings. Energy 2020, 195, 116984. [Google Scholar] [CrossRef]
- Pires, G.F.; Abrahão, G.M.; Brumatti, L.M.; Oliveira, L.J.C.; Costa, M.H.; Liddicoat, S.; Kato, E.; Ladle, R.J. Increased Climate Risk in Brazilian Double Cropping Agriculture Systems: Implications for Land Use in Northern Brazil. Agric. For. Meteorol. 2016, 228–229, 286–298. [Google Scholar] [CrossRef]
- Spera, S.A.; Winter, J.M.; Partridge, T.F. Brazilian Maize Yields Negatively Affected by Climate after Land Clearing. Nat. Sustain. 2020, 3, 845–852. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Ruane, A.C.; Vautard, R.; Arnell, N.; Coppola, E.; Cruz, F.A.; Dessai, S.; Saiful Islam, A.K.M.; Rahimi, M.; Carrascal, D.R. Climate Change Information for Regional Impact and for Risk Assessment; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Trenberth, K.E. El Niño Southern Oscillation (ENSO). Reference Module in Earth Systems and Environmental Sciences; Elias, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 10, pp. 04082–04083. [Google Scholar]
- Fonseca, M.G.; Anderson, L.O.; Arai, E.; Shimabukuro, Y.E.; Xaud, H.A.M.; Xaud, M.R.; Madani, N.; Wagner, F.H.; Aragão, L.E.O.C. Climatic and Anthropogenic Drivers of Northern Amazon Fires during the 2015–2016 El Niño Event. Ecol. Appl. 2017, 27, 2514–2527. [Google Scholar] [CrossRef]
- Andreoli, R.V.; de Oliveira, S.S.; Kayano, M.T.; Viegas, J.; de Souza, R.A.F.; Candido, L.A. The Influence of Different El Niño Types on the South American Rainfall. Int. J. Climatol. 2017, 37, 1374–1390. [Google Scholar] [CrossRef]
- Tedeschi, R.G.; Cavalcanti, I.F.A.; Grimm, A.M. Influences of Two Types of ENSO on South American Precipitation. Int. J. Climatol. 2013, 33, 1382–1400. [Google Scholar] [CrossRef]
- Pereira, H.R.; Reboita, M.S.; Ambrizzi, T. Características da Atmosfera na Primavera Austral Durante o El Niño de 2015/2016. Rev. Bras. Meteorol. 2017, 32, 293–310. [Google Scholar] [CrossRef]
- dos Santos, J.G.M.; de Campos, C.R.J.; Lima, K.C. Análise de jatos de baixos níveis associados aum sistema convectivo de mesoescala na américa do sul: Um estudo de caso. Rev. Bras. Geof. 2008, 26, 451–468. [Google Scholar] [CrossRef]
- Liebmann, B.; Mechoso, C.R. The South American Monsoon System. In The Global Monsoon System; World Scientific Series on Asia-Pacific Weather and Climate; World Scientific: Singapore, 2011; Volume 5, pp. 137–157. ISBN 978-981-4343-40-4. [Google Scholar]
- Krepper, C.M.; Zucarelli, G.V. Climatology of Water Excesses and Shortages in the La Plata Basin. Theor. Appl. Climatol. 2010, 102, 13–27. [Google Scholar] [CrossRef]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily Gridded Meteorological Variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, N.; West, T.A.P.; Börner, J.; Ometto, J. What Drives Intensification of Land Use at Agricultural Frontiers in the Brazilian Amazon? Evidence from a Decision Game. Forests 2019, 10, 464. [Google Scholar] [CrossRef] [Green Version]
WMO Code | ID | Sites | Biome | Climate | Latitude (degree) | Longitude (degree) | Elevation (m) |
---|---|---|---|---|---|---|---|
83368 | 1 | Aragarças—GO | Brazilian Savanna | Aw | −15.9 | −52.23 | 345 |
83377 | 2 | Brasília—DF | Brazilian Savanna | Cwa | −15.78 | −47.93 | 1159.54 |
83270 | 3 | Canarana—MT | Brazilian Savanna | Aw | −13.47 | −52.27 | 430 |
83526 | 4 | Catalão—GO | Brazilian Savanna | Cwa | −18.18 | −47.95 | 840.47 |
83361 | 5 | Cuiabá—MT | Brazilian Savanna | Aw | −15.61 | −56.1 | 145 |
83309 | 6 | Diamantino—MT | Brazilian Savanna | Aw | −14.4 | −56.45 | 286.3 |
83379 | 7 | Formosa—GO | Brazilian Savanna | Aw | −15.53 | −47.33 | 935.19 |
83423 | 8 | Goiânia—GO | Brazilian Savanna | Aw | −16.66 | −49.25 | 741.48 |
83374 | 9 | Goiás—GO | Brazilian Savanna | Aw | −15.91 | −50.13 | 512.22 |
83522 | 10 | Ipameri—GO | Brazilian Savanna | Aw | −17.71 | −48.16 | 772.99 |
83464 | 11 | Jataí—GO | Brazilian Savanna | Aw | −17.88 | −51.71 | 662.86 |
83319 | 12 | Nova Xavantina—MT | Brazilian Savanna | Aw | −14.7 | −52.35 | 316 |
83565 | 13 | Paranaíba—MS | Brazilian Savanna | Aw | −19.75 | −51.18 | 331.25 |
83376 | 14 | Pirenópolis—GO | Brazilian Savanna | Aw | −15.85 | −48.96 | 740 |
83702 | 15 | Ponta Porã—MS | Brazilian Savanna | Cfa | −22.53 | −55.53 | 650 |
83332 | 16 | Posse—GO | Brazilian Savanna | Aw | −14.1 | −46.36 | 825.64 |
83358 | 17 | Poxoréo—MT | Brazilian Savanna | Aw | −15.83 | −54.38 | 450 |
83470 | 18 | Rio Verde—GO | Brazilian Savanna | Aw | −17.8 | −50.91 | 774.62 |
83264 | 19 | Cláudia—MT | Amazon Forest | Aw | −12.2 | −56.5 | 415 |
83214 | 20 | Matupá—MT | Amazon Forest | Am | −10.25 | −54.91 | 285 |
83405 | 21 | Cáceres—MT | Pantanal | Aw | −16.05 | −57.68 | 118 |
83552 | 22 | Corumbá—MS | Pantanal | Aw | −19.01 | −57.65 | 130 |
83364 | 23 | Sto Ant. de Leverger—MT | Pantanal | Aw | −15.78 | −56.06 | 140 |
83704 | 24 | Ivinhema—MS | Atlantic Forest | Aw | −22.3 | −53.81 | 369.2 |
Variable | Group | Index | ID | Definition | Units |
---|---|---|---|---|---|
Precipitation | Threshold | Number of heavy precipitation days | R10mm | Annual count of days when PRCP ≥ 10 mm | days |
Number of very heavy precipitation days | R20mm | Annual count of days when PRCP ≥ 20 mm | days | ||
Number of days with precipitation above 50 mm | R50mm | Annual count of days when PRCP ≥ 50 mm | days | ||
Absolute | Maximum 1-day precipitation amount | Rx1day | Annual maximum 1 day precipitation | mm | |
Maximum 5-day precipitation amount | Rx5day | Annual maximum 5-day precipitation | mm | ||
Other | Annual total wet day precipitation | PRCPTOT | Annual total precipitation in wet days PRCP ≥ 1 mm | mm | |
Simple daily Intensity Index | SDII | Annual total precipitation divided by the number of wet days—PRCP ≥ 1 mm | mm/day | ||
Percentile | Precipitation on very wet days | R95p | Annual total precipitation when PRCP > 95th percentile | mm | |
Precipitation on extremely wet days | R99p | Annual total precipitation when PRCP > 99th percentile | mm | ||
Duration | Consecutive wet days | CWD | Maximum number of consecutive days when PRCP ≥ 1 mm | days | |
Consecutive dry days | CDD | Maximum number of consecutive days when PRCP < 1 mm | days | ||
Air temperature | Absolute | Warmest Day | TXx | Annual Maximum value of daily maximum temperature | °C |
Warmest Night | TNx | Annual Maximum value of daily min temperature | °C | ||
Coldest Day | TXn | Annual Minimum value of daily maximum temperature | °C | ||
Coldest Night | TNn | Annual Minimum value of daily min temperature | °C | ||
Diurnal Temperature Range | DTR | Daily Tmax—Daily Tmin | °C | ||
Duration | Warm spell duration | WDSI | Annual count of days with a least 6 consecutive days when Tmax > 90th percentile | days | |
Cold spell duration | CSDI | Annual count of days with a least 6 consecutive days when Tmin < 10th percentile | days | ||
Percentile | Warm Days | TX90p | % of days when Tmax is > 90th percentile | % | |
Warm Nights | TN90p | % of days when Tmin is > 90th percentile | % | ||
Cool Days | TX10p | % of days when Tmax is < 90th percentile | % | ||
Cool Nights | TN10p | % of days when Tmin is < 90th percentile | % |
Index | Units | % of Stations with Positive Trend | % of Stations with Negative Trend | % of Stations with No Trend | |
---|---|---|---|---|---|
Precipitation | R10mm | days | 0 | 25 | 75 |
R20mm | days | 8.3 | 8.3 | 83.3 | |
R50mm | days | 25 | 0 | 75.1 | |
RX1day | mm | 16.7 | 0 | 83.3 | |
RX5day | mm | 20.8 | 12.5 | 66.6 | |
PRCPTOT | mm | 4.2 | 16.7 | 79.1 | |
SDII | mm/day | 50 | 4.2 | 45.8 | |
R95p | mm | 29.2 | 0 | 70.8 | |
R99p | mm | 25 | 4.2 | 70.9 | |
CWD | days | 0 | 37.5 | 62.6 | |
CDD | days | 12.5 | 0 | 87.5 | |
Air temperature | TXx | °C | 91.7 | 0 | 8.3 |
TNx | °C | 45.8 | 0 | 54.2 | |
TXn | °C | 54.2 | 0 | 45.9 | |
TNn | °C | 50 | 0 | 50 | |
DTR | °C | 62.5 | 0 | 37.5 | |
WSDI | days | 20.8 | 0 | 79.1 | |
CSDI | days | 0 | 0 | 100 | |
TX90p | % | 95.8 | 0 | 4.2 | |
TN90p | % | 62.5 | 0 | 37.5 | |
TX10p | % | 0 | 79.2 | 20.8 | |
TN10p | % | 0 | 62.5 | 37.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, L.O.F.; Machado, N.G.; Biudes, M.S.; Geli, H.M.E.; Querino, C.A.S.; Ruhoff, A.L.; Ivo, I.O.; Lotufo Neto, N. Trends in Precipitation and Air Temperature Extremes and Their Relationship with Sea Surface Temperature in the Brazilian Midwest. Atmosphere 2023, 14, 426. https://doi.org/10.3390/atmos14030426
dos Santos LOF, Machado NG, Biudes MS, Geli HME, Querino CAS, Ruhoff AL, Ivo IO, Lotufo Neto N. Trends in Precipitation and Air Temperature Extremes and Their Relationship with Sea Surface Temperature in the Brazilian Midwest. Atmosphere. 2023; 14(3):426. https://doi.org/10.3390/atmos14030426
Chicago/Turabian Styledos Santos, Luiz Octávio F., Nadja G. Machado, Marcelo S. Biudes, Hatim M. E. Geli, Carlos Alexandre S. Querino, Anderson L. Ruhoff, Israel O. Ivo, and Névio Lotufo Neto. 2023. "Trends in Precipitation and Air Temperature Extremes and Their Relationship with Sea Surface Temperature in the Brazilian Midwest" Atmosphere 14, no. 3: 426. https://doi.org/10.3390/atmos14030426