Greenhouse Gas Emissions from Soil Cultivated with Vegetables in Crop Rotation under Integrated, Organic and Organic Conservation Management in a Mediterranean Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Characterization
2.2. Experimental Design and Management of the Cropping Systems
2.3. Monitoring of Soil N2O, CH4 and CO2 Flux
- Period 1 (P1): going from 16 January 2015, the first day after the last harvest of the winter crops (fennel in F1), until 18 December 2015;
- Period 2 (P2): going from 3 March 2016 until the end of the monitoring campaign, 24 June 2016 in F1 and 14 July 2016 in F2.
2.4. Auxiliary Measurements
2.5. Data Elaboration and Statistical Analysis
3. Results
3.1. Meteorological Conditions
3.2. Soil Water Content, Temperature and Nitrate Dynamic
3.3. Daily Flux of N2O, CH4 and CO2
3.3.1. Trend of Daily N2O Flux in the Three Cropping Systems
3.3.2. Trend of Daily CH4 Flux in the Three Cropping Systems
3.3.3. Trend of Daily CO2 Flux in the Three Cropping Systems
3.4. Relationship among the Soil Variables and GHG Fluxes
3.5. Cumulative Soil Emissions during the Two Periods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cook, S.K.; Collier, R.; Clarke, J.; Lillywhite, R. Contribution of integrated farm management (IFM) to Defra objectives. Asp. Appl. Biol. 2009, 93, 131–138. [Google Scholar]
- Morris, C.; Winter, M. Integrated farming systems: The third way for European agriculture? Land Use Policy 1999, 16, 193–205. [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Peigné, J.; Casagrande, M.; Payet, V.; David, C.; Sans, F.X.; Blanco-Moreno, J.M.; Cooper, J.; Gascoyne, K.; Antichi, D.; Bàrberi, P.; et al. How organic farmers practice conservation agriculture in Europe. Renew. Agric. Food Syst. 2015, 31, 72–85. [Google Scholar] [CrossRef] [Green Version]
- González-Sánchez, E.J.; Ordóñez-Fernández, R.; Carbonell-Bojollo, R.; Veroz-González, O.; Gil-Ribes, J.A. Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 2012, 122, 52–60. [Google Scholar] [CrossRef]
- Hobbs, P.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Sans, F.X.; Berner, A.; Armengot, L.; Mäder, P. Tillage effects on weed communities in an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 2011, 51, 413–421. [Google Scholar] [CrossRef]
- IFOAM. The IFOAM Norms for Organic Production and Processing; IFOAM: Bonn, Germany, 2012. [Google Scholar]
- Shirtliffe, S.J.; Johnson, E.N. Progress towards no-till organic weed control in western Canada. Renew. Agric. Food Syst. 2012, 27, 60–67. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-canqui, H.; Declerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B.S. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Magid, J.; Jensen, L.S. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv. Agron. 2003, 79, 227–302. [Google Scholar]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef]
- Muhammad, I.; Sainju, U.M.; Zhao, F.; Khan, A.; Ghimire, R.; Fu, X. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil Tillage Res. 2019, 192, 103–112. [Google Scholar] [CrossRef]
- Baggs, E.M.; Stevenson, M.; Pihlatie, M.; Regar, A.; Cook, H.; Cadisch, G. Nitrous oxide emissions following application of residues and fertiliser under zero and conventional tillage. Plant Soil 2003, 254, 361–370. [Google Scholar] [CrossRef]
- Basche, A.D.; Miguez, F.E.; Kaspar, T.C.; Castellano, M.J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 2014, 69, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.A.; Baker, J.M.; Griffis, T.J.; Venterea, R.T. Impact of Kura Clover Living Mulch on Nitrous Oxide Emissions in a Corn–Soybean System. J. Environ. Qual. 2016, 45, 1782. [Google Scholar] [CrossRef]
- Six, J.; Ogle, S.M.; Breidt, F.J.; Conant, R.T.; Mosiers, A.R.; Paustian, K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Chang. Biol. 2004, 10, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Hutsch, B.W. Methane oxidation in non-flooded soils as affected by crop production—Invited paper. Eur. J. Agron. 2001, 14, 237–260. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R.; Jarecki, M.K. Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Tillage Res. 2009, 104, 247–255. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Livingston, G.P.; Hutchinson, G.L. Enclosure-based measurement of trace gas exchange: Applications and sources of error. In Methods in Ecology. Biogenic Trace Gases: Measuring Emissions from Soil and Water; Matson, P.A., Harriss, R.C., Eds.; Blackwell Science: Malden, MA, USA, 1995; pp. 14–51. [Google Scholar]
- Bosco, S.; Volpi, I.; Nassi o Di Nasso, N.; Triana, F.; Roncucci, N.; Tozzini, C.; Villani, R.; Laville, P.; Neri, S.; Mattei, F.; et al. LIFE+IPNOA mobile prototype for the monitoring of soil N2O emissions from arable crops: First-year results on durum wheat. IJA 2015, 10, 124. [Google Scholar] [CrossRef]
- Laville, P.; Neri, S.; Continanza, D.; Vero, L.F.; Bosco, S.; Virgili, G. Cross-Validation of a Mobile N2O Flux Prototype (IPNOA) Using Micrometeorological and Chamber Methods. J. Energy Power Eng. 2015, 9, 375–380. [Google Scholar]
- Laville, P.; Bosco, S.; Volpi, I.; Virgili, G.; Neri, S.; Continanza, D.; Bonari, E. Temporal integration of soil N2O fluxes: Validation of IPNOA station automatic chamber prototype. Environ. Monit. Assess. 2017, 189, 485. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 28 February 2018).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B. Linear mixed-effects models using Eigen and S4. R package version 1.1-7. 2014. Available online: http://CRAN.R-project.org/package=lme4 (accessed on 12 March 2018).
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing: In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Skiba, U.; Smith, K.A. The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere-Glob. Chang. Sci. 2000, 2, 379–386. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Meng, S.; Zheng, X.; Zhou, Z.; Han, S.; Chen, D.; Yang, Z. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agric. Ecosyst. Environ. 2011, 140, 226–233. [Google Scholar] [CrossRef]
- Flessa, H.; Ruser, R.; Dörsch, P.; Kamp, T.; Jimenez, M.A.; Munch, J.C.; Beese, F. Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric. Ecosyst. Environ. 2002, 91, 175–189. [Google Scholar] [CrossRef]
- Snyder, C.S.; Davidson, E.A.; Smith, P.; Venterea, R.T. Agriculture: Sustainable crop and animal production to help mitigate nitrous oxide emissions. Curr. Opin. Environ.Sustain. 2014, 9, 46–54. [Google Scholar] [CrossRef]
- Volpi, I.; Laville, P.; Bonari, E.; Nassi O Di Nasso, N.; Bosco, S. Nitrous oxide mitigation potential of reduced tillage and N input in durum wheat in the Mediterranean. Nutr. Cycl. Agroecosyst. 2018, 111, 189–201. [Google Scholar] [CrossRef]
- De Rosa, D.; Rowlings, D.W.; Biala, J.; Scheer, C.; Basso, B.; Grace, P.R. N2O and CO2 emissions following repeated application of organic and mineral N fertiliser from a vegetable crop rotation. Sci. Total Environ. 2018, 637–638, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Pelster, D.E.; Chantigny, M.H.; Rochette, P.; Angers, D.A.; Rieux, C.; Vanasse, A. Nitrous Oxide Emissions Respond Differently to Mineral and Organic Nitrogen Sources in Contrasting Soil Types. J. Environ.Qual. 2012, 41, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Pain, B.; Bittman, S.; Morgan, J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Heller, H.; Bar-Tal, A.; Tamir, G.; Bloom, P.; Venterea, R.T.; Chen, D.; Zhang, Y.; Clapp, C.E.; Fine, P. Effects of Manure and Cultivation on Carbon Dioxide and Nitrous Oxide Emissions from a Corn Field under Mediterranean Conditions. J. Environ. Qual. 2010, 39, 437. [Google Scholar] [CrossRef] [PubMed]
- Ambus, P.; Jensen, E.; Robertson, G. Nitrous oxide and water mediated N-losses from agricultural soil: Influence of crop residue particle size, quality and placement. Phyton (Austria) 2001, 41, 7–15. [Google Scholar]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Chang Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef]
- Pugesgaard, S.; Petersen, S.O.; Chirinda, N.; Olesen, J.E. Crop residues as driver for N2O emissions from a sandy loam soil. Agric. Meteorol. 2017, 233, 45–54. [Google Scholar] [CrossRef]
- Flessa, H.; Ruser, R.; Schilling, R.; Loftfield, N.; Munch, J.C.; Kaiser, E.A.; Beese, F. N2O and CH4 fluxes in potato fields: Automated measurement, management effects and temporal variation. Geoderma 2002, 105, 307–325. [Google Scholar] [CrossRef]
- Abdalla, M.; Osborne, B.; Lanigan, G.; Forristal, D.; Williams, M.; Smith, P.; Jones, M.B. Conservation tillage systems: A review of its consequences for greenhouse gas emissions. Soil Use Manag. 2013, 29, 199–209. [Google Scholar] [CrossRef]
- Skinner, C.; Gattinger, A.; Muller, A.; Mäder, P.; Fliebach, A.; Stolze, M.; Ruser, R.; Niggli, U. Greenhouse gas fluxes from agricultural soils under organic and non-organic management—A global meta-analysis. Sci. Total Environ. 2014, 468–469, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Van Groenigen, K.J.; Lee, J.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 2014, 466–467, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Guardia, G.; Tellez-Rio, A.; García-Marco, S.; Martin-Lammerding, D.; Tenorio, J.L.; Ibáñez, M.Á.; Vallejo, A. Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field. Agric. Ecosyst. Environ. 2016, 221, 187–197. [Google Scholar] [CrossRef]
- Serrano-Silva, N.; Sarria-Guzmán, Y.; Dendooven, L.; Luna-Guido, M. Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere 2014, 24, 291–307. [Google Scholar] [CrossRef]
- Forte, A.; Fagnano, M.; Fierro, A. Potential role of compost and green manure amendment to mitigate soil GHGs emissions in Mediterranean drip irrigated maize production systems. J. Environ. Manag. 2017, 192, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, J.; Taylor, J.A. On the Temperature Dependence of Soil Respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A.; Lou, Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Chang. Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena 2017, 151, 202–212. [Google Scholar] [CrossRef]
- Almagro, M.; López, J.; Querejeta, J.I.; Martínez-Mena, M. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol. Biochem. 2009, 41, 594–605. [Google Scholar] [CrossRef]
- Mancinelli, R.; Marinari, S.; Di Felice, V.; Savin, M.C.; Campiglia, E. Soil property, CO2 emission and aridity index as agroecological indicators to assess the mineralization of cover crop green manure in a Mediterranean environment. Ecol. Indic. 2013, 34, 31–40. [Google Scholar] [CrossRef]
- Morell, F.J.; Álvaro-Fuentes, J.; Lampurlanés, J.; Cantero-Martínez, C. Soil CO2 fluxes following tillage and rainfall events in a semiarid Mediterranean agroecosystem: Effects of tillage systems and nitrogen fertilization. Agric. Ecosyst. Environ. 2010, 139, 167–173. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killi, D.; Maratha, P.; Williams, M.; et al. Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. Geoderma 2014, 223–225, 9–20. [Google Scholar] [CrossRef]
- Negassa, W.; Price, R.F.; Basir, A.; Snapp, S.S.; Kravchenko, A. Cover crop and tillage systems effect on soil CO2 and N2O fluxes in contrasting topographic positions. Soil Tillage Res. 2015, 154, 64–74. [Google Scholar] [CrossRef]
- Chirinda, N.; Carter, M.S.; Albert, K.R.; Ambus, P.; Olesen, J.E.; Porter, J.R.; Petersen, S.O. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agric. Ecosyst. Environ. 2010, 136, 199–208. [Google Scholar] [CrossRef]
- Van Kessel, C.; Venterea, R.; Six, J.; Adviento-Borbe, M.A.; Linquist, B.; van Groenigen, K.J. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Glob. Chang. Biol. 2013, 19, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Antichi, D.; Sbrana, M.; Martelloni, L.; Abou Chehade, L.; Fontanelli, M.; Raffaelli, M.; Mazzoncini, M.; Peruzzi, A.; Frasconi, C. Agronomic performances of organic field vegetables managed with conservation agriculture techniques: A study from Central Italy. 2019. Manuscript in preparation. [Google Scholar]
Parameter | Field 1 | Field 2 | |||
---|---|---|---|---|---|
Unit | 0–10 | 10–30 | 0–10 | 10–30 | |
Sand (2 mm–0.05 mm) | % | 81.9 | 82.3 | 79.4 | 79.3 |
Silt (0.05 mm–0.002 mm) | % | 13.6 | 12.6 | 14.4 | 13.9 |
Clay (< 0.002 mm) | % | 4.5 | 5.1 | 6.2 | 6.8 |
pH | 1:1 w/v | 6.7 | 6.1 | 7.2 | 7.1 |
Organic Matter | % | 2.2 | 1.9 | 2.6 | 2.2 |
Total N | g kg−1 | 1.2 | 1.1 | 1.5 | 1.3 |
Available P | mg kg−1 | 6.6 | 3.4 | 4.9 | 3.6 |
Exchangeable K | mg kg−1 | 55.0 | 55.0 | 55.0 | 55.0 |
Conductivity | μS/cm−3 | 153.3 | 82.7 | 185.6 | 88.4 |
C:N | - | 10.8 | 10.4 | 9.9 | 10.0 |
Bulk density | g cm-3 | 1.40 | 1.44 |
Data | Crop | Level | Main tillage | Sowing | Fertilization rate kg ha−1 of: N; P2O5; K2O | Weed | Pest | Residue management |
---|---|---|---|---|---|---|---|---|
Jul–Jan | Fennel | INT | Spading | Transplanting | 122; 138; 245 | Chemical and mechanical weeding | Chemical | Removed |
ORG | Spading | Transplanting | 77; 94; 150 | Mechanical weeding | Removed | |||
ORG+ | No-till | No till transplanting | 25; 58; 75 | Flame weeding | Removed | |||
Feb–May | Spring green manure* | INT | ||||||
ORG | Rotary tiller, incorporation into the soil | Broadcast seeding | Chopped and incorporated into the soil with spade | |||||
ORG+ | ||||||||
Feb–May | Spring living mulch** | INT | ||||||
ORG | ||||||||
ORG+ | No till broadcast seeding | |||||||
Jun–Jul | Summer Lettuce | INT | Spading | Transplanting | 46; 46; 110 | Chemical and mechanical weeding | Chemical | Removed |
ORG | Spading | Transplanting | 0; 29; 75 | Mechanical weeding | Removed | |||
ORG+ | No-till | No till transplanting | 0; 0; 0 | Flame weeding | Removed | |||
Jul–Feb | Savoy cabbage | INT | Spading | Transplanting | 108; 69; 173 | Chemical and mechanical weeding | Chemical | Removed |
ORG | Spading | Transplanting | 59; 48; 96 | Mechanical weeding | Removed | |||
ORG+ | No-till | No till transplanting | 28; 29; 50 | Flame weeding | Removed | |||
Ma–May | Spring Lettuce | INT | Spading | Transplanting | 27; 39; 75 | Chemical and mechanical weeding | Chemical | Removed |
ORG | Spading | Transplanting | 20; 21; 64 | Mechanical weeding | Removed | |||
ORG+ | No-till | No till transplanting | 0; 0; 0 | Flame weeding | Removed | |||
Jun–Jul | Summer green manure*** | INT | ||||||
ORG | Rotary tiller | Broadcast seeding | Chopped and incorporated into the soil with spade | |||||
ORG+ | ||||||||
Jun–Jul | Summer dead mulch*** | INT | ||||||
ORG | ||||||||
ORG+ | No till broadcast seeding, devitalization with roller crimper and flaming | Rolled and band flamed |
Crop | Level | Nitrogen fertilizer type and split |
---|---|---|
Fennel | INT | 122 kg N ha−1 as ammonium nitrate 27% (A) - halved in two topdressing applications |
ORG | 25.7 kg N ha−1 as a commercial fertilizer composed by a mixture of manures 5% N (B) - before transplanting | |
51.3 kg N ha−1 as blood meal fertilizer 14% (C) - halved in two topdressing applications | ||
ORG+ | 9.3 kg N ha−1 as B - before transplanting | |
18.7 kg N ha−1 as C - at transplanting | ||
Summer Lettuce | INT | 46 kg N ha−1 as A - halved in two topdressing applications |
ORG | ||
ORG+ | ||
Savoy cabbage | INT | 108 kg N ha−1 as A - halved in two topdressing applications |
ORG | 15 kg N ha−1 as B - before transplanting | |
44 kg N ha−1 as C - halved in two topdressing applications | ||
ORG+ | 7.5 kg N ha−1 as B - before transplanting | |
20 kg N ha−1 as C - halved in two topdressing applications | ||
Spring Lettuce | INT | 27 kg N ha−1 as A - halved in two topdressing applications |
ORG | 19.6 kg N ha−1 as C - before transplanting | |
ORG+ |
F1 | F2 | ||||||
---|---|---|---|---|---|---|---|
Period | N2O (mg m−2 day−1) | CH4 (mg m−2 day−1) | CO2 (g m−2 day−1) | N2O (mg m−2 day−1) | CH4 (mg m−2 day−1) | CO2 (g m−2 day−1) | |
P1 | System | p < 0.0001 | n.s. | p < 0.0001 | n.s. | p < 0.001 | p < 0.0001 |
INT | 3.05 ± 0.40 a | −0.06 ± 0.02 | 15.11 ± 0.98 b | 2.07 ± 0.23 | −0.21 ± 0.02 a | 18.08 ± 1.00 b | |
ORG | 2.66 ± 0.49 a | −0.08 ± 0.06 | 22.09 ± 1.72 a | 2.45 ± 0.47 | −0.23 ± 0.02 b | 23.63 ± 1.42 a | |
ORG+ | 2.21 ± 1.18 b | −0.10 ± 0.03 | 20.93 ± 1.58 a | 2.56 ± 0.70 | −0.14 ± 0.02 a | 24.12 ± 1.54 a | |
P2 | System | p < 0.0001 | n.s. | p < 0.0001 | p < 0.05 | p < 0.05 | p < 0.0001 |
INT | 3.37 ± 1.47 a | −0.09 ± 0.03 | 15.59 ± 0.97 b | 1.62 ± 0.55 ab | 0.00 ± 0.05 a | 24.66 ± 0.96 a | |
ORG | 4.40 ± 1.77 a | −0.07 ± 0.03 | 16.59 ± 1.00 ab | 2.63 ± 0.59 a | −0.14 ± 0.03 b | 26.11 ± 1.66 a | |
ORG+ | 0.47 ± 0.12 b | −0.08 ± 0.02 | 19.81 ± 1.05 a | 1.39 ± 0.52 b | −0.05 ± 0.03 b | 19.97 ± 0.79 b |
CO2 emissions (t CO2 ha−1) | CO2 equivalents of non-CO2 GHG (t CO2-eq ha−1) | Total CO2-equivalents (t CO2-eq ha−1) | |||||
---|---|---|---|---|---|---|---|
Period | F1 | F2 | F1 | F2 | F1 | F2 | |
System | p < 0.001 | p < 0.01 | n.s. | n.s. | p < 0.01 | p < 0.01 | |
P1 | INT | 47.5 ± 3.6 b | 61.3 ± 2.8 b | 2.7 ± 0.73 | 1.8 ± 0.29 | 50.2 ± 4.1 b | 63.1 ± 2.8 b |
ORG | 68.1 ± 4.0 a | 81.6 ± 3.3 a | 2.2 ± 0.82 | 2.0 ± 0.50 | 70.2 ± 4.8 a | 83.6 ± 3.5 a | |
ORG+ | 66.0 ± 4.4 a | 84.4 ± 3.1 a | 2.8 ± 1.32 | 2.4 ± 0.46 | 68.8 ± 5.1 a | 86.8 ± 3.2 a | |
P2 | System | p < 0.001 | n.s. | n.s. | n.s. | p < 0.01 | n.s. |
INT | 19.5 ± 1.4 b | 42.4 ± 1.4 | 1.0 ± 0.47 | 0.5 ± 0.05 | 20.5 ± 1.8 b | 42.9 ± 1.3 | |
ORG | 20.2 ± 1.5 b | 43.4 ± 2.4 | 0.9 ± 0.29 | 1.0 ± 0.33 | 21.2 ± 1.8 b | 44.4 ± 2.7 | |
ORG+ | 31.3 ± 1.5 a | 36.4 ± 0.5 | 0.1 ± 0.03 | 0.4 ± 0.11 | 31.5 ± 1.5 a | 36.9 ± 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosco, S.; Volpi, I.; Antichi, D.; Ragaglini, G.; Frasconi, C. Greenhouse Gas Emissions from Soil Cultivated with Vegetables in Crop Rotation under Integrated, Organic and Organic Conservation Management in a Mediterranean Environment. Agronomy 2019, 9, 446. https://doi.org/10.3390/agronomy9080446
Bosco S, Volpi I, Antichi D, Ragaglini G, Frasconi C. Greenhouse Gas Emissions from Soil Cultivated with Vegetables in Crop Rotation under Integrated, Organic and Organic Conservation Management in a Mediterranean Environment. Agronomy. 2019; 9(8):446. https://doi.org/10.3390/agronomy9080446
Chicago/Turabian StyleBosco, Simona, Iride Volpi, Daniele Antichi, Giorgio Ragaglini, and Christian Frasconi. 2019. "Greenhouse Gas Emissions from Soil Cultivated with Vegetables in Crop Rotation under Integrated, Organic and Organic Conservation Management in a Mediterranean Environment" Agronomy 9, no. 8: 446. https://doi.org/10.3390/agronomy9080446