Application of Zeolites in Agriculture and Other Potential Uses: A Review
Abstract
:1. Introduction
2. History and Origin of Zeolites
- -
- Crystals found from hot-spring or hydrothermal activity (reaction with basaltic lava flows);
- -
- Sediments originating from volcanic deposits in saline and alkaline lake systems;
- -
- Deposits originating in alkaline soil from volcanic sediments;
- -
- Deposits formed from marine sediments’ low-temperature or hydrothermal alteration;
- -
- Formations resulting from low-grade burial metamorphism [22].
3. Classification and Structure of Zeolites
- (a)
- Zeolites erionite and mordenite—high Si/Al ratio (from 10 to several thousands);
- (b)
- Zeolites Y—intermediate Si/Al ratio (2 to 5);
- (c)
- Zeolites A—low Si/Al ratio (between 1.0 and 1.5).
- (1)
- 14 member rings; extra-large-pore zeolites with free pore diameter of 0.8–1.0 nm;
- (2)
- 12 member rings; large-pore zeolites with free pore diameter of 0.6–0.8 nm;
- (3)
- 10 member rings; medium-pore zeolites with free pore diameter of 0.45–0.6 nm;
- (4)
- 8 member rings; small-pore zeolites with free pore diameter of 0.3–0.45 nm [46].
4. Properties of Zeolites
- ➢
- Analcite: high heat stability, 18% porosity, 2.24–2.29 g/cm3 specific gravity, 1.85 g/cm3 bulk density, 4.54 meq/g ion exchange capacity;
- ➢
- Chabazite: high heat stability, 47% porosity, 2.05–2.10 g/cm3 specific gravity, 1.45 g/cm3 bulk density, 3.84 meq/g ion exchange capacity;
- ➢
- Clinoptilolite: high heat stability, 34% porosity, 2.15–2.25 g/cm3 specific gravity, 1.15 g/cm3 bulk density, 2.16 meq/g ion exchange capacity;
- ➢
- Erionite: high heat stability, 35% porosity, 2.02–2.08 g/cm3 specific gravity, 1.51 g/cm3 bulk density, 3.12 meq/g ion exchange capacity;
- ➢
- Heulandite: low heat stability, 39% porosity, 2.18–2.20 g/cm3 specific gravity, 1.69 g/cm3 bulk density, 2.91 meq/g ion exchange capacity;
- ➢
- Mordenite: high heat stability, 28% porosity, 2.12–2.15 g/cm3 specific gravity, 1.70 g/cm3 bulk density, 4.29 meq/g ion exchange capacity;
- ➢
- Phillipsite: moderate heat stability, 31% porosity, 2.15–2.20 g/cm3 specific gravity, 1.58 g/cm3 bulk density, 3.31 meq/g ion exchange capacity.
- The behavior of ‘zeolitic’ water: high potency of hydration and dehydration [55];
- Extensive void volume and low density when dehydrated [56];
- Molecular sieve property [57];
- Stability of the crystal structure of many dehydrated zeolites when 50% volumes of the dehydrated crystals are void [58];
- In the dehydrated crystals, homogenous molecular-sized channels [32];
- Several physical properties, such as electrical conductivity [61];
- Gases and vapors adsorption [62];
- Catalytic properties [63].
5. Application of Zeolites in Agriculture
5.1. Fertilizer Efficiency
5.2. Soil Amendment
5.3. Slow Release of Herbicides
5.4. Heavy Metal Traps
5.5. Water Absorption
5.6. Gas Absorption
5.7. Antifungal Activity and Crop Protection
5.8. Photosynthesis Enhancement on Crops
5.9. Heat Stress and Sunburn of Zeolites on Crops
5.10. Aquaculture
5.11. Animal Feed Additive
- -
- Aflatoxin-sequestering effect: elimination of mycotoxin growth inhibitory effects;
- -
- Ammonia-binding effect: elimination of ammonia toxic effects produced by intestinal microbial activity;
- -
- Enhanced pancreatic enzymes activity: favorable effect on feed components hydrolysis over a wider range of pH, improved energy and protein retention;
- -
- Fecal elimination of p-cresol: reduction of the absorption of toxic products of intestinal microbial degradation, such as p-cresol;
- -
- Retarding effect on digesta transit: slower passage rate of digesta through the intestines and more efficient use of nutrients.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sharpley, A.N.; Smith, S.J.; Naney, J.W. Environmental impact of agricultural nitrogen and phosphorus use. J. Agric. Food Chem. 1987, 35, 812–817. [Google Scholar] [CrossRef]
- Passaglia, E.; Prisa, D. Contributo delle Zeolititi nella Mitigazione delle Problematiche Ambientali Conseguenti alle Vigenti Pratiche Agricole. Ediazioni lulu 2018, 155. [Google Scholar]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. GBC 2002, 16, 8-1–8-14. [Google Scholar]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Kassas, M. Desertification: A general review. J. Arid Environ. 1995, 30, 115–128. [Google Scholar] [CrossRef]
- Hartemink, A.E. Assessing soil fertility decline in the tropics using soil chemical data. Adv. Agron. 2006, 89, 179–225. [Google Scholar]
- Savci, S. An agricultural pollutant: Chemical fertilizer. IJESD 2012, 3, 73. [Google Scholar] [CrossRef] [Green Version]
- Mortvedt, J.J. Heavy metal contaminants in inorganic and organic fertilizers. In Fertilizers and Environment; Springer: Dordrecht, The Netherland, 1996; pp. 5–11. [Google Scholar]
- Modaihsh, A.S.; AI-Swailem, M.S.; Mahjoub, M.O. Heavy metals content of commercial inorganic fertilizers used in the Kingdom of Saudi Arabia. JAMS 2004, 9, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Oyedele, D.J.; Asonugho, C.; Awotoye, O.O. Heavy metals in soil and accumulation by edible vegetables after phosphate fertilizer application. Electron. J. Environ. Agric. Food Chem. 2006, 5, 1446–1453. [Google Scholar]
- Adhikari, T.; Gowda, R.C.; Wanjari, R.H.; Singh, M. Impact of Continuous Fertilization on Heavy Metals Content in Soil and Food Grains under 25 Years of Long-Term Fertilizer Experiment. Commun. Soil Sci. Plant Anal. 2020, 52, 389–405. [Google Scholar] [CrossRef]
- Wang, B.; Chu, C.; Wei, H.; Zhang, L.; Ahmad, Z.; Wu, S.; Xie, B. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environ. Pollut. 2020, 267, 115411. [Google Scholar] [CrossRef]
- Neely, R.K.; Baker, J.L. Nitrogen and phosphorus dynamics and the fate of agricultural runoff. In Northern Prairie Wetlands; Iowa State University Press: Iowa City, IA, USA, 1989; pp. 92–131. [Google Scholar]
- Salewski, V.; Hochachka, W.M.; Fiedler, W. Global warming and Bergmann’s rule: Do central European passerines adjust their body size to rising temperatures? Oecologia 2010, 162, 247–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Porter, J.R. Rising temperatures are likely to reduce crop yields. Nature 2005, 436, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cataldo, E.; Salvi, L.; Mattii, G.B. Effects of irrigation on ecophysiology, sugar content and thiol precursors (3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol) on Vitis vinifera cv. Sauvignon Blanc. Plant Physiol. Biochem. 2021, 164, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Cline, W.R. Global warming and agriculture. Financ. Dev. 2008, 45, 1. [Google Scholar]
- Ramesh, K.; Reddy, D.D. Zeolites and their potential uses in agriculture. Adv. Agron. 2011, 113, 219–241. [Google Scholar]
- Mahesh, M.; Thomas, J.; Kumar, K.A.; Bhople, B.S.; Saresh, N.V.; Vaid, S.K.; Sahu, S.K. Zeolite farming: A sustainable agricultural prospective. IJCMAS 2018, 7, 2912–2924. [Google Scholar] [CrossRef]
- Polat, E.; Karaca, M.; Demir, H.; Onus, A.N. Use of natural zeolite (clinoptilolite) in agriculture. J. Fruit Ornam. 2004, 12, 183–189. [Google Scholar]
- Xu, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Payra, P.; Dutta, P.K. Zeolites: A primer. In Handbook of Zeolite Science and Technology; CRC Press: Boca Raton, FL, USA, 2003; Volume 2, pp. 1–19. [Google Scholar]
- Zimmermann, N.E.; Haranczyk, M. History and utility of zeolite framework-type discovery from a data-science perspective. Cryst. Growth Des. 2016, 16, 3043–3048. [Google Scholar] [CrossRef]
- Dogan, A.U. Zeolite mineralogy and Cappadocian erionite. Indoor Built Environ. 2003, 12, 337–342. [Google Scholar] [CrossRef]
- Minato, H. Characteristics and uses of natural zeolites. Koatsugasu 1968, 5, 536. [Google Scholar]
- Mumpton, F.A. Using zeolites in agriculture. In Innovative Biological Technologies for Lesser Developed Countries-Workshop Proceedings; Office of Technology Assessment, OTA: Washington, DC, USA, 1985. [Google Scholar]
- Wajima, T. Ion exchange properties of Japanese natural zeolites in seawater. Anal. Sci. 2013, 29, 139–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sfechis, S.; Vidican, R.; Șandor, M.; Stoian, V.; Șandor, V.; Muste, B. Using assessment of zeolite amendments in agriculture. ProEnviron. Promediu 2015, 8, 85–88. [Google Scholar]
- Shevade, S.; Ford, R.G. Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 2004, 38, 3197–3204. [Google Scholar] [CrossRef] [PubMed]
- Clifton, R.A. Natural and Synthetic Zeolites; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1987; Volume 9140. [Google Scholar]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, Z.; Sourinejad, I.; Kazemian, H.; Rohani, S. Application of zeolites in aquaculture industry: A review. Rev. Aquac. 2018, 10, 75–95. [Google Scholar] [CrossRef]
- Sun, T.; Seff, K. Silver clusters and chemistry in zeolites. Chem. Rev. 1994, 94, 857–870. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of zeolites for sustainable agriculture: A review on water and nutrient retention. Water Air Soil Pollut. 2017, 228, 1–34. [Google Scholar] [CrossRef]
- Oste, L.A.; Lexmond, T.M.; Van Riemsdijk, W.H. Metal immobilization in soils using synthetic zeolites. J. Environ. 2002, 31, 813–821. [Google Scholar]
- Newsam, J.M. The zeolite cage structure. Science 1986, 231, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Mumpton, F.A. La roca magica: Uses of natural zeolites in agriculture and industry. Proc. Natl. Acad. Sci. USA 1999, 96, 3463–3470. [Google Scholar] [CrossRef] [Green Version]
- Ming, D.W.; Mumpton, F.A. Zeolites in soils. Miner. Soil Environ. 1989, 1, 873–911. [Google Scholar]
- Sangeetha, C.; Baskar, P. Zeolite and its potential uses in agriculture: A critical review. Agric. Rev. 2016, 37, 101–108. [Google Scholar] [CrossRef]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar] [CrossRef]
- Ramesh, K.; Biswas, A.K.; Somasundaram, J.; Rao, A.S. Nanoporous zeolites in farming: Current status and issues ahead. Curr. Sci. 2010, 99, 760–764. [Google Scholar]
- Barrer, R.M. Expanded clay minerals: A major class of molecular sieves. J. Incl. Phenom. 1986, 4, 109–119. [Google Scholar] [CrossRef]
- Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, J.D.; Liebau, F.; Mandarino, J.A.; Minato, H.; et al. Recommended nomenclature for zeolite minerals; report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. EJM 1998, 10, 1037–1081. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, P.A.; Flanigen, E.M.; Jansen, J.C.; van Bekkum, H. Introduction to Zeolite Science and Practice; Elsevier: Amsterdam, The Netherlands, 2001; pp. 11–35. [Google Scholar]
- Petrov, I.; Michalev, T. Synthesis of zeolite A: A review. Научни трудoве на русенския университет 2012, 51, 30–35. [Google Scholar]
- Lok, B.M.; Cannan, T.; Messina, C.A. The role of organic molecules in molecular sieve synthesis. Zeolites 1983, 3, 282–291. [Google Scholar] [CrossRef]
- Rhodes, C.J. Properties and applications of zeolites. Sci. Prog. 2010, 93, 223–284. [Google Scholar] [CrossRef]
- Ren, X.; Xiao, L.; Qu, R.; Liu, S.; Ye, D.; Song, H.; Wu, W.; Zheng, C.; Wu, X.; Gao, X. Synthesis and characterization of a single phase zeolite A using coal fly ash. RSC Adv. 2018, 8, 42200–42209. [Google Scholar] [CrossRef] [Green Version]
- Hedström, A. Ion exchange of ammonium in zeolites: A literature review. J. Environ. Chem. Eng. 2001, 127, 673–681. [Google Scholar] [CrossRef]
- Morris, R.E.; Nachtigall, P. (Eds.) Zeolites in Catalysis: Properties and Applications; Royal Society of Chemistry: London, UK, 2017. [Google Scholar]
- Sand, L.B.; Mumpton, F.A. Natural Zeolites: Occurrence, Properties, and Use (No. CONF-760626-(Exc.)); Pergamon Press, Inc.: Elmsford, NY, USA, 1978. [Google Scholar]
- Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. Handbook of Zeolite Science and Technology; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Bhattacharyya, T.; Chandran, P.; Ray, S.K.; Pal, D.K.; Mandal, C.; Mandal, D.K. Distribution of zeolitic soils in India. Curr. Sci. 2015, 109, 1305–1313. [Google Scholar] [CrossRef]
- Lee, Y.; Vogt, T.; Hriljac, J.A.; Parise, J.B.; Hanson, J.C.; Kim, S.J. Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature 2002, 420, 485–489. [Google Scholar] [CrossRef]
- Newsam, J.M.; Treacy, M.M.; Koetsier, W.T.; Gruyter, C.D. Structural characterization of zeolite beta. Proc. R. Soc. Lond. A Math. Phys. Sci. 1988, 420, 375–405. [Google Scholar]
- Davis, M.E. Zeolites and molecular sieves: Not just ordinary catalysts. Ind. Eng. Chem. Res. 1991, 30, 1675–1683. [Google Scholar] [CrossRef]
- Olson, D.H.; Dempsey, E. The crystal structure of the zeolite hydrogen faujasite. J. Catal. 1969, 13, 221–231. [Google Scholar] [CrossRef]
- Colella, C. Ion exchange equilibria in zeolite minerals. Miner. Depos. 1996, 31, 554–562. [Google Scholar] [CrossRef]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Freeman Jr, D.C.; Stamires, D.N. Electrical conductivity of synthetic crystalline zeolites. J. Chem. Phys. 1961, 35, 799–806. [Google Scholar] [CrossRef]
- Gevorkyan, R.G.; Sargsyan, H.H.; Karamyan, G.G.; Keheyan, Y.M.; Yeritsyan, H.N.; Hovhannesyan, A.S.; Sahakyan, A.A. Study of absorption properties of modified zeolites. Geochemistry 2002, 62, 237–242. [Google Scholar] [CrossRef]
- Feliczak-Guzik, A. Hierarchical zeolites: Synthesis and catalytic properties. Microporous Mesoporous Mater. 2018, 259, 33–45. [Google Scholar] [CrossRef]
- Cerri, G.; Farina, M.; Brundu, A.; Daković, A.; Giunchedi, P.; Gavini, E.; Rassu, G. Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater. 2016, 223, 58–67. [Google Scholar] [CrossRef]
- He, Z.L.; Calvert, D.V.; Alva, A.K.; Li, Y.C.; Banks, D.J. Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil 2002, 247, 253–260. [Google Scholar] [CrossRef]
- Hershey, D.R.; Paul, J.L.; Carlson, R.M. Evaluation of potassium-enriched clinoptilolite as a potassium source for potting media. Hort Sci. 1980, 15, 8. [Google Scholar]
- del Pino, J.N.; Padrón, I.A.; Martin, M.G.; Hernández, J.G. Phosphorus and potassium release from phillipsite-based slow-release fertilizers. J. Control Release 1995, 34, 25–29. [Google Scholar] [CrossRef]
- Dwairi, I.M. Evaluation of Jordanian zeolite tuff as a controlled slow-release fertilizer for NH4+. Environ. Geol. 1998, 34, 1–4. [Google Scholar] [CrossRef]
- Li, Z. Use of surfactant-modified zeolite as fertilizer carriers to control nitrate release. Microporous Mesoporous Mater. 2003, 61, 181–188. [Google Scholar] [CrossRef]
- Bansiwal, A.K.; Rayalu, S.S.; Labhasetwar, N.K.; Juwarkar, A.A.; Devotta, S. Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J. Agric. Food Chem. 2006, 54, 4773–4779. [Google Scholar] [CrossRef]
- Barbarick, K.A.; Lai, T.M.; Eberl, D.D. Exchange Fertilizer (Phosphate Rock plus Ammonium-Zeolite) Effects on Sorghum-Sudangrass. Soil Sci. Soc. Am. J. 1990, 54, 911–916. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Li, Y. Zeolite as slow release fertilizer on spinach yields and quality in a greenhouse test. J. Plant Nutr. 2013, 36, 1496–1505. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Karam, N.S.; Al-Lataifeh, N.K. Response of croton grown in a zeolite-containing substrate to different concentrations of fertilizer solution. Commun. Soil Sci. Plant Anal. 2005, 35, 2283–2297. [Google Scholar] [CrossRef]
- Kavoosi, M. Effects of zeolite application on rice yield, nitrogen recovery, and nitrogen use efficiency. Commun. Soil Sci. Plant Anal. 2007, 38, 69–76. [Google Scholar] [CrossRef]
- Ahmed, O.H.; Sumalatha, G.; Muhamad, A.N. Use of zeolite in maize (Zea mays) cultivation on nitrogen, potassium and phosphorus uptake and use efficiency. Int. J. Phys. Sci. 2010, 5, 2393–2401. [Google Scholar]
- Kralova, M.; Hrozinkova, A.; Ruzek, P.; Kovanda, F.; Kolousek, D. Synthetic and Natural Zeolites Affecting the Physicochemical Soil Properties; Rostlinna Vyroba-UZPI: Praha, Czech Republic, 1994. [Google Scholar]
- DeSutter, T.M.; Pierzynski, G.M. Evaluation of soils for use as liner materials: A soil chemistry approach. J. Environ. 2005, 34, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, H.; Takuma, K.; Fukuda, T.; Araki, Y.; Suzuka, J.; Fukushima, Y. Effects of zeolite on water and salt control in soil. Bull. Fac. Agric. Tottori Univ. Jpn. 1998, 51, 35–42. [Google Scholar]
- Doni, S.; Gispert, M.; Peruzzi, E.; Macci, C.; Mattii, G.B.; Manzi, D.; Masini, C.M.; Grazia, M. Impact of natural zeolite on chemical and biochemical properties of vineyard soils. Soil Use Manag. 2020, 1–11. [Google Scholar] [CrossRef]
- de Campos Bernardi, A.C.; Oliviera, P.P.A.; de Melo Monte, M.B.; Souza-Barros, F. Brazilian sedimentary zeolite use in agriculture. Microporous Mesoporous Mater. 2013, 167, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Mazur, G.A.; Medvid, G.K.; Grigora, T.I. Use of natural zeolites for increasing the fertility of light textured soils. Pochvovedenie 1984, 10, 70–77. [Google Scholar]
- Bouzo, L.; Lopez, M.; Villegas, R.; Garcia, E.; Acosta, J.A. Use of natural zeolites to increase yields in sugarcane crop minimizing environmental pollution. In Proceedings of the15th World Congress of Soil Science, Acapulco, Mexico, 10–16 July 1994; pp. 695–701. [Google Scholar]
- Chander, K.; Joergensen, R.G. Decomposition of 14C labelled glucose in a Pb-contaminated soil remediated with synthetic zeolite and other amendments. Soil Biol. Biochem. 2002, 34, 643–649. [Google Scholar] [CrossRef]
- Fernández-Pérez, M. Controlled release systems to prevent the agro-environmental pollution derived from pesticide use. J. Environ. Health 2007, 42, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Bottero, J.Y.; Khatib, K.; Thomas, F.; Jucker, K.; Bersillon, J.L.; Mallevialle, J. Adsorption of atrazine onto zeolites and organoclays, in the presence of background organics. Water Resear. 1994, 28, 483–490. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Zeolite-based photocatalysts. Chem. Commun. 2004, 1443–1459. [Google Scholar] [CrossRef]
- Walcarius, A.; Mouchotte, R. Efficient in vitro paraquat removal via irreversible immobilization into zeolite particles. Arch. Environ. Contamin. Toxicol. 2004, 46, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kim, Y.; Dutta, P.K. Controlled release of paraquat from surface-modified zeolite Y. Microporous Mesoporous Mater. 2006, 88, 312–318. [Google Scholar] [CrossRef]
- Bakhtiary, S.; Shirvani, M.; Shariatmadari, H. Adsorption–desorption behavior of 2,4-D on NCP-modified bentonite and zeolite: Implications for slow-release herbicide formulations. Chemosphere 2013, 90, 699–705. [Google Scholar] [CrossRef]
- Shirvani, M.; Farajollahi, E.; Bakhtiari, S.; Ogunseitan, O.A. Mobility and efficacy of 2,4-D herbicide from slow-release delivery systems based on organo-zeolite and organo-bentonite complexes. J. Environ. Healh Part B 2014, 49, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bolan, N.S.; Duraisamy, V.P. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Soil Res. 2003, 41, 533–555. [Google Scholar] [CrossRef]
- Kumar, P.; Jadhav, P.D.; Rayalu, S.S.; Devotta, S. Surface-modified zeolite–A for sequestration of arsenic and chromium anions. Curr. Sci. 2007, 512–517. [Google Scholar]
- Tashauoei, H.R.; Attar, H.M.; Amin, M.M.; Kamali, M.; Nikaeen, M.; Dastjerdi, M.V. Removal of cadmium and humic acid from aqueous solutions using surface modified nanozeolite A. IJEST 2010, 7, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Ponizovsky, A.A.; Tsadilas, C.D. Lead (II) retention by Alfisol and clinoptilolite: Cation balance and pH effect. Geoderma 2003, 115, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Nishita, H.; Haug, R.M. Influence of clinoptilolite on Sr90 and Cs137 uptakes by plants. Soil Sci. 1972, 114, 149–157. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Vassilis, I.; Loizidou, M.; Grigoropoulou, H. Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite. J. Colloid Interface Sci. 2002, 250, 1–4. [Google Scholar] [CrossRef]
- Xiubin, H.; Zhanbin, H. Zeolite application for enhancing water infiltration and retention in loess soil. Resour. Conserv. Recycl. 2001, 34, 45–52. [Google Scholar] [CrossRef]
- Chmielewska, E. Designing clinoptiloliterich tuff columns for adsorptive filtration of water with enhanced ammonium concentration. Fresenius Environ. Bull. 2014, 23, 1277–1283. [Google Scholar]
- Huang, Z.T.; Petrovic, A.M. Physical properties of sand as affected by clinoptilolite zeolite particle size and quantity. J. Turfgrass Manag. 1994, 1, 1–15. [Google Scholar] [CrossRef]
- Bigelow, C.A.; Bowman, D.C.; Cassel, D.K.; Rufty, T.W., Jr. Creeping bentgrass response to inorganic soil amendments and mechanically induced subsurface drainage and aeration. Crop Sci. 2001, 41, 797–805. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Ghalavand, A.; Khodaei-Joghan, A.; Dolatabadian, A.; Zakikhani, H.; Farmanbar, E. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil Tillage Res. 2013, 126, 193–202. [Google Scholar] [CrossRef]
- Lal, R.; Shukla, M.K. Principles of Soil Physics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Githinji, L.J.; Dane, J.H.; Walker, R.H. Physical and hydraulic properties of inorganic amendments and modeling their effects on water movement in sand-based root zones. Irrigat. Sci. 2011, 29, 65–77. [Google Scholar] [CrossRef]
- Waltz, F.C.; Quisenberry, V.L.; McCarty, L.B. Physical and hydraulic properties of rootzone mixes amended with inorganics for golf putting greens. J. Agron. 2003, 95, 395–404. [Google Scholar] [CrossRef]
- Gholizadeh-Sarabi, S.; Sepaskhah, A.R. Effect of zeolite and saline water application on saturated hydraulic conductivity and infiltration in different soil textures. Arch. Agron. Soil Sci. 2013, 59, 753–764. [Google Scholar] [CrossRef]
- Ozbahce, A.; Tari, A.F.; Gönülal, E.; Simsekli, N.; Padem, H. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci. 2015, 61, 615–626. [Google Scholar] [CrossRef]
- Chen, T.; Wilson, L.T.; Liang, Q.; Xia, G.; Chen, W.; Chi, D. Influences of irrigation, nitrogen and zeolite management on the physicochemical properties of rice. Arch. Agron. Soil Sci. 2017, 63, 1210–1226. [Google Scholar] [CrossRef]
- Sun, Y.; He, Z.; Wu, Q.; Zheng, J.; Li, Y.; Wang, Y.; Chen, T.; Chi, D. Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field. Agric. Water Manag. 2020, 235, 106126. [Google Scholar] [CrossRef]
- Al-Busaidi, A.; Yamamoto, T.; Inoue, M.; Eneji, A.E.; Mori, Y.; Irshad, M. Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water. J. Plant Nutr. 2008, 31, 1159–1173. [Google Scholar] [CrossRef]
- Bernal, M.P.; Lopez-Real, J.M. Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials. Bioresour. Technol. 1993, 43, 27–33. [Google Scholar] [CrossRef]
- Kithome, M.; Paul, J.W.; Lavkulich, L.M.; Bomke, A.A. Effect of pH on ammonium adsorption by natural zeolite clinoptilolite. Commun. Soil Sci. Plant Anal. 1999, 30, 1417–1430. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Wang, Q.; Ren, X.; Zhao, J.; Huang, H.; Awasthi, S.K.; Lahori, A.H.; Li, R.; Zhou, L.; Zhang, Z. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting. Bioresour. Technol. 2016, 219, 270–280. [Google Scholar] [CrossRef]
- Chan, M.T.; Selvam, A.; Wong, J.W. Reducing nitrogen loss and salinity during ‘struvite’food waste composting by zeolite amendment. Bioresour. Technol. 2016, 200, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Sakka, M.; Berillis, P.; Athanassiou, C.G. Insecticidal potential of zeolite formulations against three stored-grain insects, particle size effect, adherence to kernels and influence on test weight of grains. J. Stored Prod. Res. 2016, 68, 93–101. [Google Scholar] [CrossRef]
- Floros, G.D.; Kokkari, A.I.; Kouloussis, N.A.; Kantiranis, N.A.; Damos, P.; Filippidis, A.A.; Koveos, D.S. Evaluation of the natural zeolite lethal effects on adults of the bean weevil under different temperatures and relative humidity regimes. J. Econ. Entomol. 2018, 111, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Calzarano, F.; Valentini, G.; Arfelli, G.; Seghetti, L.; Manetta, A.C.; Metruccio, E.G.; Di Marco, S. Activity of Italian natural chabasite-rich zeolitites against grey mould, sour rot and grapevine moth, and effects on grape and wine composition. Phytopathol. Mediterr. 2019, 58, 307–321. [Google Scholar]
- Eroglu, N.; Sakka, M.K.; Emekci, M.; Athanassiou, C.G. Effects of zeolite formulations on the mortality and progeny production of Sitophilus oryzae and Oryzaephilus surinamensis at different temperature and relative humidity levels. J. Stored Prod. Res. 2019, 81, 40–45. [Google Scholar] [CrossRef]
- Montanari, T.; Busca, G. On the mechanism of adsorption and separation of CO2 on LTA zeolites: An IR investigation. Vib. Spectrosc. 2008, 46, 45–51. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P. Kaolin Particle Film Applications Can Increase Photosynthesis and Water Use Efficiency ofRuby Red’Grapefruit Leaves. J. Am. Soc. Hortic. 2003, 128, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Glenn, D.M.; Erez, A.; Puterka, G.J.; Gundrum, P. Particle films affect carbon assimilation and yield in ‘Empire’ apple. J. Am. Soc. Hortic. 2003, 128, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Abou-Khaled, A.; Hagan, R.M.; Davenport, D.C. Effects of kaolinite as a reflective antitranspirant on leaf temperature, transpiration, photosynthesis, and water-use efficiency. Water Resour. Res. 1970, 6, 280–289. [Google Scholar] [CrossRef]
- Bergero, D.; Boccignone, M.; Di Natale, F.; Forneris, G.; Palmegiano, G.B.; Roagna, L.; Sicuro, B. Ammonia removal capacity of European natural zeolite tuffs: Application to aquaculture waste water. Aquac. Res. 1994, 25, 813–821. [Google Scholar] [CrossRef]
- Asgharimoghadam, A.; Gharedaashi, E.; Montajami, S.; Nekoubin, H.; Salamroudi, M.; Jafariyan, H. Effect of clinoptilolite zeolite to prevent mortality of beluga (Huso huso) by total ammonia concentration. Glob. Vet. 2012, 9, 80–84. [Google Scholar]
- Shurson, G.C.; Ku, P.K.; Miller, E.R.; Yokoyama, M.T. Effects of zeolite A or clinoptilolite in diets of growing swine. J. Anim. Sci. 1984, 59, 1536–1545. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, A.A.; Shawrang, P. Effects of natural zeolite clinoptilolite on passive immunity and diarrhea in newborn Holstein calves. Livest. Sci. 2008, 113, 307–310. [Google Scholar] [CrossRef]
- Toprak, N.N.; Yılmaz, A.; Öztürk, E.; Yigit, O.; Cedden, F. Effect of micronized zeolite addition to lamb concentrate feeds on growth performance and some blood chemistry and metabolites. S. Afr. J. Anim. Sci. 2016, 46, 313–320. [Google Scholar] [CrossRef]
- Papaioannou, D.; Katsoulos, P.D.; Panousis, N.; Karatzias, H. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review. Microporous Mesoporous Mater. 2005, 84, 161–170. [Google Scholar] [CrossRef]
Zeolite | Representative Unit-Cell Formula | Void Volume, % | Channel Dimensions, Å | Thermal Stability (Relative) | CEC, meq/g * |
---|---|---|---|---|---|
Analcime | Na10(Al16Si32O96) ●16H2O | 18 | 2.6 | High | 4.54 |
Chabazite | (Na2Ca)6(Al12Si24O72) ●40H2O | 47 | 3.7 × 4.2 | High | 3.84 |
Clinoptilolite | (Na3K3)(Al6Si30O72) ●24H2O | 34 | 3.9 × 5.4 | High | 2.16 |
Erionite | (NaCa0.5K)9(Al9Si27O72) ●27H2O | 35 | 3.6 × 5.2 | High | 3.12 |
Faujasite | (Na58)(Al58Si134O384)●240H2O | 47 | 7.4 | High | 3.39 |
Ferrierite | (Na2Mg2)(Al6Si30O72) ●18H2O | 28 | 4.3 × 5.5 | High | 2.33 |
Heulandite | (Ca4)(Al8Si28O72) ●24H2O | 39 | 4.0 × 5.54.4 × 7.24.1 × 4.7 | Low | 2.91 |
Laumonitte | (Ca4)(Al8Si16O48) ●16H2O | 34 | 4.6 × 6.3 | Low | 4.25 |
Mordenite | (Na8)(Al8Si40O96) ●24H2O | 28 | 2.9 × 5.76.7 × 7.0 | High | 2.29 |
Phillipsite | (NaK)5(Al5Si11O32) ●20H2O | 31 | 4.2 × 4.42.8 × 4.83.3 | Medium | 3.31 |
Linde A | (Na12)(Al12Si12O48) ●27H2O | 47 | 4.2 | High | 5.48 |
Linde X | (Na86)(Al86Si106O384) ●264H2O | 50 | 7.4 | High | 4.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. https://doi.org/10.3390/agronomy11081547
Cataldo E, Salvi L, Paoli F, Fucile M, Masciandaro G, Manzi D, Masini CM, Mattii GB. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy. 2021; 11(8):1547. https://doi.org/10.3390/agronomy11081547
Chicago/Turabian StyleCataldo, Eleonora, Linda Salvi, Francesca Paoli, Maddalena Fucile, Grazia Masciandaro, Davide Manzi, Cosimo Maria Masini, and Giovan Battista Mattii. 2021. "Application of Zeolites in Agriculture and Other Potential Uses: A Review" Agronomy 11, no. 8: 1547. https://doi.org/10.3390/agronomy11081547