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Abstract: This article is focused on the development and characterization of a series of biodegradable
and eco-friendly colour masterbatches (MBs), based on natural pigments and biodegradable polylactic
acid (PLA) and polybutylene succinate (PBS). Four commercial natural pigments were used, spirulina,
curcumin, beetroot and chlorophyllin, to develop the colour masterbatches using a twin-screw
extruder. The natural pigment-based MBs were added at 2, 4 and 6 wt%, as additives to study the
effect on the properties of injected biodegradable parts (PLA and PBS). The injected samples were
characterized in terms of their mechanical (tensile and Charpy impact tests) and visual properties
(according to CieLab). In addition, the ageing of the coloured material was followed by colorimetric
analysis after its exposure under a Xenon lamp. The mechanical results showed that the addition of
coloured masterbatches in different percentages (2–6 wt%) did not significantly change the properties
of the materials with respect to the as-received ones. A noticeable colour difference in the injected
samples was observed after the first 50 h of artificial light exposure. Regarding environmental
concerns, the study showed that the carbon footprint of natural pigments and electricity consumption
during extrusion and pelletizing were lower.

Keywords: natural pigment; biodegradable; colour masterbatch; additive; spirulina; curcumin;
beetroot; chlorophyllin

1. Introduction

Growing concern about the environmental impact of plastic materials has provoked
research and development into more sustainable alternatives in a wide variety of sectors,
such as packaging, agriculture, consumer goods, etc. In this context, the use of biopolymers,
which are plastics derived from renewable resources or that can biodegrade into natural
substances such as water, carbon dioxide, and compost, has gained considerable attention.

The ability to produce bioplastics worldwide is expected to rise dramatically, from
2.18 million tonnes in 2023 to 7.43 million tonnes in 2028 [1]. However, to expand their
applications and uses, bioplastic formulations require a variety of functional and structural
additives.

The use of natural additives is a growing trend in the plastic industry, especially in
biopolymers. Several investigations have been carried out to study the addition of natural
compounds looking for a specific functionality. For example, naturals fibres such as hem,
flax, kenaf, jute and almond shell are used to improve the mechanical strength and stiffness
of different biomaterial matrixes, as well as offering a wood-like appearance [2–7]. Several
studies have developed biocomposites based on biodegradable thermoplastic matrixes and
natural fibres in which different vegetable oils have been added to improve the process-
ability, the mechanical ductile properties of biopolymer/lignocellulosic materials and the
matrix/fibre compatibility [8–13]. Citric acid, glycerol and natural oils have been used as
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natural plasticizers to increase the flexibility and improve the mechanical ductile properties
of biopolymers such as poly(lactic acid), poly(3hydroxybutyrate) and starch thermoplas-
tic [14–21]. Additionally, this additive improves lubrication during the manufacturing
process. Plant extracts such as rosemary and green tea, rich in phenolic compounds, are
used as natural antioxidants to prevent the oxidative degradation of polymers [22]. For
food packaging applications, additives such as essential oils (e.g., oregano oil, clove oil) are
used as they possess antimicrobial properties [23].

Natural pigments, obtained from different sources like animals, plants and agricultural
waste, are used as colourants mainly in the textile, food and cosmetic industries [22,24–27].
They offer an environmentally friendly and healthy alternative to synthetic dyes in polymer
colouring, with additional benefits that go beyond their function as dyes. In addition, they
are biodegradable and are produced from renewable sources.

Carotenoids, such as astaxanthin and beta-carotene, are found in many fruits and
vegetables. They are known for their vibrant colours, ranging from yellow to red. These
pigments are used in polymers because of their antioxidant properties and their ability to
provide intense and stable colours [28]. Anthocyanins are water-soluble pigments found in
a wide variety of fruits and flowers, such as grapes, blackberries and roses. They provide
colours ranging from red to blue, depending on the pH. In polymers, anthocyanins are used
for their ability to impart vibrant colours and as well as for their antioxidant benefits [29].
Chlorophyll, the green pigment found in plants, is used to naturally colour polymers. In
addition to its characteristic green colour, chlorophyll has antimicrobial properties, making
it useful in food packaging applications [29]. Polyphenols, present in tea, cocoa and many
fruits, are known for their antioxidant properties. These compounds can also be used as
natural colourants in polymers, providing colours ranging from yellow to brown. Some
microorganisms produce natural pigments that can be used in the colouring of polymers.
For example, bacterioruberin, produced by halophilic bacteria, provides an intense red
colour and has antioxidant and antimicrobial properties [28].

Currently, the packaging industry is focusing on the application of natural pigments
in polymers to develop smart packaging with antioxidant and antimicrobial properties.
Researchers have focused on developing smart packaging material based on natural pH-
sensitive pigments immobilized in biopolymers for food freshness monitoring in real
time [23].

The incorporation of natural pigments into biodegradable matrices for the production
of injection moulded parts represents a promising innovation in the plastics industry. This
technique not only has the potential to reduce the environmental impact of plastic produc-
tion but can also improve the safety and sustainability of the final products. However, it also
presents challenges that must be addressed through continuous research and development
to optimize its application and commercial viability. Pigments derived from natural sources,
such as plants and minerals, are less toxic and have a lower environmental impact than syn-
thetic pigments. Incorporating natural pigments may require adjustments to the injection
moulding process, which may lead to the development of new techniques and technologies
in the manufacturing of biodegradable plastics. Furthermore, the study and optimization
of the behaviour of these pigments in biodegradable matrices can lead to improvements in
the efficiency of manufacturing processes and the quality of the final products.

This article analyzes the processing of natural pigments to obtain natural pigment-
based MBs in two biodegradable polymeric matrixes, polylactic acid (PLA) and polybuty-
lene succinate (PBS), and the study of the colouring capacity by the addition, in different
percentages, of natural pigments in the polymeric matrix.

2. Materials and Methods
2.1. Materials

Two commercially available biopolymeric matrices were used to develop the mas-
terbatches, polylactic acid (PLA), Beograde INJ038, supplied by Beologic, (Sint-Denijs,
Belgium) and polybutylene succinate (PBS), BioPBSFZ71PM, supplied by Biochem Com-
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pany (Chatuchak, Thailand). These grades were selected due to being biodegradable
polymers in industrial compost conditions and having a relatively low melting temper-
ature, which allows the incorporation of natural pigments, minimizing the risk of their
degradation. Table 1 shows some properties of the as-received materials.

Table 1. Properties of Beograde INJ038 and BioPBSFZ71PM extract from datasheet supplied
by suppliers.

Property Beograde INJ038 BioPBSFZ71PM

Melting temperature (◦C) 165 115
Melt flow rate (g/10 min) 17 22
Density (g/cm3) 1.20 1.26

Different commercial natural pigments were selected. Table 2 shows the reference and
some properties of each of them. All of them were supplied by Coralim.

Table 2. Natural pigments used.

Property Extract SP-180 Extract 95%P Extract RBS-100 Extract 95 HPD-P1

Origin Spirulina Curcumin Beetroot Chlorophyllin
Colour Blue Yellow Red Green
Particle size (µm)

D10 10.3 1.46 8.04 1.6
D50 24.5 9.3 33.1 5.42
D90 44.9 35.1 69.3 22.9

Purity (%) 98 90–100 95–100 95

Heavy metals (ppm) As < 3, Pb < 5,
Hg < 1, Cd < 1

As < 3, Pb < 10,
Hg < 1, Cd < 1 As < 1, Pb < 1,

Hg < 1, Cd < 1
As < 3, Pb < 5,
Hg < 1, Cd < 1

In addition, titanium dioxide, stearic acid and calcium carbonate were used as ultra-
violet (UV) absorber, stabilizer, dispersing agent and lubricant. These components were
supplied by Sigma-Aldrich (Madrid, Spain).

2.2. Experimental Procedure
2.2.1. Thermal Analysis

The main thermal degradation parameters of natural pigments and natural pigment-
based MBs, degradation initial temperature (Tonset) and maximum mass loss rate temper-
ature (Tmax) were studied by TGA using a TA Instrument Q500 (TA Instruments, New
Castle, DE, USA) thermogravimetric analyser. Then, those samples with an average weight
between 8 and 10 mg were placed in standard platinum crucibles of 70 µL. In this case, all
samples were subjected to the following temperature programme: from 30 to 600 ◦C under
nitrogen (N2) atmosphere at a rate of 10 ◦C/min and from 600 to 1000 ◦C under oxygen
(O2) atmosphere at a rate of 10 ◦C/min with a purge gas flow of 10 mL/min.

2.2.2. Preparation of Natural Pigment-Based MBs

Prior to processing, PLA was dried for 3 h at 60 ◦C in a Arid X10X dryer (Dri-air
Industries, East Windsor, CT, USA) to eliminate its moisture and to avoid hydrolytic
reactions [30].

Different formulations of natural pigment-based MBs with each biodegradable matrix
and natural pigment were developed by using a TEACH LINE COMPOUNDER ZK co-
rotating twin-screw extruder (25:24 L/D) with two gravimetric feeders (COLLIN Lab &
Pilot Solutions GmbH, Maitenbeth, Germany) a main one for the polymeric material and a
secondary one for fillers, additives and pigments in powder form. Before feeding, manual
pre-mixing of the different components, 30 wt% titanium dioxide (TiO2), 10 wt% stearic



Polymers 2024, 16, 2116 4 of 18

acid, 40 wt% natural pigment and 20 wt% calcium carbonate (CaCO3), was carried out and
fed at 20 wt% into the extruder thorough the secondary feeder. The temperature profile
(from feeding zone to die) was set as follows: 50-140-145-145-145-145 ◦C for masterbatches
based on PBS and 50-180-185-190-190-190 ◦C for masterbatches based on PLA. The rotating
speed was 65 rpm. The feed rate into the extruder was 2 kg/h.

2.2.3. Melt Flow Rate (MFR)

The determination of the melt flow rate (MFR) was carried out according to the ISO
1133 standard [31] with MFI TWEL VEINDEX equipment (ZwickRoell, Barcelona, Spain) at
190 ◦C and 2.16 kg. The cut time between two consecutive measurements was 15 s.

2.2.4. Injection Moulding

PLA and PBS dogbones-standardized samples with different percentages (2, 4, 6 wt%)
of the developed natural pigment-based MB were moulded using an injection moulding
machine, DEMAG Ergotech, 110–430 h/310 V (Sumitomo Demag Plastics Machinery
GmbH, Schwaig, Germany). The injection conditions used to inject PLA and PBS test
specimens are listed in Table 3. Specimens were conditioned at a temperature of 23 ◦C and
relative humidity of 50% for at least 16 h before testing.

Table 3. Injection condition of PLA and PBS with natural pigment-based MB dogbones.

Property Dogbones Based on
Beograde INJ038

Dogbones Based on
BioPBSFZ71PM

Barrel profile (◦C) 190-190-180-170-35 160-160-150-140-35
Mould temperature (◦C) 25 25
Injection speed (mm/s) 60 60
Pack pressure (bar) 600 400
Pack time (s) 10 15
Back pressure (bar) 50 50
Cooling time (s) 40 40

2.2.5. Mechanical Properties

The mechanical properties of the injected dogbones were determined to study the
influence of the natural pigment-based MBs and their content in the material.

Tensile and flexural tests were performed using an Instron 6025 universal testing ma-
chine (Instron, Barcelona, Spain) with 5 kN power sensors. The tensile test was performed
according to the ISO 527 standard [32], using a crosshead speed of 1 mm/min for Young’s
Modulus determination and 5 mm/min for tensile and elongation at break determination.
The extensometer used was MTS 634.11F-54 (MTS Systems Corporation, Eden Prairie, MN,
USA). Recorded values included ultimate tensile strength (UTS), Young’s modulus and
strain at break. A total of 5 specimens from each material were tested using standardized
sample 1A (dogbone).

Impact tests were performed with a Resil 5.5 impact testing device CEAST RESIL
IMPACTOR (CEAST, Torino, Italy) with a 5-Joule hammer. Then, test samples were cut
and tested according to the ISO 179 standard [33]. A total of 10 samples from each material
were tested.

2.2.6. Ageing Test

Colour fastness was evaluated by means of artificial light ageing with a Xenon lamp.
The equipment used was a Xenotest ATLAS ALPHA+ (Atlas Material Testing Technology,
Mt Prospect, IL, USA). The ageing test was performed according to ISO 4892 [34], method
A and cycle nº1 (exposure period: 102 min dry and 18 min under water spraying; chamber
temperature: 38 ± 3 ◦C; black standard temperature: 65 ± 3 ◦C; relative humidity: 50%;
irradiance: 60 W/m2). The test duration was 50 h.
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2.2.7. Colour Measurements

The colour variation of the samples injected with natural pigment-based MBs after
the ageing test was evaluated with a CR-200 Chroma Meter (Konica Minolta Sensing
Americas, Inc, Ramsey, NJ, USA). Moreover, the colour indexes (L*, a* and b*) were
measured according to the following criteria: L* = 0, darkness; L* = 100, lightness; +a* =
red, −a* = Green and +b* = yellow, −b* = blue. From these coordinates, it was possible to
determine the colour difference associated with this space. The colour variation, ∆E∗

ab, was
obtained by the following Equation (1) and compared with the colour coordinates of the
formulation before ageing.

∆E∗
ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (1)

The colour change was assessed according to experimentally verified data [35]: unno-
ticeable, (∆E∗

ab < 1); only an experienced observer can notice the difference (1 < ∆E∗
ab < 2);

an unexperienced observer notices the difference (2 < ∆E∗
ab < 3.5); there is a clear notice-

able difference (3.5 < ∆E∗
ab < 5); and the observer notices two different colours (∆E∗

ab > 5).
Colour variation could be indicative of pigment degradation.

2.2.8. Environmental Concerns

The environmental impacts associated with the production of natural pigments from
curcumin and spirulina were evaluated using the Life Cycle Assessment (LCA) methodol-
ogy, conducted in accordance with ISO standards (14040/14044) [36,37] and compared with
the inorganic pigment Green 7. The LCA was performed from cradle to gate for 1 kg of
pigment. The inventories of the three pigments were modelled from the literature: yellow
is obtained from natural curcumin, considering turmeric cultivation [38] and extraction
with acetone in microwaves [39]; blue is obtained from natural sun-dried spirulina [40];
and inorganic pigment is obtained from green copper (II) phthalocyanine [41]

The Ecoinvent 3.9 flows were used for this LCA. The selected flows followed the cut-off
system model. The method described in the standard EN 15804 +A2 (adapted) V1.00 [42],
based on the European method EF 3.1, included in SimaPro 9.5 software (SimaPro, Amers-
foort, The Netherlands), was chosen to estimate the potential climate change impact.
Compared to the EF method, EN 15804 +A2 differs in the characterization factors of bio-
genic CO2 uptake and emissions, which were set in the standard as equal to “−1” (CO2
uptake) and “+1” (CO2 release).

3. Results
3.1. Development of Natural Pigment-Based MBs

The main thermal degradation parameters of natural pigments and as-received
biodegradable matrices (PLA and PBS) were determined by TGA to monitor the thermal
stability of natural pigments and polymeric matrices and select the processing temperature
profile for developing natural pigment-based MBs. Table 4 shows the degradation tem-
perature (Tonset) and maximum mass loss rate temperature (TMax) of the natural pigments,
as well as of the as-received polymers. PBS polymer degraded in a single-step process
and showed moderate thermal stability with a Tonset of 366.50 ◦C. Regarding the PLA, its
degradation was in two steps; it presented a Tonset of 325.07 ◦C, lower than PBS. Natural
pigments presented lower thermal stability than as-received polymers. There were some
differences between the natural pigments studied. This is explained by the fact that the
thermal stability of natural pigments depends on the chemical composition, like in the case
of natural fibres.
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Table 4. Thermal properties of the natural pigments and as-received polymers.

Samples TOnset (◦C) TMax (◦C) Residual Weight (%)

Curcumin 244.19 305.62 0
Beetroot 266.57 304.93 1.42
Chlorophyllin 257.66 298.77 0
Spirulina 228.50 303.83 0
PLA INJ038 325.07 343.49 and 408.53 0
BioPBSFZ71PM 366.50 402.84 0

According to the thermal degradation parameters shown in Table 4 and the melting
temperature of polymers (Table 1), the temperature profile selected to obtain the master-
batches and the injected specimens was established above the melting temperature of the
polymer and below the degradation temperature of the natural pigments (temperature
profile of PBS: 50-140-145-145-145-145 ◦C. Temperature profile of PLA: 50-180-185-190-190-
190 ◦C)

Before the extrusion compounding process, the moisture content of the natural pig-
ments was determined using a moisture analyser. The moisture content of all natural
pigments was less than 0.03 wt%, so no drying process was required before the extrusion
process of natural pigment-based MBs.

Only in the case of spirulina pigment it was not possible to obtain blue PLA-based
masterbatches as the temperature profile during the processing degraded the pigment. The
extruded material was finally pelletized using an air-knife. Figure 1 shows the extrusion
process and Figure 2 shows the masterbatches obtained.
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3.2. Characterization of Natural Pigment-Based MBs

Figure 3 shows the TGA and DTG curves of natural pigment-based MBs. The addition
of natural pigments reduces the thermal stability of the as-received polymers because
natural pigments start degradation earlier than the polymer matrix. Tonset and Tmax are
moved towards lower temperatures with the addition of natural pigments. As shown in
Table 5, Tonset changes progressively from 325 and 367 ◦C for the as-received PLA and PBS
polymers, respectively (Table 4), decreasing to values of 258 and 356 ◦C.
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Table 5. Thermal properties of the natural pigment-based MBs.

Samples TOnset (◦C) TMax (◦C) Residual Weight (%)

Curcumin-based MBPLA 299.77 323.68 (TMax1) and 403.52 (TMax2) 4.104
Beetroot-based MBPLA 300.43 326.51 (TMax1) and 404.95 (TMax2) 8.424
Chlorophyllin-based MBPLA 258.35 326.51 (TMax1) and 404.95 (TMax2) 7.749
Curcumin-based MBPBS 369.57 403.27 8.038
Beetroot-based MBPBS 366.41 402.82 4.999
Chlorophyllin-based MBPBS 356.62 400.65 9.339
Spirulina-based MBPBS 356.62 400.24 4.028

The rheological properties of the natural pigment-based MBs were determined by
MFR. Table 6 shows the MFR results obtained from each masterbatch, as well as the as-
received polymers. The incorporation of natural pigments slightly decreased the flow rate
of the polymer, which meant a slight increase in viscosity.



Polymers 2024, 16, 2116 9 of 18

Table 6. MFR of the natural pigment-based MBs.

Samples MFR at 190 ◦C/2.16 kg (g/10 min)

As-received PLA 50.00 ± 4.91
Curcumin-based MBPLA 49.36 ± 1.62
Beetroot-based MBPLA 49.18 ± 10.56
Chlorophyllin-based MBPLA 48.24 ± 28.19
As-received PBS 23.47 ± 0.15
Curcumin-based MBPBS 22.39 ± 5.02
Beetroot-based MBPBS 22.71 ± 3.92
Chlorophyllin-based MBPBS 22.27 ± 4.78
Spirulina-based MBPBS 22.80 ± 2.56

3.3. Characterization of the Injected Specimens with Natural Pigment-Based MBs

The appearance of the injected specimens of PLA and PBS with the different natural
pigment-based MBs added between 2 and 6 wt% are shown in Figures 4 and 5, respectively.
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Table 7 summarizes the colour indexes (L*, a* and b*) and the colour variation mea-
sured by ∆E∗

ab with respect to the samples with the 2 wt% colour masterbatch.

Table 7. Colour parameters (L∗, a∗, b∗ and ∆E∗
ab) of injection-moulded samples of PLA and PBS with

different 2, 4 and 6 wt% of natural pigment-based MBs developed.

Samples L* a* b* ∆E*
ab

PLA/2%MB_Y 75.75 −9.57 65.32 ---
PLA/4%MB_Y 76.26 −9.52 66.56 1.34
PLA/6%MB_Y 75.60 −6.18 67.38 3.97
PLA/2%MB_R 59.61 6.55 3.58 ---
PLA/4%MB_R 60.46 7.29 4.11 1.25
PLA/6%MB_R 63.66 9.92 6.16 5.87
PLA/2%MB_G 29.31 −4.96 0.89 ---
PLA/4%MB_G 29.96 −5.00 0.65 2.61
PLA/6%MB_G 29.82 −4.97 1.08 4.09
PBS/2%MB_Y 66.18 5.46 56.85 ---
PBS/4%MB_Y 68.18 6.24 58.75 2.87
PBS/6%MB_Y 68.00 7.19 59.57 3.70
PBS/2%MB_R 79.11 9.64 6.61 ---
PBS/4%MB_R 78.05 12.86 7.29 3.46
PBS/6%MB_R 77.52 13.86 7.32 4.57
PBS/2%MB_G 43.82 −9.32 2.83 ---
PBS/4%MB_G 41.35 −9.04 2.03 3.88
PBS/6%MB_G 39.94 −8.65 1.72 5.05
PBS/2%MB_B 76.35 −3.65 −2.41 ---
PBS/4%MB_B 74.38 −2.91 −5.67 3.88
PBS/6%MB_B 73.24 −3.37 −6.38 5.05

The increment in colour masterbatch concentration in the biopolymer matrix had
an effect. As expected, the L∗, a* and b* coordinates changed progressively. The colour
variation clearly showed an increasing tendency. The ∆E∗

ab was more remarkable and
noticeable for the PBS injected samples.

3.4. Mechanical Properties

Table 8 shows a summary of the tensile properties and Charpy impact strength of all
developed PLAs with different concentrations of colour masterbatches. The as-received
PLA presented a Young’s modulus of 1710 MPa and a tensile strength of 65.6 MPa. As
can be seen in Table 8, the addition of the developed natural pigment-based MBs did
not have an influence on tensile properties. Regarding impact strength, the as-received
PLA presented an impact strength of 18.31 kJ/m2. This value ranged from 14.98 kJ/m2 to
26 kJ/m2. The lowest value was found in the samples incorporating the colour masterbatch
with beetroot extract. On the other hand, the samples with the highest impact resistance
were those incorporating 4–6 wt% of MB with curcumin extract. However, the addition of
the natural pigment-based MBs had practically no influence on the final material properties.
Similar results were obtained in a study in which 3 wt% of MB based on an organic
protective photoluminescent pigment was incorporated into PLA, which also showed that
the addition of the pigment did not impact the mechanical properties of PLA [43]. In
another investigation, the effect of different conventional pigments, blue 15:1, green 7,
pink PR122 and yellow 155, on the properties of dope-dyed PLA multifilament yarns was
studied. Pigments and PLA were compounded and added into the PLA matrix in 5 wt%.
Mechanical characterization showed that there was no significant change in the mechanical
properties of the yarn in the presence of colourants [44]. Figure 6 shows the evolution of
tensile properties and impact strength.



Polymers 2024, 16, 2116 11 of 18

Table 8. Mechanical properties, Young’s modulus (E), tensile strength (σM), elongation at tensile
strength (EM), tensile strength at break (σR), elongation at break (ER) and Charpy impact strength of
PLA with the natural pigment-based MBs developed.

Samples Young’s
Modulus (MPa) σM (MPa) EM (%) σR (MPa) ER (%) Charpy Impact

Strength (kJ/m²)

As-received PLA 1710 ± 20.2 65.6 ± 0.3 3.8 ± 0.1 59.3 ± 2.4 4.5 ± 0.5 18.21 ± 1.5
PLA/2%MB_Y 1730 ± 18.1 65.8 ± 0.9 3.9 ± 0.1 60.9 ± 5.1 4.6 ± 0.6 19.02 ± 2.1
PLA/4%MB_Y 1690 ± 43.6 65.1 ± 0.5 3.9 ± 0.03 55.3 ± 1.8 5.2 ± 0.6 24.96 ± 2.7
PLA/6%MB_Y 1670 ± 19.9 64.0 ± 0.3 3.9 ± 0.03 59.9 ± 3.6 4.3 ± 0.5 26.12 ± 2.8
PLA/2%MB_R 1680 ± 41.2 66.7 ± 0.9 3.9 ± 0.04 63.0 ± 3.9 4.5 ± 0.5 14.98 ± 0.8
PLA/4%MB_R 1670 ± 58.5 64.8 ± 0.3 3.8 ± 0.1 61.1 ± 3.6 4.4 ± 0.7 14.38 ± 1.0
PLA/6%MB_R 1640 ± 23.3 63.7 ± 0.4 3.8 ± 0.02 58.2 ± 1.3 4.5 ± 0.3 14.15 ± 1.1
PLA/2%MB_G 1660 ± 36.4 62.1 ± 0.4 3.7 ± 0.04 53.3 ± 1.3 5.0 ± 0.3 17.79 ± 2.2
PLA/4%MB_G 1610 ± 29.4 65.3 ± 0.4 3.8 ± 0.4 54.2 ± 3.1 4.9 ± 1.0 17.76 ± 1.9
PLA/6%MB_G 1650 ± 48.0 64.9 ± 0.3 3.3 ± 0.3 53.8 ± 3.7 4.2 ± 0.3 19.02 ± 2.4

Table 9 shows a summary of the tensile properties and Charpy impact strength of PBS
with different concentrations of the developed natural pigment-based MBs. The as-received
PBS presented a Young’s modulus of 392 MPa, a tensile strength of 34.5 MPa, and an
elongation at tensile strength of 16%. The addition of different percentages of natural
pigment-based MBs based on PBS and natural pigments into the PBS matrix showed
similar behaviour to PLA samples, with no significant variations in tensile mechanical
properties. The PBS without masterbatches of colour presented an impact strength of
5.17 kJ/m2. This value varied slightly from 4.75 kJ/m2 to 5.54 kJ/m2. Analogously to PLA-
based samples, the addition of the natural pigment-based MBs had practically no influence
on the final material properties. Figure 7 shows the evolution of tensile properties and
impact strength.

Table 9. Mechanical properties, Young’s modulus (E), tensile strength (σM), elongation at tensile
strength (EM), tensile strength at break (σR), elongation at break (ER), and Charpy impact strength of
PBS with the natural pigment-based MBs developed.

Samples Young’s
Modulus (MPa) σM (MPa) EM (%) σR (MPa) ER (%) Charpy Impact

Strength (kJ/m²)

As-received PBS 392 ± 17.2 34.5 ± 0.2 16 ± 0.7 26.5 ± 2.1 18 ± 0.5 5.17 ± 0.18
PBS/2%MB_Y 394 ± 24.3 34.7 ± 0.5 16 ± 1.60 27.4 ± 3.1 18 ± 0.6 5.07 ± 0.25
PBS/4%MB_Y 383 ± 27.2 34.4 ± 0.2 17 ± 0.20 25.7 ± 0.7 19 ± 0.5 4.98 ± 0.35
PBS/6%MB_Y 374 ± 12.3 34.1 ± 0.4 17 ± 0.33 29.9 ± 3.1 18 ± 0.6 5.13 ± 0.44
PBS/2%MB_R 383 ± 30.5 35.0 ± 0.2 17 ± 0.20 33.2 ± 0.4 19 ± 0.5 4.94 ± 0.42
PBS/4%MB_R 384 ± 43.9 34.2 ± 0.2 16 ± 0.38 31.7 ± 0.7 18 ± 0.7 4.96 ± 0.76
PBS/6%MB_R 397 ± 28.0 34.5 ± 0.2 16 ± 0.14 32.2 ± 0.4 16 ± 0.1 4.56 ± 0.23
PBS/2%MB_B 392 ± 25.7 34.0 ± 2.0 14 ± 3.50 32.7 ± 1.2 19 ± 0.9 4.86 ± 0.32
PBS/4%MB_B 406 ± 67.6 35.2 ± 0.1 16 ± 0.25 32.8 ± 0.58 19 ± 0.4 5.02 ± 0.42
PBS/6%MB_B 391 ± 46.9 34.7 ± 0.1 16 ± 0.34 32.5 ± 0.393 19 ± 1.1 5.29 ± 0.36
PBS/2%MB_G 436 ± 11.7 36.4 ± 0.3 16 ± 0.19 33.8 ± 0.733 19 ± 0.6 5.54 ± 0.51
PBS/4%MB_G 417 ± 13.2 35.8 ± 0.2 17 ± 0.14 33.6 ± 0.7 19 ± 0.5 5.20 ± 0.26
PBS/6%MB_G 391 ± 18.8 34.7 ± 0.4 16 ± 0.33 30.6 ± 3.4 18 ± 0.8 4.75 ± 0.31
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Figure 6. Mechanical properties of injection-moulded samples of PLA with natural pigment-based
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sile strength (σM) and (d) elongation at tensile strength (EM), (e) tensile strength at break (σr),
(f) elongation at break (ER).
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MBs added in different percentages. (a) Young’s modulus, (b) Charpy impact strength, (c) ten-
sile strength (σM) and (d) elongation at tensile strength (EM), (e) tensile strength at break (σr),
(f) elongation at break (ER).

3.5. Ageing Test of Injected Samples

The ageing test of the coloured material was carried out under a Xenon lamp to
determine the effect of the UV irradiations on the colouring. Figure 8 shows the change in
the colour variation of the injected samples with different content of masterbatches before
and after ageing.
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The colorimetric measurements (L*, a* and b*) showed a low stability to UV exposure
as after only 50 h of testing, the obtained value of ∆E∗ was higher than 2, which meant that
any unexperienced observer would have noticed the difference. Only in the PLA sample
with 2 wt% green masterbatch (PLA/2%MB_G) was the colour difference less than 2. The
results obtained are in accordance with those obtained in a previous study where it was
determined that natural dyes are sensitive to UV ageing tests and temperature [45].

3.6. Environmental Concerns

The reduction in climate change impacts achieved by the two natural pigments with
respect to the inorganic pigment is very considerable—see Figure 9a—going from 18.65 kg
CO2eq in the inorganic pigment to 0.04 kg CO2eq in the yellow from curcumin pigment.
However, it should be noted that the impacts of natural pigments are very sensitive to the
drying processes used, greenhouse gas emissions from energy sources and yields for the
CO2 sequestration during plant growth.
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Figure 9. Comparative assessment of pigments and masterbatches. (a) Carbon footprint of 1 kg of
yellow, blue and inorganic (green) pigments. (b) Electricity consumption for the extrusion and palleti-
zation of 1 kg of yellow, blue and Inorganic masterbatch. (c) Contributions to the carbon footprint of
the yellow masterbatch. (d) Contributions to the carbon footprint of the inorganic masterbatch.

Electricity consumption for masterbatch extrusion and pelletizing, as described in
Section 2.2.1, was measured utilizing the CIRCUTOR AR5 electrical analyser, with a sam-
pling rate of 2 kHz and recording every second. Electricity results are shown in Figure 9b.
The inorganic masterbatch was obtained with high-density PE as the polymer and the
inorganic green 7 pigment, following the same percentages and the same composition
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as in the organic masterbatches. The two organic masterbatches exhibited lower power
consumption than the inorganic masterbatch, with the blue masterbatch with PBS and
spirulina having the lowest power consumption.

The carbon footprint of the masterbatch is strongly influenced by the carbon foot-
print of the polymer, as this is 80% of its weight, as shown in Figure 9c,d. However, the
contribution of the pigment to the carbon footprint can vary from 0% in the case of the
yellow masterbatch, as shown in Figure 9c, to 43% in the case of the inorganic master-
batch, as shown in Figure 9d. In both cases, electricity consumption is low, only 0.7% and
1.8%, respectively.

In conclusion, the carbon footprint of natural pigments derived from curcumin and
spirulina has been shown to be lower than that of the inorganic green pigment. Electricity
consumption during extrusion and pelletizing has also been shown to be lower. Finally, in
organic masterbatches, the contribution of the carbon footprint from natural pigments is
lower than the contribution of inorganic pigments in inorganic masterbatches.

4. Conclusions

This study developed a series of biodegradable and eco-friendly colour masterbatches
(MBs), based on natural pigments and biodegradable polylactic acid (PLA) and polybuty-
lene succinate (PBS). Four commercial natural pigments were used, spirulina, curcumin,
beetroot and chlorophyllin.

Natural pigments presented lower thermal stability than as-received polymers. There
were some differences between the natural pigments studied. This is explained by the fact
that the thermal stability of natural pigments depends on the chemical composition.

The processing of the developed natural pigment-based MBs were successfully car-
ried out without problems by using conventional extrusion-compounding and injection
moulding equipment at temperatures below the degradation point of the natural pigments
and above the melting temperature of the polymer.

The incorporation of natural pigments slightly decreased the flow rate of the polymer,
which meant a slight increase in viscosity.

The natural pigment-based MBs were added at 2, 4 and 6 wt%, as additives, to study
the effect on the properties of injected biodegradable parts (PLA and PBS). The injected
samples were characterized in terms of their mechanical (tensile and Charpy impact tests)
and visual properties (according to CieLab). In addition, the ageing of the coloured material
was followed by colorimetric analysis after its exposure under a Xenon lamp.

The experimental results revealed that the addition of natural pigment-based MBs in
different percentages (2–6 wt%) did not significantly change the mechanical properties of
the materials with respect to the as-received ones. The variation in the percentage of natural
pigment-based MBs had a substantial influence on colour. Noticeable variation in the
colour of the injected samples was observed after the first 50 h of artificial light exposure.

Regarding environmental concerns, the study demonstrated that the carbon footprint
of natural pigments and electricity consumption during extrusion and pelletizing were
lower. Furthermore, the contribution to the carbon footprint from natural pigment-based
MBs was lower than the contribution of inorganic pigments in inorganic masterbatches.

The use of natural pigments based on masterbatches in the plastic industry presents
several potential applications, driven by the growing demand for sustainable and environ-
mentally friendly solutions. Some uses could be, for example, in the packaging sector (food
or cosmetic) and the agricultural sector. Natural pigments could be used in biodegrad-
able and compostable packaging materials, ensuring safety for food contact and reducing
environmental impact and mulch film.

In addition, other interesting sectors are 3D printing and concretely fused filament
fabrication (FFF), since one of the polymers used is PLA. These natural pigment based-MBs
would allow for the obtainment of more sustainable colour 3D-printed parts.
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