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Abstract: Meal timing relative to sleep/wake schedules is relevant in the search for obesity risk
factors. However, clock time does not accurately characterize the timing of food intake in the context
of internal circadian timing. Therefore, we studied elapsed between dinner and the midpoint of
sleep (TDM) as a practical approach to evaluate meal timing relative to internal timing, and its
implications on obesity. To do so, adiposity, sleep, diet, physical activity, and TDM were measured
in 133 women. The participants were grouped into four categories according to their sleep timing
behavior (early-bed/early-rise; early-bed/late-rise; late-bed/early-rise; late-bed/late-rise). Differences
among the categories were tested using ANOVA, while restricted cubic splines were calculated to
study the association between TDM and adiposity. Our results show that, although participants had
dinner at about the same time, those that had the shortest TDM (early-bed/early-rise group) were
found to have significantly higher BMI and waist circumference values (2.3 kg/m2 and 5.2 cm) than the
other groups. In addition, a TDM of 6 h was associated with the lowest values of adiposity. The TDM
could be a practical approach to personalizing meal timing based on individual sleep/wake schedules.
Thus, according to our findings, dining 6 h before the midpoint of sleep is an important finding and
could be vital for future nutritional recommendations and for obesity prevention and treatment.

Keywords: sleep timing; midpoint of sleep; meal timing; body mass index; adiposity

1. Introduction

The coordination and timing of specific behaviors (e.g., sleeping and fasting) with the external
light/dark cycle is essential for heath [1,2]. Therefore, the circadian system has evolved to allow
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adaptation of organisms to the external changing world. The temporal regulation of metabolism is
coordinated through several oscillating networks, including sleep/wake homeostasis, feeding and
fasting rhythms, and the action of circadian clocks [2]. However, since the invention of electrical
lighting, humans have been free to select their own light/dark cycles and extend wakefulness activities
far into the night, which leads to a disruption between behavior and internal circadian time, known as
circadian misalignment [3].

Circadian misalignment is associated with adverse health outcomes, including impaired glucose
metabolism and obesity [3]. The most extreme example of circadian misalignment is seen in people
that do shiftwork. In addition, adolescents and college-aged individuals push activities to a later clock
time, and thus, present a greater risk of a mild kind of circadian misalignment, denominated social jet
lag [3]. The latter is a condition characterized by discrepancy in sleep/wake schedules on weekends
versus weekdays [4]. Importantly, social jet lag is considered a potential risk factor for obesity and
unhealthy dietary habits among young adults, as was recently shown by our research group [5].

College is also a stage of life frequently linked to unstructured food habits, possible excess
of alcohol intake, decreased physical activity, and erratic sleep/wake patterns [5,6]. Sleep/wake
schedules, referred to as sleep timing behavior, are influenced by the individual circadian preference,
or chronotype, and by external factors, including the need to rise early to attend school [7]. Besides
circadian misalignment, erratic sleep timing behavior may result in short sleep duration, which leads
to extended hours of wakefulness, and additional opportunities to eat at inappropriate times (e.g.,
late night or early morning) [8]. Moreover, evidence from cross-sectional studies has shown that,
among children and adolescents, late bed and late wakeup timings are associated with a higher BMI,
lower physical activity, and poor diet quality [7,9,10]. Nevertheless, the association of sleep timing
behavior during the week with BMI, dietary intake (energy and nutrients), and physical activity
remains unexplored among college students.

Besides, emerging evidence suggests that the timing of food intake relative to sleep timing behavior
could also have a negative impact on BMI [3,11]. For example, cross-sectional studies have reported
that eating dinner less than two hours before bedtime is significantly associated with hyperglycemia,
and higher odds of being overweight or obese [12,13]. In consonance, Garaulet and colleagues [14]
showed that late dining resulted in impaired glucose tolerance, mainly due to concurrence between the
postprandial period and endogenous melatonin concentrations. However, a limitation of these studies
is the use of clock time to characterize the timing of food intake, which fails to accurately characterize
meal timing in the context of internal circadian timing [3,11].

To address this limitation, McHill et al. [3] studied the association between the timing of food
intake and dim light melatonin onset (DLMO), a marker of internal circadian time. The authors
demonstrated that eating closer to, or after, DLMO was significantly associated with higher body fat,
independent of dietary intake and the level of physical activity [3]. This approach, however, requires
repeated blood or saliva collection to evaluate DLMO, and participants need to stay in dim light
conditions for many hours, which is not practical for most epidemiological studies [11]. Therefore,
Xiao et al. [11] proposed defining meal timing taking into consideration the timing of sleep/wake cycles
as a proxy for internal circadian timing. Accordingly, the authors divided the waking period into four
time windows, and showed that a lower dietary intake after wakeup, and higher food intake closer
to bedtime was associated with higher BMI. However, the authors pointed out that this relationship
between sleep/wake timing and meal timing differed according to chronotype.

Taking into account the aforementioned, we herewith measured the elapsed time between dinner and
the midpoint of sleep (TDM) as a practical approach to examine the timing of food intake relative to internal
circadian timing, and their implications for obesity. It is important to note that the midpoint of sleep has
the highest correlation with DLMO, and is also considered to be a marker of the chronotype [4,15,16].
Our aim was to study whether TDM and sleep timing behavior were associated with anthropometric
markers of adiposity. Additionally, dietary intake and physical activity were studied.
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2. Materials and Methods

2.1. Study Population

Women (18–25 years) were recruited from undergraduate students at the Universidad de las
Americas Puebla (Mexico) for a cross-sectional study during the school year, between August and
October 2018. Exclusion criteria consisted of the inability to provide information required for the
development of the study, or being previously diagnosed with Type 2 diabetes, hypertension, and/or
cardiovascular disease. Based on these criteria, a total of 143 individuals were eligible, who provided
written informed consent before joining this study. We further excluded subjects with missing
information, resulting in a final analytical cohort of 133 subjects. All study procedures were conducted
according to the Declaration of Helsinki, and were approved by the Ethics Committee at the University
of Barcelona (IRB00003099), and by the Ethics and Research Committee, Department of Health Sciences,
Universidad de las Americas Puebla.

2.2. Anthropometric Parameters

Weight and body composition were determined with a medical body composition analyzer
(mBCA 514, Seca, Hamburg, Germany), with the subjects wearing light clothes and without shoes,
to the nearest 0.1 kg. Height was determined using a fixed wall stadiometer (Seca 217, Seca) to the
nearest 0.1 cm. BMI was calculated as weight (kg) divided by squared height (m) [17]. Waist and hip
circumferences were measured using a flexible steel anthropometric tape (Lufkin, W606PM), to the
nearest 0.1 cm and calibrated in centimeters. Waist circumference was measured midway between the
lower rib margin and the iliac crest with the subject standing and wearing only underwear, at the end
of gentle expiration [18]. Hip circumference was measured at the level of the greater trochanter, at the
widest portion of the buttocks [18].

2.3. Sleep and Circadian Related Variables

Participants completed a 6-day sleep diary on consecutive days (including 3 weekdays and
2 weekend days) in which they recorded bedtime and wakeup timing. From these data, we calculated
the following variables:

I. Sleep duration (in hours) was calculated for each day as the difference between bedtime and
wakeup timing. A total weekly sleep duration was calculated as follows: [(5 × sleep duration on
weekdays) + (2 × sleep duration on weekends)]/7 [19].

II. The midpoint of sleep (local time), defined as the middle time point between bedtime and wakeup
timing [15]. The average time of the midpoint of sleep during the week was calculated as follows:
[(5 ×midpoint of sleep on weekdays) + (2 ×midpoint of sleep on weekends)]/7 [19].

III. Sleep timing behavior was categorized using the median splits of the time in which each
volunteer went to bed and woke up during the week [7]. First, bedtime was classified as follows:
“Early-bedtime” (<23:48 h) and “Late-bedtime” (≥23:48 h). Second, for each bedtime group,
we used median splits of wakeup timing. Early-bedtime subjects were divided into “Early-rise”
(wakeup time <7:12 h) and “Late-rise” (wakeup time ≥ 7:12 h). Subsequently, “Late-bedtime”
subjects were divided into “Early-rise” (wakeup time <7:52 h) and “Late-rise” (wakeup time ≥
7:52 h). Accordingly, four sleep timing behavior categories were defined: early-bedtime/early-rise
(EE), early-bedtime/late-rise (EL), late-bedtime/early-rise (LE), and late-bedtime/late-rise (LL).

IV. Sleep quality was measured using the Spanish version of the Pittsburgh Sleep Quality Index
(PSQI) [20]. Scores range from 0 to 21, where the higher the score, the worse the sleep quality.

V. Social jet lag was measured in hours, by subtracting each participant’s midpoint of sleep on
weekdays, from the midpoint of sleep on weekends [21]. All analyses were conducted using the
absolute value of social jet lag [5,21].
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2.4. Meal Timing

Meal timing was assessed with 6-day food logs, which were filled on consecutive days and included
the weekend. This allowed us to evaluate the time in which each food or beverage was consumed. Meals
were classified as breakfast, lunch, or dinner, based upon the designation that each participant indicated.

The average for the timing of the main meals (breakfast, lunch, or dinner) during the week was
calculated as a weighted mean as follows: [(5 × meal timing on weekdays) + (2 × meal timing on weekends)]/7.

2.5. Time Elapsed between Dinner and the Midpoint of Sleep TDM

The TDM was defined as the timing of dinner relative to internal circadian timing. This parameter
was calculated, for each individual, considering the average values of the midpoint of sleep and dinner
timing, as follows: [(midpoint of sleep + 24) − timing of dinner].

2.6. Dietary Intake

Dietary intake was assessed with 6-day food logs, which were filled on consecutive days and
included the weekend. Participants were taught by a nutritionist to record the type of food with brand
name if possible, portion size, location of the meal (i.e., home, or restaurant). All meals were coded in
duplicate by two nutritionists to determine food item and portion size, and any discrepancies were
solved to minimize error before calculating nutrient intake. Daily intakes of energy and nutrients were
calculated using PCN Pro 1.0, on the basis of Mexican food composition tables [22,23].

Additionally, diet quality was assessed using the Quality Index Food Consumption Pattern [24], a
validated food-based scoring system for Mexican population. This tool evaluated daily, weekly, and
occasional consumption of vegetables, fruits, grains and derivates, dairy products, meats, legumes,
cold-processed meats, sweets, and beverages. Briefly, the questionnaire included questions like: “Do you
consume vegetables/fruits/grains and dairy products on a daily basis?”, “Do you consume legumes/meats
on a weekly basis?”, and “Do you consume occasionally processed meats/sweets/soft-drinks?” Each
item was punctuated separately, oscillating from 0 to 10, with 0 being the lowest score associated with
unhealthy dietary habits (e.g., never consuming fruits or daily consumption of sweets or soft-drinks),
and 10 being the highest score associated with healthy dietary patterns (e.g., daily consumption of fruits
or never consuming sweets or soft drinks). Subsequently, the scores were summed up, ranging from 0
to 93, where the higher the score, the better the diet quality.

2.7. Physical Activity

The level of physical activity was measured with the short version of the International Physical
Activity Questionnaire (IPAQ) in Metabolic Equivalents of Task (MET) per week [25]. This questionnaire
has been validated and has demonstrated a good correlation with accelerometer data [25].

2.8. Sample Size Calculation

In sleep timing behavior analysis, a sample size of 33 participants per group allowed ≥80% power
to detect a significant difference of ≥2.8 kg/m2 in BMI between groups. We considered a 2-sided type I
error of 0.05, a loss rate of 1%, and a standard deviation of BMI values similar to the one present in our
population (SD = 4). In relation to general association analyses, assuming the same loss rate and type
I and II errors, a sample size of 103 subjects provided sufficient statistical power to determine that
Pearson’s correlation analyses ≥0.275 were significantly different from zero (sample size was increased
by 30%, up to 133 individuals, to allow adjustments for different covariates).

2.9. Statistical Analyses

Normality was confirmed in all variables by histograms and Q-Q plots. Normally distributed
variables were described by means and standard deviations and non-normally distributed variables
by medians and interquartile range. We compared the values of anthropometric, sleep and circadian
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variable, TDM, dietary intake, and physical activity across sleep timing behavior categories by ANOVA
tests for normally distributed data or Kruskall-Wallis tests for non-normally distributed variables,
followed by Bonferroni post-hoc comparisons. Pearson’s correlations tests were used to determine
whether there was a significant linear trend in the values of anthropometric and lifestyle variables
in increasing wakeup timing across sleep timing behavior categories (reported as p-trend values).
Differences in anthropometric markers between extreme sleep timing behavior categories (LL vs. EE)
and +1 h increments in TDM values were tested using multivariate linear regression models. Restricted
cubic splines were used to study the shape of the association between the TDM and anthropometric
markers. We set the reference cut-point at the minimum value of the time between dinner and midpoint
of sleep reported in our population (3.45 h). Splines were fitted and plotted using the “glm” package
in R Software [26]. Multivariate linear regressions and restricted cubic splines were adjusted for
age, diet quality, total energy intake, and physical activity level. Significance testing was considered
when p < 0.05. All analyses were performed with R Software, version 3.4.1 (R Foundation for Statistical
Computing, Vienna, Austria).

3. Results

The general characteristics of the studied population are shown in supplementary Table S1.
Overall, 25.5% of the individuals were overweight or obese, 85.8% of the individuals showed an
average diet quality, and 55.2% reported moderate physical activity. Notably, 70.7% of the individuals
included in our study did not reach the recommended 7 h of sleep per night [27]. Details about average
sleep and meal timing are provided in Table S1.

Sleep- and circadian-related variables are summarized in Table 1, grouped by sleep timing
behavior categories. As expected, individuals in the EE group had the earliest wakeup timing and
midpoint of sleep, whereas individuals in the LL group showed considerably later timing of wakeup
timing and midpoint of sleep (p < 0.001). In addition, a significant trend towards later wakeup time,
bedtime, and midpoint of sleep was observed across the four categories (p < 0.001). We also observed a
significant trend towards longer sleep as the wakeup timing was delayed (p < 0.001): those groups that
woke up earlier were those with the shortest sleep duration. Of note, sleep quality and social jet lag
were similar among groups.

Table 1. Sleep- and circadian-related characteristics, anthropometric variables and dietary intake of the
studied population grouped by sleep timing behavior.

EE LE EL LL p-Value a p-Trend b

n 34 33 33 33

Sleep Parameters

Wakeup time, hh:mm 06:32 (00:56) bc 07:00 (00:52) de 07:49 (00:33) bf 08:39 (00:51) cef <0.001 <0.001
Bedtime, hh:mm 23:00 (00:37) ac 00:30 (00:31) ade 23:18 (00:31) df 01:12 (00:45) cef <0.001 <0.001

Midpoint of sleep, hh:mm 02:49 (00:25) abc 03:44 (00:27) ae 03:52 (00:19) bf 04:56 (00:30) cef <0.001 <0.001
Sleep duration, h 6.1 (0.9) bc 5.7 (1.1) de 7.2 (0.7) bd 6.8 (0.9) ce <0.001 <0.001

Sleep quality 6.6 (2.5) 6.4 (2.8) 6.1 (2.9) 5.8 (3.0) 0.068 0.229
Social jet lag, h 1.1 (0.8) 1.1 (0.9) 1.1 (1.0) 1.3 (0.8) 0.350 0.372

Meal Timing

Breakfast, hh:mm 08:34 (01:13) c 08:23 (01:08) e 08:58 (00:57) f 9:46 (00:54) cef <0.001 <0.001
Lunch, hh:mm 15:30 (00:57) 15:36 (01:01) 15:18 (00:58) 15:06 (00:52) 0.159 0.060
Dinner, hh:mm 21:06 (00:49) 21:18 (00:58) 20:54 (00:51) 21:18 (00:53) 0.286 0.286

TDM, h 5.8 (0.9) abc 6.6 (1.2) ae 6.9 (0.9) bf 7.6 (1.0) cef <0.001 0.011

Anthropometric Parameters

BMI, kg/m2 25.4 (4.0) a 23.8 (4.5) 23.0 (3.0) 22.5 (3.8) a 0.021 0.002
Fat mass, % 32.2 (7.4) 31.5 (7.8) 30.5 (5.3) 29.5 (6.4) 0.387 0.082
Waist, cm 78.6 (8.8) 76.2 (9.7) 74.9 (8.4) 72.8 (7.4) 0.057 0.006
Hip, cm 99.5 (7.7) 97.3 (10.7) 96.3 (6.8) 95.2 (7.3) 0.194 0.033
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Table 1. Cont.

EE LE EL LL p-Value a p-Trend b

n 34 33 33 33

Dietary Intake

Diet quality 57.9 (6.8) ab 60.7 (8.1) c 64.0 (9.8) b 67.3 (9.4) ac <0.001 <0.001
Total energy intake, kcal/day 1517 (404) 1596 (425) 1555 (412) 1676 (420) 0.452 0.179

Breakfast,% of kcal 24.8 (10.4) 26.9 (10.4) 26.5 (6.9) 22.8 (8.3) 0.258 0.381
Lunch, % of kcal 31.3 (7.5) 29.5 (10.2) 33.7 (10.5) 30.9 (9.6) 0.364 0.722
Dinner, % of kcal 18.0 (10.4) 18.6 (9.8) 20.7 (9.1) 23.5 (11.3) 0.123 0.020

Physical Activity, METs 1050
[1006; 2654]

1036
[462; 2026]

1040
[546; 2038]

1029
[447; 1893] 0.602 0.457

EE, early-bed/early-rise; LE, late-bed/early-rise; EL, early-bed/late-rise; LL, late-bed/late-rise; hh:mm, hours:minutes;
TDM, Time elapsed between dinner and the midpoint of sleep. Values are mean (SD) and median [interquartile
range] for non-normally distributed data. aStatistical tests (ANOVA for normally distributed data or Kruskall-Wallis
test for non-normally distributed data) were used to compare sleep parameters, meal timing, TDM, anthropometric
and lifestyle parameters between sleep timing categories, followed by Bonferroni post-hoc comparisons between
categories. Values with the same superscript in the same row are significantly different (EE vs. LE = a, EE vs. EL =
b, EE vs. LL = c, LE vs. EL = d, LE vs. LL = e, EL vs. LL = f). b Pearson’s tests were used to calculate P-trend values.
Significant p-values < 0.05 are shown in bold.

Breakfast was the meal best associated with sleep timing behavior, while dinner timing was not
modified by sleep timing behavior. In this regard, our results showed that subjects in the LL group
had breakfast significantly later than individuals in any other group (p < 0.001) (Table 1), which was
reflected as an increasing trend towards later breakfast timing as wakeup timing was delayed (p < 0.001).
Noteworthy, the increments in the TDM were significantly associated with late wakeup timing (p = 0.011).
Subjects in the EE group were those who, on average, had the shortest TDM (p < 0.001).

Regarding the association between sleep timing behavior and anthropometric markers of adiposity
(Table 1), a significant trend towards lower BMI (p = 0.002), waist (p = 0.006), and hip circumference
(p = 0.033) was found as the wakeup timing was delayed. Significant differences in BMI were found
between extreme sleep timing behavior groups (EE versus LL). Subsequent analyses revealed that
EE behavior was significantly associated with increased values of BMI and waist circumference
(2.3 kg/m2 and 5.2 cm, respectively) when compared to the LL group (p < 0.05). These associations
were independent of age, diet quality, total energy intake, and physical activity level.

Dietary intake and its association with sleep timing behavior is shown in Table 1. Of note,
a significant trend towards a better diet quality was found as wakeup timing was delayed (p < 0.001).
Interestingly, total energy intake was similar among groups, while a significant trend towards higher
energy intake at dinner was found as the wakeup timing was delayed (p = 0.020). No differences were
found between physical activity and sleep timing behavior.

As summarized in Table 1, our results show that individuals in the EE group presented, on average,
the shortest TDM, and had the highest BMI. Accordingly, the shorter the TDM, the higher the BMI.
Hence, using the continuous values of these variables, we studied the association between TDM and
adiposity measures. Results from multivariate regression analyses (adjusted for age, diet quality, total
energy intake, and physical activity level) showed that associations of the 1 h increments in TDM
with BMI (p = 0.079), waist circumference (p = 0.144), hip circumference (p = 0.081), and fat mass
(p = 0.125) were not significant. Therefore, we studied the shape of these associations using restricted
cubic spline models. As shown in Figure 1, a dose-response association was found between TDM and
adiposity. Interestingly, a TDM of ~6 h was significantly associated with the minimal values of BMI,
waist, hip circumference, and fat mass percentage. In particular, a TDM of 6 h could be related to
approximately −3 kg/m2 of BMI, −4cm of waist and hip circumference, and −4.5% of fat mass.
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according to sleep timing behavior categories. Then, we studied the shape of the association between 
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revealed that individuals in the EE group had the shortest TDM, while they showed significantly 
higher values of BMI and waist circumference (2.2 kg/m2 and 5.2 cm, respectively), when compared 
to the individuals in the LL group. In addition, we observed a dose-response association between the 
TDM and adiposity, which showed that minimal adiposity values are observed when the subjects 
have dinner 6 h before their midpoint of sleep. 

Figure 1. Restricted cubic splines representing the associations of the TDM with (a) body mass index,
(b) waist circumference, (c) hip circumference, and (d) fat mass percentage. TDM, time elapsed between
dinner and the midpoint of sleep. The models were adjusted for age, diet quality, total energy intake,
and physical activity level. The gray band indicates the confidence levels for the regression line.

4. Discussion

As far as we are aware, this is the first cross-sectional study to show an association between the
timing of food intake relative to sleep/wake timing (expressed as TDM) and adiposity parameters
in young women. To do so, we had two approaches. First, we compared differences between
anthropometric parameters, eating patterns (dietary intake and meal timing), and physical activity
according to sleep timing behavior categories. Then, we studied the shape of the association between
the TDM and anthropometric markers of adiposity using restricted cubic splines. Our results revealed
that individuals in the EE group had the shortest TDM, while they showed significantly higher values
of BMI and waist circumference (2.2 kg/m2 and 5.2 cm, respectively), when compared to the individuals
in the LL group. In addition, we observed a dose-response association between the TDM and adiposity,
which showed that minimal adiposity values are observed when the subjects have dinner 6 h before
their midpoint of sleep.
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It is of interest that the LL group was the one with the lowest BMI despite having the highest
percentage of energy intake at dinner. This fits with two other studies that have associated lower BMI
values with later internal timing among young healthy adults [28,29]. Interestingly, Knutson et al. [28]
pointed out that young adults were more likely to have a later internal timing and therefore, sleeping
at a later clock time may align more closely with their circadian rhythms. Similarly, in our study, young
women who had a LL behavior were more evening-oriented (shown by the midpoint of sleep). Thus,
it is plausible that the alignment between internal circadian time and external clocks may mediate this
relation, especially since their behavior would fit with their internal circadian rhythm.

Among the most relevant findings of our study is the fact that TDM was associated with adiposity
markers. Noteworthy, on average, TDM was significantly shorter in individuals belonging to the
EE group, which in turn showed the highest BMI. These results are in line with the observations of
McHill et al. [3], who showed that eating closer to melatonin onset was associated with higher body fat
percentage. To add, Xiao et al. [11] noted that among evening-oriented individuals, a higher percentage
of energy intake 2 h before bedtime was associated with ~80% increase in the odds of being overweight
or obese. Hence, with our results, we complement these observations, showing that the alignment
between dinner time and the midpoint of sleep (given by the TDM) are relevant in maintaining a
healthy weight and body composition.

As a first approach, we hypothesized that the concurrence between elevated glucose levels (due
to postprandial state) and melatonin onset may occur through the association observed between
EE behavior and adiposity, especially since melatonin levels begin to rise 2–3 h before habitual
bedtime [30]. It is important to highlight that midpoint sleep is highly correlated with DLMO [15].
Recently, Lopez-Minguez et al. [14] pointed out that having dinner no later than 2 to 4 h before
habitual bedtime would allow recovery of postprandial glycaemia to fasting values prior to the rise
of endogenous melatonin levels. It is important to note that, when melatonin is bound to the Mel1b
receptor in pancreatic-islet beta cells, it inhibits glucose-stimulated insulin secretion [14]. Therefore,
having dinner near the midpoint of sleep may extend the postprandial glucose spike during the night.
Although more evidence needs to be warranted, our results showed that a TDM of 6 h was associated
with the lowest values of adiposity.

Additionally, some authors suggest that the thermic effect of food (the energy expended in
response to a meal) and the respiratory quotient (which reflects macronutrient utilization) are lowest
during a biological night [3,31,32]. Hence, another possible consequence of eating near DLMO is a
decrease in the thermic effect of food, which in the long run could contribute to a positive energy
balance and weight gain [3]. McHill et al. [3] observed that the timing of the caloric midpoint (defined
by the average time by which 50% of daily calories are consumed) relative to DLMO was significantly
associated with the percentage of body fat in young adults [3]. Accordingly, individuals with caloric
midpoint closer to melatonin onset were those with the highest fat percentage. Together, these
observations highlight the relevance of studying the timing of food intake relative to internal timing,
rather than the clock hour. For this reason, we suggest that the TDM could be a practical marker of
circadian misalignment. It is important to note that while dinner time was not modified by sleeping
schedules, breakfast time changed.

Our data also reflect the pertinence of assessing whole sleep/wake patterns when evaluating the
health status of the individuals. This includes not only duration or bedtime schedules, but also the
alignment between sleep/wake cycles with social schedules, including weekend days. Interestingly,
we observed a trend towards higher BMI, and waist and hip circumferences as wakeup timing was
advanced. Recently, Wilms et al. [33] showed that sleep loss during the second half of the night
decreased morning glucagon and cortisol levels. Although more evidence need to be warranted,
the authors suggested that the timing of sleep restriction can potentiate its deleterious effects [33].
In addition, early wakefulness is related to impaired insulin sensitivity due to raised melatonin
levels during the early-morning period [34]. In this regard, Eckel et al. [34] suggested that morning
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circadian misalignment may be a mechanism by which short sleep duration contributes to metabolic
dysregulation and other health problems.

Regarding diet quality and its association with sleep timing behavior, our results show that
individuals in both of the early-rise behavior categories (EE and LE) had the shortest sleep duration and
the lowest diet quality. This fits with results from the Hispanic Community Health Study, in which short
sleep duration was linked to poor dietary quality in adults [35]. Dashti et al. [8] reviewed this topic
and pointed out that short sleep duration (<6 h) was associated with low diet quality. Together with
insufficient sleep, other conditions that occur in parallel, such as increased hunger and food cravings
for high-fat and/or sweet foods, as well as increased susceptibility to food rewards, may be potential
mechanisms underlying these associations [8,36,37]. Although people do not always give into cravings,
it is important to note that they have been associated with an excess of energy intake and obesity [36].

Taking into account the aforementioned, we consider that our findings raise interesting questions
and novel opportunities for obesity prevention among college students or even teenagers, since their
behavior is more evening-oriented [38]. In this regard, we showed that matching individual circadian
preference (chronotype) with sleep timing behavior, as well as aligning meal timing with sleep/wake
cycles, in particular dining ~6 h before the midpoint of sleep, could be related to lower adiposity. The
latter could complement the recommendations of the World Health Organization for obesity prevention,
which include limiting energy intake from fats and sugars, increasing the consumption of fruits and
vegetables, as well as legumes, whole grains and nuts, and engaging in regular physical activity [39].

This study has several limitations, starting with its cross-sectional nature, which prevented us
from finding causation. Furthermore, sleep habits (bed and wakeup timing) were assessed using
sleep diaries and food intake with food logs, both of which are prone to be underreported. We also
acknowledge that our female population is not representative of the entire population. Therefore,
future studies should study the associations between the TDM and adiposity in men. In spite of this,
our study has several strengths, including the fact that we collected detailed information on sleep
and meal timing, as well as dietary intake on weekdays and weekends, which allowed us to capture
habitual dietary and sleep patterns. Moreover, our study also assessed sleep and dietary quality.

5. Conclusions

In conclusion, our results show that both TDM and sleep timing behavior were associated with
adiposity in young women. Individuals in the EE group showed a significant increase in BMI and waist
circumference, when compared to the LL group. The latter could be explained by the misalignment
between dinner timing and their internal timing (given by the TDM). This consideration could be of
importance especially in young adults, or even teenagers, since their behavior is more evening-oriented.
We showed that a 6-h TDM was significantly associated with lower adiposity. Hence, the TDM could
constitute a practical approach to personalize the timing of food intake based on individual sleep
schedules, which could be a useful strategy to align metabolism with circadian physiology. This, in the
long run, could have a beneficial impact on BMI and adiposity, which is especially important for
youngsters who are susceptible to a misalignment in sleep/wake timing and meal timing, and thus,
need to establish healthy future habits.
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