
Citation: Ma, S.; Shao, X.; Xu, C.

Potential Controlling Factors and

Landslide Susceptibility Features of

the 2022 Ms 6.8 Luding Earthquake.

Remote Sens. 2024, 16, 2861. https://

doi.org/10.3390/rs16152861

Academic Editor: Domenico

Calcaterra

Received: 13 May 2024

Revised: 24 July 2024

Accepted: 1 August 2024

Published: 5 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Potential Controlling Factors and Landslide Susceptibility
Features of the 2022 Ms 6.8 Luding Earthquake
Siyuan Ma 1,2, Xiaoyi Shao 3,4 and Chong Xu 3,4,*

1 Institute of Geology, China Earthquake Administration, Beijing 100029, China; masiyuan@ies.ac.cn
2 Key Laboratory of Seismic and Volcanic Hazards, Institute of Geology, China Earthquake Administration,

Beijing 100029, China
3 National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China;

xiaoyishao@ninhm.ac.cn
4 Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management

of China, Beijing 100085, China
* Correspondence: xc11111111@126.com or chongxu@ninhm.ac.cn

Abstract: On 5 September 2022, a Ms 6.8 earthquake struck Luding County, Ganzi Tibetan Au-
tonomous Prefecture, Sichuan Province, China. This seismic event triggered over 16,000 landslides
and caused serious casualties and infrastructure damages. The aim of this study is to perform the
detailed landslides susceptibility mapping associated with this event based on an updated landslide
inventory and logistic regression (LR) modeling. Firstly, we quantitatively assessed the importance of
different controlling factors using the Jackknife and single-variable methods for modeling landslide
occurrence. Subsequently, four landslide susceptibility assessment models were developed based on
the LR model, and we evaluated the accuracy of the landslide susceptibility mappings using Receiver
Operating Characteristic (ROC) curves and statistical measures. The results show that ground motion
has the greatest influence on landslides in the entire study area, followed by elevation, while distance
to rivers and topographic relief have little influence on the distribution of landslides. Compared
to the NEE plate, PGA has a greater impact on landslides in the SWW plate. Moreover, the AUC
value of the SWW plate significantly decreases for lithological types and aspect, indicating a more
pronounced lithological control over landslides in the SWW plate. We attribute this phenomenon
primarily to the occurrence of numerous landslides in Permian basalt and tuff in the SWW plate.
Otherwise, the susceptibility results based on four models indicate that high-susceptibility areas
predicted by different models are distributed along both sides of seismogenic faults and the Dadu
Rivers. Landslide data have a significant impact on the model prediction results, and the model
prediction accuracy based on the landslide data of the SWW plate is higher.

Keywords: 2022 Luding earthquake; coseismic landslides; landslide susceptibility mapping; control-
ling factors; logistic regression (LR) model

1. Introduction

A Ms 6.8 earthquake struck Luding County in Sichuan Province, China, on 5 September
2022 at 12:52 local time. The epicenter was situated within the Hailuogou Glacier Forest
Park in Moxi Town (29.59◦N, 102.08◦E) at a focal depth of roughly 16 km. The earthquake
had a maximum intensity of IX at the China Earthquake Networks Center (www.ceic.ac.cn,
accessed on 3 April 2024). As of 13 September, the earthquake resulted in the loss of
93 lives, with 25 individuals reported as missing. About 20% of the casualties were directly
linked to collapsed buildings, while landslides accounted for over 80% of the fatalities
and missing persons [1]. Furthermore, due to the complex terrain and fragile geological
environment in the Luding zone, it is highly prone to landslides under seismic activity.
Therefore, conducting earthquake-induced landslides susceptibility mapping is crucial for
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enhancing the resilience of major engineering projects and safeguarding public safety in
this area [2].

Currently, the main methods of the landslide susceptibility assessment induced by
a single earthquake event include the physically based Newmark method, statistically
based method, and data-driven method [3–5]. On a large-scale area, the physically based
method requires extensive detailed data to provide reliable landslide susceptibility results.
Consequently, when there is a lack of reliable and detailed parameters such as geotechnical
parameters and ground motion data, the physically based model may not offer ideal predic-
tion accuracy for large-scale seismic landslide susceptibility mapping [6–8]. The statistical
model simplifies the relationships among variables in the data through mathematical equa-
tions, but it has certain limitations in revealing the complex nonlinear interactions among
environmental factors in susceptibility modeling [9–11]. The data-driven model learns
from data without relying on predefined functions and extensive prior knowledge, thus
achieving high evaluation accuracy [12,13]. As a result, data-driven models have been
widely applied in landslide susceptibility assessments, including support vector machines
(SVMs) [14], the LR model [15], random forest (RF) [12], and convolutional neural networks
(CNNs) [16].

For the Luding earthquake, relevant studies about the coseismic landslides of the
Luding earthquake mainly focused on landslide automatic identification [17,18], the es-
tablishment of landslide inventory [1,19–22], spatial distribution characteristics of land-
slides [2,23], and the rapid assessment of landslide susceptibility [1,22,24,25]. Relevant
studies have conducted rapid susceptibility assessments of seismic landslides associated
with this event using the physical–mechanical Newmark method [24,25] and data-driven
method [18,22]. These results have effectively guided the deployment of rescue personnel
and the allocation of resources for the Luding earthquake. For example, Liu et al. [25]
conducted a rapid susceptibility assessment of earthquake-induced landslides using the
Newmark method. The results showed that the area of potential high susceptibility is
approximately 45 km2, primarily distributed on both sides of the Dadu Rivers and west of
the Xianshuih Fault. Djukem et al. [24] conducted a comparison between a traditional and
an improved Newmark method for coseismic landslide prediction. The results show that
the traditional equation is better suited for earthquakes similar to that of the Luding earth-
quake, with a higher concentration of landslides in the epicentral region. Wang et al. [18]
obtained the landslide susceptibility result of the Luding earthquake within 2 h after the
event using a near-real-time predictive model of coseismic landslides, which is built based
on the global coseismic landslide database and deep learning algorithms. Chen et al. [22]
employed multi-temporal optical satellite imagery interpretation and InSAR technology
to interpret pre-earthquake landslides in the Luding area and combined the SVM method
with 12 potential controlling factors to map the susceptibility of landslides induced by the
Luding earthquake.

However, it should be noted that the accuracy of the susceptibility mapping for
the Luding event in the above-mentioned study is limited. For the Newmark method,
due to limitations inherent in the input parameters, the susceptibility results obtained
by the Newmark method often exhibit significant disparities when compared to actual
landslide distributions [24,26]. For the data-driven model, landslide data are the most
critical factor affecting the accuracy of landslide susceptibility modeling. However, no
relevant landslide susceptibility mapping of this event has been studied in detail based
on the existing landslide inventory, and the existing landslide inventory often has serious
omissions in landslide interpretations due to cloud cover on the west side of the seismogenic
fault [20,27]. Consequently, the predictive models based on these landslide inventories often
yield significantly underestimated predictive results for the west side of the seismogenic
fault. Furthermore, an existing susceptibility assessment overlooked the differences in the
potential controlling factors of both sides of the seismogenic fault [27]. This phenomenon
resulted in landslide susceptibility mapping being unable to reflect the potential landslide
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hazard zoning, thereby impacting the subsequent disaster prevention and mitigation in the
study area.

Therefore, the aim of this study is to construct a detailed and objective landslides
probability assessment map of the Luding earthquake based on an updated landslide
inventory. We quantitatively assessed the importance of eight causative factors using
Jackknife and univariate methods for modeling landslide occurrence. Subsequently, four
landslide susceptibility assessment models were developed based on the LR model, and
the accuracy of the landslide mappings was evaluated using the ROC curve and statistical
indices. Finally, we quantitatively evaluated the landslide susceptibility maps of four
models. This study can provide a reference for post-earthquake reconstruction planning,
the analysis of long-term disaster effects after the earthquake events. Meanwhile, the
predictive model can offer technical support for seismic landslide susceptibility assessments
in the Sichuan–Yunnan region.

2. Tectonic and Geological Setting of the Luding Area

The Xianshuihe Fault is one of the most active fault zones in mainland China, with
a total length of approximately 400 km [28]. In the past 300 years, this fault zone has
experienced 25 earthquakes with magnitudes of M ≥ 6.0 and 8 earthquakes with mag-
nitudes of M ≥ 7.0. The Luding earthquake is a destructive earthquake that occurred on
the Xianshuihe Fault after the Ms 7.6 Lu-Huo earthquake in 1973 and the Ms 6.9 Dao-Fu
earthquake in 1981 (Figure 1). The GPS and InSAR data reveal that the seismogenic fault
of this event is the Moxi segment of the Xianshuihe Fault, with predominantly left-lateral
strike-slip motion [29,30].
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Figure 1. The tectonic setting and topographic feature of the Xianshuihe Fault and adjacent areas.
(a) The distribution of the GPS velocity and historical earthquakes of the Xianshuihe Fault and
adjacent areas. (b) The distribution of the elevation, active faults, and peak ground motion (PGA) of
the Luding earthquake.
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The quake-affected area is situated in the Hengduan Mountains on the southeastern
edge of the Qinghai–Tibet Plateau, representing a typical high-mountain canyon region.
The highest peak, Mount Gongga, reaches an elevation of 7556 m, with a horizontal distance
of only about 30 km from the Dadu Rivers Valley in Dongpo and a relative height difference
of over 6000 m (Figure 1). Due to the special geological and geomorphological conditions,
the study area affected by the 2008 Ms 8.0 Wenchuan earthquake and the 2013 Ms 7.0
Lushan earthquake has led to the fragmentation and reduced stability of rock masses,
which makes it more susceptible to geological hazards. The climate in the Luding area is
influenced by the high-mountain terrain and the climate of the Qinghai–Tibet Plateau, with
significant seasonal changes and obvious characteristics of the plateau monsoon climate.
The Luding area experiences an average annual temperature of 15.5 ◦C and an average
annual rainfall of 664.4 mm.

The lithology distribution shows that Plagioclase granite and diorite granite (G) and
a Diorite vein (Dio) dominate the eastern portion of the seismogenic fault, covering the
largest area. In the western region, Permian basalt (P2b) forms the second-largest geological
composition. Triassic limestone and Triassic and Devonian quartz sandstone (TL&Ds) are
prevalent in the northeastern area. Quaternary sediments (Ql) are primarily distributed
along both sides of the Dadu Rivers and their tributaries. Additionally, the study area
features Lower Permian tuff and breccia (P1t), Jurassic and Devonian mudstone, Ordovician
and Silurian limestone and shale (Jm&Ols), and Sinian rhyolite (Srh) (Figure 2).
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Figure 2. The lithological distribution of the Luding area. The 1:200,000 geological map is downloaded
from the China Geological Survey Bureau (http://dcc.cgs.gov.cn/, accessed on 4 February 2024).

3. Materials and Methods
3.1. The 2022 Luding Landslide Inventory

High-resolution satellite images taken before and after the earthquake allow for a
visual interpretation of coseismic landslides. Extensive landslide mapping was conducted
using 3-m resolution optical Planet satellite images. The pre-earthquake images were
captured between 1 June and 5 September 2022, while the post-earthquake images were
taken from 8 September to 30 December 2022 [27]. In addition, we used pre- and post-
earthquake satellite images from the Google Earth platform as supplementary image data.

http://dcc.cgs.gov.cn/
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The pre-earthquake satellite images are dated 22 December 2021, and the post-earthquake
images are dated 10 September 2022. To ensure the accuracy and comprehensiveness of our
landslide interpretation and to avoid misidentifying pre-earthquake landslides as coseismic
events, we checked several identified landslide sites by field investigation [2]. Figure 3
shows the coseismic landslides based on pre-quake (Figure 3a) and post-quake (Figure 3b)
Google Earth images located in the Wangdong area. Based on satellite images and field
investigations, it is evident that the Wangdong Village area experienced the most intensive
landsliding area during the earthquake. There are many landslides developed in this area,
and the scale of landslides is relatively large. Figure 4 shows the pre- and post-quake images
located near the Wanggangping area, where a large number of small-scale landslides have
developed, mainly consisting of soil collapses, shallow landslides, and rolling stones [2].
Compared to the Wangdong area, although the Wanggangping region has developed a
large number of landslides, the scale of the landslides is relatively small, and few medium-
and large-sized landslides have developed.
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According to the latest landslide database [27], the Luding earthquake triggered
about 16,033 landslides, with a total landslide area of 43.2 km2. The total volume of
landslides triggered by the Luding earthquake is estimated to be 1.27 km3, calculated by
the power–law relationship between the landslide area and volume [31]. Overall, coseismic
landslides were predominantly situated on both sides of the seismogenic fault, with a
greater density observed on the west side (SWW plate) in comparison to the east side
(NEE plate). Specifically, over 60% of the landslides occurred on the SWW plate, while the
remaining 40% were on the NEE plate (Figure 5). More than 70% of landslides develop in
areas with a PGA greater than 0.5g, about 20% of coseismic landslides occur in an area with
a PGA of 0.4 g, and only a few landslides develop in areas with a PGA less than 0.4 g, which
are mainly concentrated in the south of the Xinmin area. Overall, compared to the NEE
plate, the development of landslides on the SWW plate is more severe, being significantly
larger in scale and greater in number.
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3.2. Related Controlling Factors

Earthquake-induced landslides result from the complex interplay of various con-
trolling factors. The spatial distribution of landslides is influenced not only by seismic
factors but also by topographic conditions, geological characteristics, and structural fea-
tures [32,33]. Currently, there is no unified standard for selecting controlling factors for
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earthquake-induced landslides [5]. Based on the previous studies [27,34], we selected
elevation, slope angle, aspect, topographic relief, peak ground acceleration (PGA), distance
to rivers (dis2rivers), distance to seismogenic fault (dis2fault), and lithology as the ten
controlling factors for LR modeling. Elevation and slope features were derived using
the ALOS PALSAR Digital Elevation Model (DEM) with 12.5 m resolution. The river
networks, including main rivers and major tributaries, were extracted by the elevation
data. Meanwhile, we estimated topographic relief within a 2.5 km radius by the elevation
data [35] (Figure 5). For peak ground acceleration (PGA) distribution, we collected seismic
station records within a 100 km radius of the Luding earthquake, which were obtained
from the Sichuan Earthquake Administration. The PGA values were derived based on
these seismic station records [27]. Subsequently, we employed the Kriging interpolation
method to determine the distribution of the PGA (Figure 5).

3.3. Logistic Regression (LR) Model

Currently, most landslide susceptibility assessment models use various classification
methods, including weight of evidence (WOE), forest trees, LR model, SVM, and neural
networks [5]. Among these, the LR model is widely used for assessing earthquake-induced
landslide hazards due to its simplicity, high efficiency, and accuracy in predictions [5,36].
The fundamental idea of the LR model is to estimate the probabilities of different classes in
a binary or multi-class problem through a linear combination of one or more independent
variables [37,38]. To map the linear combination to a probability value between 0 and
1, logistic regression employs a special function called the logistic function or sigmoid
function. The formula for the LR model is as follows:

Z = a + ∑j bjxj j = 1, 2, . . . m (1)

f (z) =
1

1 + e−(z)
(2)

where f (z) represents the probability of landslide occurrence. As z approaches positive
infinity, f (z) tends towards 1, and as z approaches negative infinity, f (z) tends towards
0. a is a constant; j denotes the number of independent variables; bj (j = 1, 2, 3, . . ., n)
represents the regression coefficients of the model; and xj (j = 1, 2, 3, . . ., n) denotes the
independent variables.

The objective of this study is to create a probability estimator for forecasting the
areal extent of landslides. In essence, we establish a correlation between the resultant
probability and the spatial coverage (e.g., areas marked with a 5% probability of landsliding
encompass approximately 5% of the total landslide area) [38,39]. The selection of samples
for the model also needs to ensure that the ratio of landslide samples to non-landslide
samples aligns with the actual ratio of landslide area to non-landslide area in the study
area. We conducted random sampling across the study area at a density of 200 points per
square kilometer. Any samples falling within landslide zones were categorized as landslide
samples, while those outside these zones served as non-landslide samples. Although this
sampling method results in different quantities of landslide and non-landslide samples,
this imbalance reflects the true imbalance of landslides occurring within the study area.
Consequently, the obtained susceptibility index can accurately represent the probability of
landslide occurrences [36,39].

3.4. Modeling Evaluation Index

In this study, we utilized AUC (Area under the Curve) to quantitatively evaluate
the importance of various controlling factors and the assessment results of different sus-
ceptibility modeling. The AUC, commonly used to assess binary classification model
performance [40,41], quantifies the area under the ROC curve. This curve plots the true
positive rate against the false positive rate across different threshold settings. A higher AUC
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signifies superior model discrimination, with an AUC of 1 indicating a perfect classifier
and an AUC of 0.5 suggesting a stochastic model [42].

Otherwise, we used the Jackknife method and single-variable method to further
examine the relative importance of the controlling factor following the techniques of [43,44].
The Jackknife method systematically excludes one controlling factor from the dataset each
time, recalculates the accuracy of the prediction model, and then analyzes the variability of
the estimated values obtained [45,46]. In the Jackknife approach, we iteratively removed
a single controlling factor during model training and compared individual model results
to assess the influence of removing each controlling factor from the model. If there is a
significant decrease in the AUC of the model, it indicates that the deleted controlling factors
have a high impact on the accuracy of the model, which means that the model has a strong
impact on the spatial distribution of landslides [43,45]. Meanwhile, the single-variable
method entails the LR model iteratively on each controlling factor separately to determine
their individual importance. A higher model AUC in these instances indicates a stronger
independent explanatory power of the feature [44,47].

From the spatial distribution of coseismic landslides, noticeable disparities exist be-
tween the SWW and NEE plates, with landslide development being more pronounced
in the SWW plate compared to the NEE plate (Figure 5). Additionally, our preliminary
findings indicate that landslides on the SWW plate tend to occur in areas characterized by
higher elevations and relief features compared to the NEE plate [20,27,34]. Therefore, in
this study, we evaluated the potential differences in the influence of various controlling
factors on landslide occurrence on both sides by comparing the modeling results of the
SWW and NEE plates, as well as all the study area. Subsequently, we established the LR
modeling based on different landslide datasets. Otherwise, given the geological hetero-
geneity on either side of the seismogenic fault, we examined the impact of geological types
versus not considering geological types on the LR models during the modeling process.
Ultimately, we constructed four LR models and conducted modeling analyses. Considering
the randomness of sampling in the modeling process, the models converged prior to a
maximum of 50 iterations. Figure 6 presents a flowchart describing this study.
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4. Results
4.1. The Importance of Potential Controlling Factors

We computed the AUC values based on the single-variable method to assess the
impact of individual controlling factors on landslide occurrences (Figure 7). The results
show that, for the entire study area, the elevation, PGA, and dis2fault exhibit the highest
AUC values among the continuous variables, all surpassing 0.8, suggesting these factors
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have a significant influence on landslide occurrences. Conversely, the slope, relief, and
dis2rivers demonstrate relatively low AUC values, mostly below 0.7, with relief having
the lowest AUC value at 0.5. Moreover, the predictive outcomes for the two plates (SWW
and NEE plates) suggest that different continuous variables may have varying degrees
of influence on landslide occurrences. For instance, the AUC results for the PGA and
dis2fault in the NEE plate are slightly higher than those in the SWW plate, indicating that
these factors might exert a more pronounced control over landslide occurrences in the NEE
plate. For the categorical variables, the AUC value of the lithological types for the NEE
plate is lower than that of the SWW plate, suggesting that lithology may not contain more
explanatory information for the NEE plate. Additionally, the AUC values for aspect remain
around 0.6, indicating that different aspects have minor effects on landslide development.
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Figure 8 presents the AUC values of different controlling factors obtained by the
Jackknife method. Overall, upon excluding the PGA and dis2fault factors, the AUC values
of the model significantly decrease, whereas the removal of dis2rivers and aspect does not
result in a noticeable decline in AUC values. This indicates that, from the perspective of the
entire study area, the PGA and dis2fault are the primary controlling factors for landslide
occurrence, while dis2rivers and aspect have a minor impact on the occurrence of seismic
landslides. Additionally, for the NEE plate, the model’s AUC value notably decreases after
removing the PGA, whereas this trend is not observed for the SWW plate, suggesting that
seismic factors exert a greater influence on landslides in the SWW plate compared to the
NEE plate. Furthermore, for lithological types, compared to the NEE plate, the model’s
AUC value significantly decreases when the lithological factor is excluded for the SWW
plate, indicating a more pronounced control of lithology on landslide occurrence in the
SWW plate. Otherwise, elevation and relief exhibit a similar trend like the lithological
factor, which suggests that, besides the PGA, lithology and topographic features are also
important environmental variables affecting landslide occurrence in the SWW plate.
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Because the model features were standardized using the standard scalar method, the
model coefficients can be compared for different controlling factors to estimate the feature
importance. For continuous variables, a positive regression coefficient indicates a positive
correlation, meaning that, as the independent variable increases, the likelihood of landslide
occurrence also increases. By analyzing the regression coefficients, we can interpret the
relationship between each continuous variable and landslide occurrence. Figure 9 illustrates
the regression coefficients for different controlling factors of coseismic landslides calculated
by LR models. The results indicate that, for the SWW plate, NEE plate, or entire study area,
elevation, dis2fault, and dist2rivers exhibit negative correlations, while slope, relief, and
PGA demonstrate positive correlations. This suggests that landslides are more likely to
occur in areas of low elevation and high ground motion. Among these, elevation, PGA,
and dis2fault possess the largest absolute regression coefficients, indicating that, compared
to the other controlling factors, these three factors have a significant effect on landslide
occurrences. Overall, the importance ranking of these controlling factors on coseismic
landslides is PGA > elevation > dis2fault > slope > dis2rivers > relief.
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4.2. Landslide Susceptibility Modeling

Based on the aforementioned study, we constructed the LR models for both the SWW
and NEE plates, respectively, and generated landslide probability maps for the study area
using these two models (Model 1 and Model 2) (Figure 10). Model 1 is trained by landslide
data derived from the NEE plate, whereas Model 2 utilizes landslide data sourced from the
SWW plate. The result shows that the high-susceptibility areas predicted by both models
are distributed along both sides of the seismogenic faults and the Dadu Rivers, which
closely align with the actual landslide distributions (Figure 10). However, it should be
noted that the predicted area of moderate- to high-susceptibility zones derived from Model
2 is notably larger than that from Model 1. In local areas, there are also discrepancies in the
predictions of both models in localized areas. For instance, in the vicinity of the epicenter,
Model 2 shows a significantly higher range of moderate- to high-susceptibility zones
compared to Model 1. Moreover, in the Wangdong and Xingfu regions where landslides are
most densely concentrated, the predicted occurrence probability from Model 1 is noticeably
lower than that from Model 2. Additionally, in the northern region of Caoke and near the
Xieluobao area, the predicted result of the moderate- to high-susceptibility area by Model
2 is also greater than that by Model 1. To further compare the results of the predicted
probability distributions, we conducted a statistical analysis on the probability values
of the two models (Model 1 and 2) (Figure 11). The results indicate that the probability
distributions of the two models exhibit a similar trend, characterized by an initial increase
followed by a decrease (Figure 11). Specifically, the probability values of Model 1 are mainly
concentrated between 0.00005 and 0.002, while those of Model 2 are primarily distributed
between 0.004 and 0.02. Compared to Model 1, the probability predictions of Model 2 are
roughly higher.
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Figure 11. Map showing the probability distribution of landslide occurrence for two evaluation
models.

Figure 12 depicts the boxplots of the landslide prediction area and AUC for Model 1
and Model 2. From the boxplots, it is evident that the predicted landslide area by Model 2
of 46.92 km2 is significantly larger than that by Model 1 of 34.73 km2. However, the actual
landslide area in the study area is 44.29 km2, indicating that the predicted area by Model 2
is closer to the actual situation. Additionally, we observe that the AUC values of Model
1 are higher than those of Model 2 on the training set, with average AUC values of 0.93
and 0.89, respectively. However, for the validation set, the opposite trend is observed, with
Model 2 exhibiting slightly higher AUC values than Model 1.
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In addition, due to the differences in lithological types on both sides of the seismo-
genic fault, we constructed two LR models, one considering lithology and the other not
considering lithology, to compare the influence of lithological types on the assessment
results. Figure 13 shows the predicted results of the occurrence probability of landslides
based on Models 3 and Model 4, respectively. It can be observed that the predicted results
of the two models are roughly consistent in the predicted high-susceptibility areas, mainly
concentrated in the Wangdong, Xingfu, and Caoke regions. However, differences exist
in the predicted results of the two models in local areas. For instance, in the eastern part
of the Caoke area, Model 3 yields notably higher predictions compared to Model 4. This
phenomenon could be linked to the prevalence of Triassic limestone and Triassic and Devo-
nian quartz sandstone (TL&Ds) in the area, the lithological type associated with relatively
low landslide incidence. Therefore, due to the spatial differences in lithology, although the
overall distribution of the prediction results is consistent, there are still differences at the
local scale.

To quantitatively assess the correlation between the occurrence probabilities of land-
slides predicted by four different models, we randomly selected 10,000 points within the
study area and analyzed the correlations between the occurrence probability values of
different models. Figure 14a presents a scatter plot of the occurrence probability values of
Model 1 and Model 2. The results indicate a linear relationship between the two models,
where Model2 = 1.013 ∗ Model1. It should be noted that the slope of the fitted function is
1.013; this is mainly due to the differences in the training landslide datasets used for the
two LR models, resulting in slightly higher predictions in Model 2 compared to Model 1.
Figure 14b shows scatter plots of the predicted results for Model 3 and Model 4 and indi-
cates a linear relationship between the two models. The slope of the fitted function is 0.994,
suggesting that the prediction results of the two models are roughly consistent. In local
areas, there are differences in the predictive results between the two models. Overall, the
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predictive results of the model considering lithology are higher in local areas compared to
those of the model not considering lithology.
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5. Discussion

Currently, related studies have analyzed the relationship between different influencing
factors and the distribution characteristics of landslides for the Luding earthquake event
from a statistical perspective [20,21,48]. However, these studies cannot quantitatively
analyze the order of importance of different influencing factors. Furthermore, the existing
study indicates that, compared to the NEE plate, landslides on the SWW plate are more
likely to occur in areas characterized by higher elevations and reliefs, indicating potential
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variations in the importance of different influencing factors on the spatial distribution
of landslides on both sides of the seismogenic fault [27]. Therefore, we quantitatively
assessed the importance of eight causative factors using the Jackknife and univariate
methods. The results show that seismic factors have the greatest influence on landslides
in the entire study area, followed by elevation, while dis2rivers and topographic relief
have little influence on the distribution of landslides. Additionally, the degree of influence
of different controlling factors on landslides on both sides of the seismogenic fault varies
inconsistently. For example, compared to the NEE plate, the PGA has a greater impact
on landslides in the SWW plate. Moreover, excluding lithological factors, the AUC value
of the SWW plate significantly decreases for lithological types and aspect, indicating a
more pronounced lithological control over landslides in the SWW plate. We attribute this
phenomenon primarily to the occurrence of numerous landslides in Permian basalt and
tuff in the SWW plate. Therefore, when lithological types are not considered in the SWW
plate, the AUC results of the model significantly decrease. Landslides in the NEE plate
mainly consist of small-scale shallow landslides, collapses, and rockfalls, so the influence
of the PGA on small-scale landslides may be more significant. In contrast, landslides on the
SWW plate tend to be larger in scale, and this plate of the seismogenic fault experiences
heightened seismic energy along with significant surface deformation [34], indicating a
more pronounced control of the seismogenic fault on landslides in the SWW plate.

A detailed and objective inventory of landslides is essential for the regional landslide
susceptibility mapping [49,50]. Previous studies have primarily focused on rapid emer-
gency assessments of earthquake-induced landslides following the Luding earthquake,
lacking detailed susceptibility mapping of landslides for this event [18,25]. Therefore, based
on our updated landslide database [27], we conducted a landslide susceptibility assessment
for the Luding event and compared the predicted accuracy of different models. We divided
the study area into fishnets of 1 km × 1 km and calculated the predicted landslide area
within each fishnet for the above four predicted models. Overall, the high susceptibility
zones predicted by different models are distributed along the seismogenic fault and the
Dadu Rivers, which is consistent with the actual landslide distribution. However, there
are also differences in the predicted results of the two models in local areas. The predicted
results based on Model 2 are significantly greater than those based on Model 1, with the
predicted landslide areas based on Model 2 being consistent with the actual landslide areas,
while the results based on Model 1 are notably lower. The results indicate that Model 1
significantly underestimates the landslide area on the western side of the seismic fault,
particularly in the Xingfu and Caoke areas, while overestimating the landslide area in the
south of the Xinmin area (Figure 15a,b). The primary reason for this phenomenon is that
over 60% of landslides in the entire study area are concentrated in the SWW plate; thus,
the predictive model based on landslide data from the SWW plate better reflects the actual
landslide distribution. Furthermore, from the AUC results, although Model 1 has a higher
AUC value than Model 2 for the training set, the predictive ability of Model 1 significantly
decreases compared to Model 2 for the validation set. This result may suggest that Model
1 is overfitting to the training data, leading to a decrease in predictive performance on
the validation data, whereas Model 2 demonstrates a more stable performance on the
testing data. Otherwise, the predicted landslide areas by Model 3 and Model 4 are roughly
consistent with the actual landslide distribution, but there are differences in local areas,
such as in the eastern part of the Caoke area (Figure 15c,d). This phenomenon could be
linked to the prevalence of Triassic limestone and Triassic and Devonian quartz sandstone
(TL&Ds), as mentioned in the Section 4. Due to the influence of tectonic activity, granite and
basalt units exhibit well-developed joints, making this lithological unit more susceptible to
landslides under seismic motion [27]. In contrast, quartz sandstone has a higher rock mass
strength, making this unit less prone to landslides.
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6. Conclusions

This paper aims at quantitatively evaluating the importance of different controlling
factors and conducting the landslide susceptibility mapping associated with the 2022
Luding earthquake. The results show that, for the entire study area, elevation, PGA, and
dis2fault exhibit the highest AUC values among the continuous variables. Overall, the
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importance ranking of these controlling factors on coseismic landslides is PGA > elevation
> dis2fault > slope > dis2rivers > relief. However, for landslides on both sides of the
earthquake fault, different controlling factors may exert varying influences on landslide
occurrence. For the NEE plate, the PGA exerts a greater influence on landslides in the SWW
plate compared to the NEE plate. The AUC value of the SWW plate significantly decreases
for lithological types and aspect, indicating a more pronounced lithological control over
landslides in the SWW plate. Otherwise, the susceptibility results based on four models
indicate that high-susceptibility areas predicted by different models are distributed along
both sides of the seismogenic faults and the Dadu Rivers, which closely align with the
actual landslide distribution. In local areas, Model 2 shows a significantly higher range
of moderate- to high-susceptibility zones compared to Model 1. The primary reason for
this phenomenon is that over 60% of landslides in the entire study area are concentrated in
the SWW plate; thus, the predictive model based on landslide data from the SWW plate
better reflects the actual landslide distribution. Otherwise, due to the spatial differences in
lithology, although the overall distribution of the prediction results of Models 3 and 4 is
consistent, there are still differences at the local scale. This phenomenon could be linked to
the varied landslide abundance developed in different lithological types.
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