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Abstract: Owning to the nature of flood events, near-real-time flood detection and mapping is
essential for disaster prevention, relief, and mitigation. In recent years, the rapid advancement of
deep learning has brought endless possibilities to the field of flood detection. However, deep learning
relies heavily on training samples and the availability of high-quality flood datasets is rather limited.
The present study collected 16 flood events in the Yangtze River Basin and divided them into three
categories for different purpose: training, testing, and application. An efficient methodology of
dataset-generation for training, testing, and application was proposed. Eight flood events were
used to generate strong label datasets with 5296 tiles as flood training samples along with two
testing datasets. The performances of several classic convolutional neural network models were
evaluated with those obtained datasets, and the results suggested that the efficiencies and accuracies
of convolutional neural network models were obviously higher than that of the threshold method.
The effects of VH polarization, VV polarization, and the involvement of auxiliary DEM on flood
detection were investigated, which indicated that VH polarization was more conducive to flood
detection, while the involvement of DEM has a limited effect on flood detection in the Yangtze River
Basin. Convolutional neural network trained by strong datasets were used in near-real-time flood
detection and mapping for the remaining eight flood events, and weak label datasets were generated
to expand the flood training samples to evaluate the possible effects on deep learning models in
terms of flood detection and mapping. The experiments obtained conclusions consistent with those
previously made on experiments with strong datasets.

Keywords: near-real-time flood detection; synthetic aperture radar; deep learning; convolutional
neural network; Yangtze River basin

1. Introduction

Flooding is one of the most devastating natural hazards, causing economic losses
of about USD 25.5 billion and 6570 fatalities worldwide annually on average between
1970 and 2020 [1]. The property and life losses related to flooding have accelerated at
a rate of 6.3% and 1.5% per year, respectively, over the past five decades [2], and the
global economic losses caused by flooding are projected to increase by 17% over the next
20 years [3]. China is a seriously affected country frequently faced with flood disasters,
with huge economic losses and high fatalities [4,5]. For example, the flooding that took
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place in 2020 over southern China affected 30.2 million people, with an economic loss of
about CNY 61.79 billion. Near-real-time flood mapping becomes a very necessary action
to cope with flood rescue and disaster assessment with advancement of earth observation
technologies by satellites.

Satellite-based flood mapping provides an effective means for near-real-time flood
detection, which can accurately describe the dynamic processes of flooding in both the
temporal and spatial scales [6]. Compared with ground observations, satellite-based ob-
versations have unique advantages in flood detection and mapping, as they are quick,
accurate, and cover an extensive area. Flood detection using optical remote sensing is
mainly based on spectral information to detect waterbodies caused by undulation through
normalized difference water index (NDWI) [7–9] or other segmentation algorithms [10–12].
Although some satisfactory achievements have been made with these methods, inherent
limitations are yet involved in optical remote sensing-based flood detection due to its
daytime-only operating mode and weak cloud penetrating capability. Synthetic aperture
radar (SAR) can work under all-day and all-weather conditions, providing data support for
near-real-time flood detection [13,14]. The global threshold method is an efficient and con-
venient solution for flood mapping using SAR images [15,16]. However, due to the complex
characteristics of SAR images, the accurate detection of floods by image segmentations with
a single threshold is very difficult [17]. Threshold algorithms based on regional difference
have been proposed [11,18,19]. In addition, some automatic threshold algorithms, such as
Otsu [20,21], entropy threshold [22], and bimodal histogram [23] algorithms, are widely
used for flood detection. The undulated area by flooding can be detected very effectively
with the change detection method from flood and non-flood images. As an efficient and
convenient image segmentation approach, threshold method is very suitable for large-scale,
near-real-time flood detection. However, the threshold method cannot deal with complex
nonlinear problems, and has a lack of spatial consistency and is vulnerable to noise inter-
ference [24–26]. Therefore, many studies combine the change detection approach with the
threshold method to obtain different image-specific information, and then use the threshold
method to extract the changed part [27–29]. Nevertheless, both the threshold method and
change detection approach rely heavily on expert knowledge and require tedious satellite
image preprocessing [30]. Additionally, most flood detection methods are aimed at a single
flood event; they cannot be transferred and reused on other flood events.

Traditional flood detection methods are labor-intensive and time-consuming, depen-
dent on expert knowledge and face a lack of portability and scalability in most cases. In
recent decades, deep learning, especially convolutional neural networks (CNNs), has made
great achievements in remote sensing applications [31]. Convolutional neural network is
an end-to-end efficient self-learning model, and has been widely used in automatic flood
detection [32]. A flood detection dataset released for deep learning based on images from
Sentinel 1 and 2 by Bonafilia et al. [33] was evaluated with various CNNs focusing on
performances of those CNNs [26,34,35]. Performances of various CNNs compared with
those obtained by traditional threshold methods in flood detection of Poyang Lake by Dong
et al. suggested that CNNs can effectively suppress the speckle noise of SAR images [36].
Subsequently, an effective self-learning CNN model was proposed and applied to the urban
area of Houston, USA for flood detection by Li et al. [37]. Although great achievements
have been made in flood detection by using remotely sensed data with CNNs, several
challenges are yet to be solved in near-real-time flood detection, especially at large-scale
detections, i.e.,:

(1) As a data-driven algorithm, deep learning for flood detection lacks the support of
big data;

(2) Generation of training data for deep learning is currently a labor-intensive and time-
consuming task. Discovering a method to efficiently generate representative training
datasets for deep learning is an issue worth studying;

(3) Most flood detection methods developed in the past are aimed at a single flood event,
but they are difficult to transfer and reuse for other flood events.
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The performance of the satellite-based flood detection and mapping for an individual
flood events may be affected by sensors, satellite attitudes, or atmospheric conditions, etc.,
and flood training samples obtained from multiple flood events can be used with a deep
learning model to minimize errors introduced by those effects. To address these issues,
the present study took the Yangtze River Basin (YRB) as an experimental study region to
investigate the possibility of the application of SAR Images with a deep learning model for
developing a near-real-time flood detection and automatic mapping approach. The main
contents and highlights of present study can be summarized as follows:

(1) An efficient and fast approach for generating a standard flood training dataset for
flood detection with deep learning was proposed;

(2) Two kinds of standard flood training datasets generated by the proposed approach,
namely a strong and weak labeled dataset, were used to evaluate the performances of
several CNNs;

(3) Large-scale flood detection in the YRB was attempted with deep learning models.

The paper is structured as follows: Section 2 introduces the study area, satellite data,
and dataset production along with the method for dataset generation. Section 3 presents
the models proposed or adopted and the performance of each model trained with the
strong label dataset as well as the flood detection results of the Yangtze River basin. The
performances of the models trained with the weak label dataset, the perspective on the
change detection methods and some limitations of present study are discussed in Section 4.
The conclusions made from this study are given at the end of the paper.

2. Materials and Methods
2.1. Study Area and Data

Rising in the Tanggula Mountains in west-central China, the Yangtze River is about
3964 miles (6380 km) long and flows from its source in a glacier in Qinghai Province, east-
wards into the East China Sea at Shanghai, receiving water from over 700 tributaries along
the way with catchment area of about 1.8 million km2 in China. Under the influence of
monsoon climate, the YRB has long been subject to an uneven temporal–spatial distribution
of precipitation and temperature with a great inter-annual variation and concentrated intra-
annual distribution, one of the most important factors with respect to frequent flooding.
Floods occur almost every year in the Yangtze River basin. Many obvious anomalous
changes in the spatial–temporal distribution have been observed in recent decades com-
pared with the past, which may very likely upset the established balance between the
existing river runoff and flood control system and result in unexpected major disasters. In
the present study, for developing a near-real-time flood detection and automatic mapping
approach by using remote sensing with the deep learning model, 16 flood events that
took place in the past decade in the YRB were systematically investigated, and a total
of 32 Sentinel-1 SAR images acquired in flood and non-flood periods were used as main
satellite data sources in this study. Since only backscattering intensity data is needed for
SAR image processing, Ground Range Detected (GRD) data of Sentinel 1 was used in this
study. GRD data includes VH and VV polarization data, which are represented later in VH
and VV.The 12.5 m DEM generated from ALOS-PALSAR was used as auxiliary data for
CNN model training. To meet the requirements of near-real-time flood detection, 16 images
acquired in 8 flood events were used for the training and testing of the deep learning
models, and the remaining 16 images derived from the remaining 8 flood events were used
for flood detection. Table 1 lists the locations and flooding durations of the 16 selected
flood events, as well as the IDs of Sentinel-1 SAR images acquired in corresponding flood
events along with their usages in present study.
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Table 1. Information about the selected flood events and the corresponding Sentinel-1 SAR images
used in present study.

Flood Events Flood Period Image ID Train or Test

Dongting Lake 9 June 2016–3 July 2016 011CB0_5A05 0127C5_F17D Train and Test

Poyang Lake 30 May 2016–17 July 2016 011822_A928 012E7C_86E8 Train and Test

Middle Reaches of the
Yangtze River 11 June 2016–5 July 2016 011D9A_0801 0128B9_886D Train and Test

Poyang Lake 12 June 2017–6 July 2017 00A8F1_7632 00B2FB_3091 Train and Test

Juzhang River 5 July 2018–29 July 2018 02747C_139D 027F52_9A16 Train and Test

Huaihe River 7 August 2018–19 August 2018 02836E_FDCB 028919_2CEB Train and Test

Middle Reaches of the
Yangtze River 2 July 2019–14 July 2019 032778_40DE 032CC4_6DEF Train and Test

Ruan Jiang 30 July 2020–11 August 2020 03E75D_6DAE 03ED1D_5ADE Test

Dongting Lake 4 June 2017–10 July 2017 01C150_503B 01D14B_23A9 Application

Poyang Lake 20 June 2020–26 July 2020 029F8B_298B 02AF8A_BF3A Application

Chaohu Lake 3 July 2020–27 July 2020 03DB5D_91FD 03E612_6A3E Application

Fujiang River 14 August 2020–19 September 2020 03EE9F_8BAF 04012C_41B2 Application

Dongting Lake 19 June 2020–25 July 2020 03D52B_49F4 03E52E_6E8E Application

Middle and Lower Reaches
of the Yangtze River 14 June 2020–8 July 2020 03D2E0_90D3 03DD85_0B97 Application

Middle and Lower Reaches
of the Yangtze River 14 June 2020–8 July 2020 03D2E0_261F 03DD85_725A Application

Upper Reaches of the
Yangtze River 16 August 2021–21 September 2021 04A272_97F5 04B46E_4D61 Application

An overview of the YRB with the geo-location of the Sentinel-1 SAR images used in
the present study is shown in Figure 1.

2.2. Method

The flowchart of present study, as presented in Figure 2, consists of three parts. The
first part mainly involves the satellite data preprocessing. Six steps of preprocessing, i.e.,
orbit correction, thermal noise removal, radiometric calibration, speckle filtering, terrain
corrections, and decimalization, were applied to the Sentinel-1 images acquired in each of
the 8 selected flood events in the YRB, Meanwhile, DEM corresponding to the coverage
of each Sentinel-1 image was spliced, clipped, and resampled to ensure the same spatial
resolution of the DEM and Sentinel-1 images. The second part mainly dealt with the
generation of the standard training dataset for floods. First, a radar-based water index was
used to segment a rough undulated waterbody boundary of the studied flood event. Then,
a regional threshold method was adopted to refine the segmentation of the undulated extent
of the flood in association with manual annotation and auxiliary DEM data to generate the
strong label dataset by clipping VH, VV polarization, DEM, and label into tiles. The last
part is preliminary for flood detection and mapping. The CNN model was firstly trained
and evaluated by using previously obtained strong label datasets for flood detection and
mapping; the results obtained were further processed to produce the weak label flood
dataset that can be quickly expanded to the dynamic flooding database for near-real-time
flood detection and mapping.
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2.2.1. Dataset Production Method

The Sentinel-1 images acquired in each of the 8 selected flood events in the YRB were
preprocessed with SNAP software. Meanwhile, DEM corresponding to the coverage of each
Sentinel-1 images was spliced, clipped, and resampled to ensure the same spatial resolution
of the DEM and Sentinel-1 images; additionally, a water index method used in previous
studies [38] with a threshold of 0.3–0.4 for the rough segmentation of the flood waterbody
was applied to extract the extent of the undulated area. Formula (1) lists the definition of
the water index, where VH and VV represent polarized bands of the SAR images:

WI = ln(10 × VH × VV)− 8 (1)

It should be noted that the results derived in this way are just the rough segmentation
results with many errors. To obtain accurate deep learning labels of the flood training
samples, the careful selection of as many as possible regions of interest (ROI) covering
various ground objects to generate classified datasets into training and test samples were
necessary. As shown in Figure 3, among 8 flood events selected, 7 flood events were used
for training and testing, and 1 flood event was only used for testing. Two test datasets
were obtained to test the robustness and generalization of the model. As can be seen from
Figure 3, the training and test datasets include various land cover types to ensure the
balance of positive and negative samples for deep learning.

Once the selection of the ROIs and the generation of the training and testing datasets
were completed, the region threshold method was adopted to refine the segmentations
previously derived. In the present study, we found that for hilly areas with many terrain
shadows, a single segmentation threshold of 0.4 could correct most of the misclassifications
in rough segmentations, while for areas such as farmland and aquaculture, a threshold
of 0.15–0.2 was more appropriate. For mountainous areas with steep terrain, the mask
with a slope of 10 degrees was used to further correct the effects of terrain shadows. Thus
far, almost all processes were implemented programmatically in batches. The remaining
small part that was difficult to solve by the threshold method was completed by manual
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annotation. Figure 4 exhibits the results of fine segmentation. It can be seen from the figure
that most of the mis-segmented areas by the global threshold method are well corrected.
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In the present study, 32 Sentinel-1 SAR images corresponding to the selected 16 flood
events that took place in the last 2–6 years in YRB were utilized for the development of a
near-real-time flood detection method. Among these, 7 flood events were used for training
and testing the proposed deep learning model, and 1 flood event was only used for testing
the model. In this way, one strong label training dataset and two testing datasets were
obtained. Training the deep learning model requires the training data to be cropped into
256 × 256 tiles. The two testing datasets contain 13 and 14 images with 3000–5000 pixels,
and were generated for near-real-time flood detection and mapping, respectively. The
window cutting strategy was used for testing and application, so there was no need for
image cropping. The remaining 8 flood events were used for testing the proposed near-
real-time flood detection method. The tested results of the floods can be generated into
weak label datasets to improve productivity of the deep learning datasets. Some examples
of strong label datasets are shown in Figure 5.

2.2.2. Deep Learning Models Adopted for Experimental Studies

In this study, four popular deep learning models, FCN-8 [39], SegNet [40], UNet [41],
and DeepResUNet [42], were adopted in order to evaluate their performances in flood
detection. Fully Convolutional Networks (FCN) is the first deep learning model used for
semantic segmentation. In FCN, deconvolution is used to replace the full connection layer.
According to different deconvolution scales, FCN can be divided into FCN-8, FCN-16
and FCN-32. In this study, FCN-8, which has the most detailed features, was used for
flood detection. UNet is the most classic and widely used segmentation network. Since
many subsequent deep learning networks are proposed based on UNet, UNet structure
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was introduced specifically. UNet is a typical encoding (down-sampling) and decoding
(up-sampling) model. As shown in Figure 6, the encoder and decoder have a symmetri-
cal structure, including 4 up-sampling and 4 down-sampling layers, respectively. Each
sampling layer is composed of 2–3 stacked convolutional layers, and the number of convo-
lutional layer channels is 64, 128, 256, 512, and 1024. The feature maps of the up-sampling
and down-sampling layers are connected by a concatenation function to recover the details
lost during the max pooling. Similar to UNet in structure, SegNet has no concatenation
operation, but retains the index of max pooling in the down-sampling layer, so that the
detailed features can be reconstructed more accurately. DeepResUNet takes UNet as the
basic framework, but adds the residual structure of ResNet [43] and reduces the number of
convolutional channels to 128, making the model more efficient.
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2.2.3. Evaluation Metrics and Experimental Parameters

In this study, evaluation metrics, overall accuracy (OA), precision, recall and F1-score
were used to evaluate the flood detection results. OA refers to the proportion of correct
predictions in the total number of predictions. However, the assessment category is not
balanced, and OA may be misleading. Therefore, precision, recall rate, and F1-score were
also used for more objective model evaluation. For binary classification problems, the
confusion matrix intuitively shows the classification of each category by the classifier. The
formulas of confusion matrix and 4 evaluation indexes were given in Table 2.

Table 2. Metrics used in performance evaluation of the deep learning models adopted in flood detection.

Confusion Matrix

Label

Prediction
Water No-Water

Water True Positive (TP) False Negative (FN)

No-Water False Positive (FP) True Negative (TN)

Evaluation Metrics

Overall Accuracy (OA) OA = TP+TN
TP+TN+FP+FN

Precision (P) P = TP
TP+FP

Recall (R) R = TP
TP+FN

F1-score (F) F = 2×P×R
P+R

SNAP 8.0 software was used to preprocess Sentinel 1 images. Arcpy and Python were
used for the segmentation of coarse and fine and dataset generation. The experiments were
implemented under the TensorFlow framework on an NVIDIA GeForce RTX 2080Ti GPU.
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The Adam optimizer was used in computation, the training batch was set to 10, and the
number of iterations was 60,000. At the same time, an exponential decay strategy was used,
with 0.8 decays per 10,000 iterations and an initial learning rate of 0.0001. Table 2 lists the
details of the confusion matrix used in the present study for the performance evaluation of
deep learning models adopted for flood detection.

3. Experimental Results
3.1. Model Comparison Experiment

The performances of the five classic deep learning models, the global threshold method,
FCN-8, SegNet, UNet, and DeepResUNet, were compared with the two sets of test datasets
generated previously. As can be observed in Table 3, the global threshold method performed
the worst among all the models compared, especially for recall rates, which were about
15% lower than the other models. FCN-8 had the lowest F1-score of all CNN models,
and its precision was about 0.08 lower than those of other models. SegNet performed
well in precision, but its comprehensive index F1-score was slightly lower than those of
UNet and DeepResUNet. The performances of UNet and DeepResUNet were very close,
and their accuracies were better than those of other models. The performances of all the
models tested with test dataset 1 were better than those tested with test dataset 2, which
can probably be attributed to the fact that test dataset 2 came from different flood events
(refer to Figure 3 in Section 2.2.1).

Table 3. Comparisons of model performances with two different test datasets. The first line presents
the models’ performances with test dataset 1, and the second with test dataset 2. The values in bold
indicate the highest numbers for corresponding metrics.

Model OA Precision Recall F1_Score

Global Threshold Method
0.958 0.977 0.795 0.877

0.953 0.969 0.774 0.860

FCN-8
0.974 0.943 0.970 0.956

0.961 0.881 0.939 0.909

SegNet
0.983 0.991 0.953 0.971

0.975 0.981 0.897 0.937

UNet
0.986 0.980 0.973 0.976

0.978 0.951 0.942 0.947

DeepResUNet
0.986 0.985 0.967 0.976

0.979 0.970 0.927 0.948

Flood detection results were visualized by being compared with 5812 × 4260 images
derived with the test dataset 1, as exhibited in Figure 7. As can be observed, the missing
detected area of flood by the global threshold method was very large, mainly distributed in
the boundaries of rivers and lakes. This is attributed to the poor capability of the threshold
method in dealing with the heavily noise-affected SAR images surrounding the waterbody
boundaries. The wrongly detected area of flooding by FCN-8 was also large, mainly
concentrated along riverbanks and surrounding lakes, as well as the small waterlogged
areas. The result of SegNet was significantly better than that of FCN-8, while fewer areas
were mis-detected by UNet and DeepResUNet. UNet was therefore selected for the final
flood detection and mapping in present study.

3.2. Band Comparison Experiments

The influences of polarization mode and the application of DEM on flood detection
were also experimentally investigated. The results are summarized in Table 4. It can be
observed that the highest F1-score was achieved by using VH polarization alone. The
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precision of VV polarization is slightly higher than that of VH polarization, but the Recall
decreased considerably. However, no obvious improvements in various evaluation metrics
were seen after adding DEM to facilitate the experiments. This can probably be attributed to
the mountain samples in the training data set suppressing the effects of mountain shadows
on flood detection, while the DEM of the middle and lower reaches of the YRB pose limited
effects in nature on flood detection. When the VH, VV, and DEM channels were used as
inputs for the deep learning models, the accuracies for all the models were decreased. The
experiments indicated that the signal-to-noise ratio of VV and DEM bands was low, and
that the VH polarization has the best effect on flood detection in the YRB.
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Table 4. Band comparison experiments on UNet with two different test datasets. The first line
presents the model performances with test dataset 1, and the second with test dataset 2. The values
in bold indicate the highest numbers for corresponding metrics.

UNet/Band OA Precision Recall F1_Score

VH
0.986 0.980 0.973 0.976

0.978 0.951 0.942 0.947

VV
0.976 0.985 0.933 0.958

0.961 0.972 0.835 0.898

VH + DEM
0.986 0.976 0.975 0.976

0.978 0.941 0.952 0.947

VV + DEM
0.977 0.966 0.954 0.960

0.964 0.934 0.886 0.909

VH + VV
0.983 0.980 0.961 0.971

0.971 0.966 0.889 0.926

VH + VV + DEM
0.981 0.988 0.948 0.968

0.968 0.979 0.865 0.918

Similarly, flood detection results were visualized compared with 2688 × 2248 images
derived from test dataset 2 as exhibited in Figure 8 for investigating the performances of
UNet with different band combinations as inputs. As can be seen from Figure 8, only a few
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mis-detected or missing flooded areas existed in the map generated with UNet model with
VH polarization band as input, and the errors mainly concentrated on the areas surrounded
by the flooded area. The flood detection results with the VV band as input displayed poor
accuracy because of many errors in river edge detection. Adding auxiliary DEM as an input
did not improve the flood mapping results but introduced some noise. Band combination
of VH and VV polarization as input for the UNet did not improve the performances of the
model, most likely due to the reason previously analyzed.
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3.3. Near-Real-Time Flood Detection and Mapping

Using the UNet model trained with the strong label datasets generated previously,
the near real-time flood detection and mapping were performed with the remaining eight
flood events. Figure 9 presented the detection and mapping results of four flood events.
The first two columns of image maps shown in Figure 9 were the VH band images acquired
in each flood event and the images acquired in non-flood period, respectively. The red
part indicated the flood area detected and mapped with the UNet, obtained through the
difference between the detected results in flood period and non-flood period. The floods
shown in Figure 9a took place in the middle reach of the YRB over the Honghu Lake near
Jingzhou city, Hubei province, China. As can be seen from the figure, large areas of lakes
and the main stream of the YRB have been flooded. The floods shown in Figure 9b occurred
in the Chaohu Lake basin of Hefei City, Anhui Province. The area inundated by the flood
was mainly cultivated land and farmland, resulting in great agricultural losses during this
event. The serious floods detected with Sentinel-1 SAR images by the UNet, as presented
in Figure 9c, took place in July 2017 in Yueyang city, Hunan province, while regional floods
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occurred in the Dongting lake basin in Hunan province. As can be seen from the figure,
the Dongting lake expanded by more than two times in area, and an extensive area of
cultivated land has been inundated. The floods exhibited in Figure 9d happened in July
2020 over the Poyang Lake in Jiangxi province. During this flooding, many wetlands near
the Poyang Lake were heavily affected. From the above flood examples, it is obvious that
the flood areas in the YRB are mainly concentrated in the middle and lower reaches of the
basin, and the floods that took place in the key areas of the Poyang Lake and Dongting Lake
were especially serious. The remaining near-real-time flood detection results are shown in
Figures A1–A4.
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Figure 9. Near-real-time flood detection results obtained with Sentinel-1 SAR images by using deep
learning model of UNet. (a) Flood detected in Honghu Lake in 2020. (b) Flood detected in Chaohu
Lake basin in 2020. (c) Flood detected in Dongting Lake in 2017. (d) Flood detected in Poyang Lake
in 2020.

4. Discussion
4.1. Weak Label Datasets Experiments

From present study, it can be concluded that the CNN-based flood detection deep
learning model is efficient and fast, which is of great significance for improving the effi-
ciency of near real-time flood detection. In practice, however, quick and efficient flood
mapping technology is essential for disaster prevention and mitigation. To improve the effi-
ciency of flood mapping, the test results in Section 3.3 were made into a weak label dataset.
First of all, the detected flood image was cut into tiles with a size of 256 × 256 pixels, among
which some tiles were almost fully flood-covered while some were non-flooded. The al-
gorithm used for this processing eliminated 80% of such tiles, leaving 21,826 tiles to form
the weak label dataset that consisted of partly flood-covered and partly non-flood-covered
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tiles. With this weak label dataset, performances of deep learning models were evaluated
and comparison experiments with different band combinations as inputs were carried
out, and the results were shown in Table 5. Since the performances of those models have
been evaluated previously, here we combined two test datasets to reduce the number of
tables. Similar concluding remarks as obtained in performance evaluations of deep learning
models can be summarized:

(1) Performances of the UNet and DeepResUNet were fairly close with each other, while
FCN had the lowest flood detection accuracy;

(2) The VH polarization band as input for the deep learning models performed the
best in flood detection, while the DEM had a very minor affect on the results of
flood detection.

Table 5. Model performances with weak label datasets.

Model OA Precision Recall F1_Score

FCN-8 0.948 0.897 0.909 0.903

SegNet 0.955 0.912 0.917 0.914

UNet 0.958 0.930 0.911 0.920

DeepResUNet 0.958 0.927 0.912 0.919

UNet/Band OA Precision Recall F1_score

VH 0.958 0.930 0.911 0.920

VV 0.952 0.914 0.904 0.910

VH + DEM 0.958 0.933 0.905 0.919

VV + DEM 0.953 0.918 0.902 0.910

VH + VV 0.957 0.928 0.910 0.919

VH + VV + DEM 0.955 0.922 0.908 0.915

In general, the effect of the weak label dataset on the performance of the CNN model
was not that significant compared that of the strong label dataset. This could be attributed
to, on the one hand, the weak label dataset having not been selected and marked manually,
so the overall accuracy was lower than that of the strong label dataset; on the other hand,
the weak label dataset comes from eight flood events detected with UNet model, which
was completely different from the generating methods of the other eight flood events used
for training and testing. Therefore, we can refer to the flood detection results with the
strong label dataset to optimize the the flood detection results with the weak label dataset
for quickly expanding the training dataset of flood samples.

4.2. Change Detection Method

The methodological logic we followed for flood detection was based on the difference
between the detected waterbody extent in flood period and the natural waterbody extent in
the non-flood period to determine the flooded area. In fact, this is not a complete end-to-end
flood detection method. In CNN, images acquired in the flood and non-flood period can
be set as input, and the label is the changed part of the waterbody extent between these
two periods, so the output is the flooded area. Currently, two kinds of change detection
models based on the convolutional neural network are popularized. One is to use ordinary
neural network models to directly learn the features of the changes [44]. The other is to
use a Siamese neural network model that uses two networks to extract features, which
shares weights between the two networks [45,46]. The long short-term memory (LSTM)
convolutional neural network [47] with a time series of remote sensing images as input
has been proposed for change detection, which sheds light on the possibility to expand the
detected changes into a standard change detection dataset in the near future. However, it is
worth noting that the following issues remain as challenges:
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(1) The selection of areas with high classification accuracy to prevent noise interference;
(2) Just like the weak label dataset, some of the unchanged data labels need to be eliminated;
(3) The proportion of positive and negative training samples should be balanced, or a

special loss function, such as dice loss, needs to be considered.

4.3. Novelty, Potential, and Limitations

Deep learning is a data-driven algorithm. From the perspective of training and testing
datasets, the present study aims to improve the efficiency of flood detection and mapping
by using convolutional neural networks for large-scale near-real-time flood detection
and mapping. Four classic CNN models were used for large-scale near-real-time flood
detection and mapping in the present study. In the future, by means of spatial pyramid
structures, feature reuse structures or attention mechanisms, the number of convolutional
kernel channels can be reduced to reduce the redundancy of the model for improving the
accuracy of the model. Meanwhile, the integration of the strong label dataset and weak
label dataset can effectively facilitate long time series flood disaster monitoring. Sentinel
1 satellite is constrained by its revisit cycle for effective capture of flood events. More
SAR satellites are needed to enhance the generalization and applicability of datasets for
large-scale near-real-time flood detection and mapping.

In some studies, optical and SAR image data are used for flood detection to improve
the accuracy of the results [48–50]. The spectral information of optical data is easier to
identify water bodies from than SAR data. In the future, we can find optical images with
no or little cloud coverage during flooding events to expand the available datasets. The
floods in the YRB are concentrated in the middle and lower reaches of the basin where the
terrain is flat and DEM has limited effects. However, for flash floods, DEM are important
for identifying mountainous shadows that may pose serious effects on flood detection
and mapping.

5. Conclusions

The suddennature of flooding makes it difficult to seize the dynamic process and the
extent of flooding in real time which is essential in disaster prevention and mitigation.
Although deep learning is a promising technology to assist remote sensing for near-real-
time flood detection and mapping, constrained by the shortage of qualified flood training
and testing samples and the low efficiency of the data processing procedures involved,
the performances of the available deep learning models for large-scale flood detection and
mapping are far beyond the expectations. For breaking through the current predicament, a
semi-automatic flood dataset-generating method was proposed to counter the problems
in efficient generation of strong label datasets at first and then realize the near-real-time
flood detection and mapping in the YRB by using the generated strong label flood datasets
with association of CNN model. Several experiments were conducted to investigate the
performances of the proposed method under various conditions. It was concluded that
the VH polarization data of SAR images alone performed the best for flood detection,
while the involvement of the DEM as input for the CNN posed limited effects in flood
detection over the YRB. Meanwhile, the weak label dataset was generated according to the
near real-time flood detection results, and experiments on near real-time flood detection
with the expanded flood datasets proved that the weak label dataset positively affected
the flood detection. If the procedure for weak label dataset generation can be improved
(refer to the production method of the strong label dataset), the efficiency and precision
of flood datasets and flood detection and mapping results can be greatly improved. In
short, from the perspective of datasets, this study proves that CNN has great potential for
high-efficiency flood dataset generation as well as in near-real-time flood detection.
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