Mapping 10-m Resolution Rural Settlements Using Multi-Source Remote Sensing Datasets with the Google Earth Engine Platform
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Multi-Source Remote Sensing Datasets
- Sentinel-1 SAR GRD Data
- Sentinel-2 MSI
- VIIRS-DNB
- SRTM-DEM
3. Methodology
3.1. Overview of the Proposed Framework
3.2. Classification System and Training Sample Selection
3.3. Feature Selection
3.3.1. Spectral Indices
3.3.2. Textural Metrics
3.3.3. Nightlight Information
3.3.4. Terrain Features
3.4. Selection of Input Configurations
3.5. Random Forest (RF) Classifier
3.6. Accuracy Assessment
4. Results
4.1. Comparison of Classification Accuracies with Different Input Configurations and Importance of Input Features
4.2. Distribution of Rural Settlements
4.3. Accuracy Assessment using Validation Samples
5. Discussion
5.1. Multi-Source Data Contributions
5.2. Transferability of Trained Models
5.3. Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meyer, W.B.; Turner, B. Human population growth and global land-use/cover change. Annu. Rev. Ecol. Evol. Syst. 1992, 23, 39–61. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, H.; Chen, B.; Xia, X.; Li, P. China’s rural human settlements: Qualitative evaluation, quantitative analysis and policy implications. Ecol. Indic. 2018, 105, 398–405. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Li, Y. Coupling analysis of rural residential land and rural population in China during 2007—2015. J. Nat. Resour. 2018, 33, 3–13, (In Chinese with English Abstract). [Google Scholar]
- Yang, R.; Xu, Q.; Long, H. Spatial distribution characteristics and optimized reconstruction analysis of China’s rural settlements during the process of rapid urbanization. J. Rural Stud. 2016, 47, 413–424. [Google Scholar] [CrossRef]
- Long, H.; Tu, S.; Ge, D.; Li, T.; Liu, Y. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016, 47, 392–412. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Xu, R.; Zhang, H. Comparative study on rural settlement of different rural development type in North China Plain. Chin. J. Agric. Resour. Reg. Plan. 2019, 40, 1–8, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Lu, S.; Chen, Y. Spatio-temporal change of urban–rural equalized development patterns in China and its driving factors. J. Rural Stud. 2013, 32, 320–330. [Google Scholar] [CrossRef]
- Tan, M.; Li, X. The changing settlements in rural areas under urban pressure in China: Patterns, driving forces and policy implications. Landsc. Urban Plan. 2013, 120, 170–177. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, J.; Zhang, H.; Zhang, L.; Zhou, J. Application of ratio resident-area index to retrieve urban residential areas based on landsat TM Date. J. Nanjing Norm. Univ. 2006, 29, 118–121. (In Chinese) [Google Scholar]
- Chen, J.; Liu, Y.; Li, M.; Shen, C.; Cai, W. A new method of extracting residential areas based on remote sensing image. Geogr. Geo-Inf. Sci. 2010, 26, 72–75, (In Chinese with English Abstract). [Google Scholar]
- Zhong, P.; Wang, R. A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3978–3988. [Google Scholar] [CrossRef]
- Tao, C.; Tan, Y.; Yu, J.; Tian, J. Urban area detection using multiple Kernel Learning and graph cut. In Proceedings of the International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 83–86. [Google Scholar]
- Hoffmanhall, A.; Loboda, T.V.; Hall, J.V.; Carroll, M.L.; Chen, D. Mapping remote rural settlements at 30 m spatial resolution using geospatial data-fusion. Remote Sens. Environ. 2019, 233, 111386. [Google Scholar] [CrossRef]
- Li, T.; Zhu, X.; Pan, Y.; Liu, X.; Chen, S. A method for extracting rural residential land based on polarization scattering characteristics of POLSAR and normalized difference index of optical image. Remote Sens. Technol. Appl. 2016, 31, 157–164, (In Chinese with English Abstract). [Google Scholar]
- Li, X.; Gong, P. An “exclusion-inclusion” framework for extracting human settlements in rapidly developing regions of China from Landsat images. Remote Sens. Environ. 2016, 186, 286–296. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.; Rudloff, M.; Abdullaev, I.; Thiel, M.; Low, F.; Lamers, J.P.A. Measuring rural settlement expansion in Uzbekistan using remote sensing to support spatial planning. Appl. Geogr. 2015, 62, 29–43. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X. An edge-suppressed points voting method for extracting rural residential areas from high spatial resolution images. Remote Sens. Lett. 2017, 8, 380–388. [Google Scholar] [CrossRef]
- Fu, Z.; Liang, X. Residential land extraction from high spatial resolution optical images using multifeature hierarchical method. J. Appl. Remote Sens. 2019, 13, 026515. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Song, W.; Zhang, Y. Review of data preparation for rural settlement evolution research. Resour. Sci. 2019, 41, 689–700, (In Chinese with English Abstract). [Google Scholar]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Mertes, C.M.; Schneider, A.; Sullamenashe, D.; Tatem, A.J.; Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 2015, 158, 331–347. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, F.; Li, C.; Zhu, T. Functional transition of the rural settlement: Analysis of land-use differentiation in a transect of Beijing, China. Habitat Int. 2014, 41, 262–271. [Google Scholar] [CrossRef]
- Tian, G.; Qiao, Z.; Zhang, Y. The investigation of relationship between rural settlement density, size, spatial distribution and its geophysical parameters of China using Landsat TM images. Ecol. Model. 2012, 231, 25–36. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y. Towards a common validation sample set for global land-cover mapping. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117, 72–82. [Google Scholar] [CrossRef]
- Xu, H.; Liu, C.; Wang, J.; Qi, S. Study on extraction of citrus orchard in Gannan region based on google earth engine platform. J. Geo-Inf. Sci. 2018, 20, 396–404, (In Chinese with English Abstract). [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L. A global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, C.; Ma, L.; Schmitt, M. Mapping the land cover of Africa at 10 m resolution from multi-source remote sensing data with Google Earth Engine. Remote Sens. 2020, 12, 602. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Li, X.; Zhang, L.; Chen, D.; Liu, S.A.; Ji, H. Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone. Aquaculture 2020, 520, 734666. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, X.; Li, D.; Deng, Q.; Xu, J.; Shi, X.; Qin, Y. Urban spatial correlation characteristics and intrinsic mechanism in the Yangtze River Delta region. Acta Geogr. Sin. 2020, 75, 1301–1315, (In Chinese with English Abstract). [Google Scholar]
- Tan, H.; Chen, Y.; Wilson, J.P.; Zhang, J.; Cao, J.; Chu, T. An eigenvector spatial filtering based spatially varying coefficient model for PM2.5 concentration estimation: A case study in Yangtze River Delta region of China. Atmos. Environ. 2020, 223, 117205. [Google Scholar] [CrossRef]
- Ma, X.; Li, Q.; Shen, Y. Morphological difference and regional types of rural settlements in Jiangsu Province. Acta Geogr. Sin. 2012, 67, 516–525, (In Chinese with English Abstract). [Google Scholar]
- Conners, R.W.; Trivedi, M.M.; Harlow, C.A. Segmentation of a high resolution urban scene using texture operators. Graph. Models Graph. Models Image Process. Comput. Vis. Graph. Image Process. 1984, 25, 273–310. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Y.; Lin, H. Seasonal effects of impervious surface estimation in subtropical monsoon regions. Int. J. Digit. Earth 2014, 7, 746–760. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef] [Green Version]
- Räsänen, A.; Kuitunen, M.; Tomppo, E.; Lensu, A. Coupling high-resolution satellite imagery with ALS-based canopy height model and digital elevation model in object-based boreal forest habitat type classification. ISPRS J. Photogramm. Remote Sens. 2014, 94, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Liu, X. Using CART Algorithm Extract Residential from Landsat8 Images: Zhang Ye, Lin Ze Case Study; Lanzhou University: Lan Zhou, China, 2015; (In Chinese with English Abstract). [Google Scholar]
- Wang, F.; Ding, J.; Wu, M. Remote sensing monitoring models of soil salinization based on NDVI-SI feature space. Trans. Chin. Soc. Agric. Eng. 2010, 26, 168–173, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Ma, X.; Chen, D. Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Lin, H.; Gamba, P.; Liu, X. Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale. Remote Sens. Environ. 2020, 242, 111757. [Google Scholar] [CrossRef]
- Foody, G.M. Sample size determination for image classification accuracy assessment and comparison. Int. J. Remote Sens. 2009, 30, 5273–5291. [Google Scholar] [CrossRef]
- Melchiorri, M.; Florczyk, A.J.; Freire, S.; Schiavina, M.; Pesaresi, M.; Kemper, T. Unveiling 25 years of planetary urbanization with remote sensing: Perspectives from the global human settlement layer. Remote Sens. 2018, 10, 768. [Google Scholar] [CrossRef] [Green Version]
- Behnamian, A.; Millard, K.; Banks, S.N.; White, L.; Richardson, M.; Pasher, J. A Systematic approach for variable selection with random forests: achieving stable variable importance values. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1988–1992. [Google Scholar] [CrossRef] [Green Version]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. Local Climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Qiu, C.; Mou, L.; Schmitt, M.; Zhu, X.X. Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network. ISPRS J. Photogramm. Remote Sens. 2019, 154, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.X.; Hu, J.; Qiu, C.; Shi, Y.; Kang, J.; Mou, L.; Bagheri, H.; Haberle, M.; Hua, Y.; Huang, R. So2Sat LCZ42: A Benchmark dataset for global local climate zones classification. IEEE Geosci. Remote Sens. Mag. 2020, arXiv:1912.12171. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Qiu, C.; Schmitt, M.; Geis, C.; Chen, T.K.; Zhu, X.X. A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 163, 152–170. [Google Scholar] [CrossRef]
- Corbane, C.; Syrris, V.; Sabo, F.; Politis, P.; Melchiorri, M.; Pesaresi, M.; Soille, P.; Kemper, T. Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery. arXiv 2020, arXiv:abs/2006.03267. [Google Scholar]
Data Type | Product | Resolution | Date | Scenes |
---|---|---|---|---|
Sentinel-1 SAR | Sentinel-1 SAR GRD: C-band Synthetic Aperture Radar Ground Range Detected, log scaling | 10 m | 1 January 2019–31 December 2019 | 1025 |
Sentinel-2 MSI | Sentinel-2 MSI: MultiSpectral Instrument, Level-1C | 10 m | 1 January 2019–31 May 2019 | 526 |
VIIRS-DNB | VIIRS Nighttime Day/Night Band Composites Version 1 | 15 arc seconds | 1 January 2019–31 December 2019 | 12 |
SRTM-DEM | SRTM Digital Elevation Data 30m | 1 arc second | 11 February 2000–22 February 2000 | 1 |
Number | Features | Equation | Reference |
---|---|---|---|
1 | NDVImax | [23,47] | |
2 | MNDWI | [48] | |
3 | NDBI | [49] | |
4 | NBI | [10] | |
5 | BOBI | [50] | |
6 | RRI | [9] | |
7 | SI | [51] | |
8 | VV | [46] | |
9 | VH | ||
10, 11 | Dissimilarity of VV and VH | ||
12, 13 | Variance of VV and VH | ||
14, 15 | Entropy of VV and VH | ||
16 | NTL | VANUI = (1-NDVI)*NTL | [52] |
17 | VANUI | ||
18 | Elevation | [42] | |
19 | Slope |
Northern Plains | Reference | |||
---|---|---|---|---|
RSET | Non-RSET | UA | ||
Classified | RSET | 99 | 20 | 0.83 |
Non-RSET | 11 | 654 | 0.98 | |
PA | 0.90 | 0.97 | ||
OA | 0.96 | |||
Kappa | 0.84 | |||
East Coast | Reference | |||
RSET | Non-RSET | UA | ||
Classified | RSET | 104 | 17 | 0.86 |
Non-RSET | 13 | 650 | 0.97 | |
PA | 0.89 | 0.98 | ||
OA | 0.96 | |||
Kappa | 0.85 | |||
Central Hills | Reference | |||
RSET | Non-RSET | UA | ||
Classified | RSET | 47 | 13 | 0.78 |
Non-RSET | 6 | 462 | 0.99 | |
PA | 0.89 | 0.97 | ||
OA | 0.96 | |||
Kappa | 0.81 | |||
Southern Mountain | Reference | |||
RSET | Non-RSET | UA | ||
Classified | RSET | 9 | 2 | 0.78 |
Non-RSET | 3 | 222 | 0.99 | |
PA | 0.75 | 0.99 | ||
OA | 0.98 | |||
Kappa | 0.77 |
Shanghai | Reference | |||||
---|---|---|---|---|---|---|
Classified | Optical | Veg | Wat | RSET | Urb | Otd |
Veg | 29 | 0 | 0 | 5 | 0 | |
Wat | 0 | 38 | 0 | 3 | 0 | |
RS | 3 | 0 | 35 | 4 | 0 | |
Urb | 2 | 3 | 2 | 30 | 0 | |
Oth | 0 | 0 | 5 | 4 | 36 | |
Classified | Multisource | Veg | Wat | RSET | Urb | Oth |
Veg | 34 | 0 | 0 | 0 | 0 | |
Wat | 0 | 41 | 0 | 0 | 0 | |
RS | 1 | 0 | 39 | 1 | 1 | |
Urb | 1 | 0 | 0 | 36 | 0 | |
Oth | 0 | 1 | 2 | 3 | 39 | |
Hangzhou | Reference | |||||
Classified | Optical | Veg | Wat | RSET | Urb | Oth |
Veg | 36 | 0 | 0 | 3 | 1 | |
Wat | 1 | 40 | 0 | 3 | 0 | |
RS | 0 | 0 | 23 | 9 | 2 | |
Urb | 5 | 1 | 1 | 29 | 1 | |
Oth | 1 | 0 | 4 | 5 | 29 | |
Classified | Multisource | Veg | Wat | RSET | Urb | Oth |
Veg | 38 | 0 | 0 | 0 | 2 | |
Wat | 1 | 42 | 1 | 0 | 0 | |
RS | 0 | 0 | 34 | 0 | 0 | |
Urb | 1 | 0 | 2 | 34 | 0 | |
Oth | 4 | 0 | 0 | 0 | 35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Li, X.; Wei, X.; Liu, W.; Zhang, L.; Wang, L. Mapping 10-m Resolution Rural Settlements Using Multi-Source Remote Sensing Datasets with the Google Earth Engine Platform. Remote Sens. 2020, 12, 2832. https://doi.org/10.3390/rs12172832
Ji H, Li X, Wei X, Liu W, Zhang L, Wang L. Mapping 10-m Resolution Rural Settlements Using Multi-Source Remote Sensing Datasets with the Google Earth Engine Platform. Remote Sensing. 2020; 12(17):2832. https://doi.org/10.3390/rs12172832
Chicago/Turabian StyleJi, Hanyu, Xing Li, Xinchun Wei, Wei Liu, Lianpeng Zhang, and Lijuan Wang. 2020. "Mapping 10-m Resolution Rural Settlements Using Multi-Source Remote Sensing Datasets with the Google Earth Engine Platform" Remote Sensing 12, no. 17: 2832. https://doi.org/10.3390/rs12172832