Perceptions of Women’s Safety in Transient Environments and the Potential Role of AI in Enhancing Safety: An Inclusive Mobility Study in India
Abstract
:1. Introduction
1.1. Safety Issues Faced by Women While Traveling
1.2. Shared Mobility with the Intersectionality of Gender
1.3. Influence of Environment on Women’s Travel Safety
1.4. Study Aims
2. Materials and Methods
2.1. Travel Mobility Questionnaire Design
- Mode choice,
- Reasons linked to mode choice,
- Built environment,
- Impact of fear and feelings,
- Future mobility,
- Technology, and
- Socio-demographics.
- Group 1: Travel behaviour, which included questions about mode choice and reasons associated with this choice;
- Group 2: Impact on travel behaviour, which included questions about the influence of the built environment on the travel experience and impact of these feelings on travel behaviour;
- Group 3: Future mobility options, which included questions about participants’ willingness to adopt future travel options related to ride sources (e.g., ride-hailing and ride-sharing services);
- Group 4: Technology solutions, which presented potential solutions to reduce gender-based violence in transient environments;
- Group 5: Socio-demographic characteristics (e.g., questions about participants’ gender and age).
2.2. Data
2.3. Data Analysis
3. Results and Discussion
3.1. Participants Socio-Demographics
3.2. Travel Behaviour and Perceptions towards Women’s Safety in Transient Environments
3.2.1. Travel Behaviour
3.2.2. Perceptions towards Women’s Safety during Travelling
3.2.3. Future Travel Options
3.2.4. Technical Solutions to Enhance Women’s Safety on Transient Environments
3.3. Relationship between Responders Rating for Travel Behaviour, Influence of the Built Environment, and Safety Perception
3.4. Sentiment Analysis
3.5. Limitations
4. Implications
- -
- Smart CCTV/AI-powered CCTV [31] systems can monitor public transport for suspicious activities or unusual behaviour. They can alert security personnel in real time if they detect potential threats or harassment. Additionally, AI-driven facial recognition [52] enhances these systems by identifying known offenders or tracking suspicious individuals, aiding authorities in taking preventive action.
- -
- Crime hotspot prediction [30]: AI can analyse historical data and current trends to forecast high-risk areas and times for incidents, enabling authorities to allocate resources more effectively. Additionally, AI can recommend safer routes based on real-time data, historical patterns, and predictive insights, which could help women avoid potentially dangerous areas.
- -
- Personal safety [53]: AI-enhanced safety apps can enable women to send instant alerts to emergency contacts or authorities if they feel threatened. These apps can include features such as location tracking and automatic notifications. Additionally, AI can support voice-activated safety functions, allowing users to send alerts or request help without manual interaction, or even through health metrics monitoring.
- -
- Sentiment analysis [54]: AI can efficiently analyse passenger feedback and reports to identify common safety issues and emerging trends, providing valuable and quick insights to transport authorities to enhance safety measures, without the need for manual, time-consuming review.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Technical Solutions (Q8_1–Q8_4) | M | SD | Relative Frequencies | ||||
---|---|---|---|---|---|---|---|
Not at All Effective (1) | Slightly (2) | Moderately (3) | Very Effective (4) | Extremely Effective (5) | |||
Q8_1: Carrying a personal safety alarm. | 3.22 | 1.22 | 9.76 | 17.07 | 31.71 | 24.39 | 17.07 |
Q8_2: Using the helpline for women. | 3.24 | 0.92 | 0.00 | 19.51 | 48.78 | 19.51 | 12.20 |
Q8_3: Using a fist band, (in-built sensor for heart rate and body temperature, to detect an emergency and send an alert signal along with GPS location to police and family members. | 3.76 | 1.07 | 4.88 | 4.88 | 26.83 | 36.59 | 26.83 |
Q8_4: CCTV cameras will be installed and visible in the transit spaces. | 3.90 | 1.18 | 2.44 | 14.63 | 14.63 | 26.83 | 41.46 |
Appendix B
Q1_1 | Q1_2 | Q1_3 | Q1_4 | Q1_5 | Q1_6 | Q1_7 | Q1_8 | Q2_1 | Q2_2 | Q2_3 | Q2_4 | Q2_5 | Q2_6 | Q2_7 | Q3_1 | Q3_2 | Q3_3 | Q3_4 | Q3_5 | Q3_6 | Q3_7 | Q4_1 | Q4_2 | Q4_3 | Q4_4 | Q4_5 | Q4_6 | Q4_7 | Q5 | Q6 | Q7 | Q8_1 | Q8_2 | Q8_3 | Q8_4 | Age | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1_1 | 1.000 | ||||||||||||||||||||||||||||||||||||
Q1_2 | 0.021 | 1.000 | |||||||||||||||||||||||||||||||||||
Q1_3 | −0.115 | 0.635 ** | 1.000 | ||||||||||||||||||||||||||||||||||
Q1_4 | −0.165 | 0.434 ** | 0.667 ** | 1.000 | |||||||||||||||||||||||||||||||||
Q1_5 | 0.139 | 0.233 | 0.089 | 0.091 | 1.000 | ||||||||||||||||||||||||||||||||
Q1_6 | −0.338 | 0.323 * | 0.475 ** | 0.291 | −0.024 | 1.000 | |||||||||||||||||||||||||||||||
Q1_7 | 0.008 | 0.290 | 0.405 ** | 0.471 ** | 0.077 | 0.198 | 1.000 | ||||||||||||||||||||||||||||||
Q1_8 | 0.397 * | 0.260 | 0.402 ** | 0.365 * | 0.080 | −0.104 | 0.447 ** | 1.000 | |||||||||||||||||||||||||||||
Q2_1 | 0.432 ** | −0.143 | −0.123 | −0.125 | 0.054 | −0.313 * | −0.297 | 0.043 | 1.000 | ||||||||||||||||||||||||||||
Q2_2 | −0.038 | −0.373 * | −0.500 ** | −0.424 ** | 0.111 | −0.020 | −0.157 | −0.250 | −0.027 | 1.000 | |||||||||||||||||||||||||||
Q2_3 | −0.079 | −0.088 | −0.254 | −0.140 | −0.041 | −0.022 | −0.022 | −0.262 | −0.122 | 0.417 ** | 1.000 | ||||||||||||||||||||||||||
Q2_4 | −0.117 | 0.051 | −0.043 | 0.066 | −0.079 | 0.186 | −0.054 | −0.096 | −0.003 | 0.200 | 0.493 ** | 1.000 | |||||||||||||||||||||||||
Q2_5 | −0.130 | 0.036 | 0.013 | 0.072 | −0.022 | 0.158 | −0.071 | −0.085 | 0.061 | 0.157 | 0.559 ** | 0.693 ** | 1.000 | ||||||||||||||||||||||||
Q2_6 | 0.329 * | 0.351 * | 0.247 | 0.246 | 0.053 | −0.257 | −0.053 | 0.263 | 0.223 | −0.109 | −0.110 | 0.191 | 0.012 | 1.000 | |||||||||||||||||||||||
Q2_7 | 0.185 | 0.143 | 0.119 | 0.280 | −0.146 | −0.242 | −0.032 | 0.210 | 0.156 | −0.063 | 0.165 | 0.183 | 0.225 | 0.653 ** | 1.000 | ||||||||||||||||||||||
Q3_1 | 0.089 | −0.227 | −0.061 | −0.100 | 0.172 | 0.046 | 0.000 | 0.111 | 0.040 | −0.014 | −0.175 | −0.086 | 0.084 | −0.233 | −0.087 | 1.000 | |||||||||||||||||||||
Q3_2 | 0.277 | −0.282 | −0.305 | −0.292 | 0.134 | −0.012 | −0.002 | −0.054 | 0.170 | 0.246 | −0.054 | −0.048 | 0.009 | −0.239 | −0.231 | 0.478 ** | 1.000 | ||||||||||||||||||||
Q3_3 | 0.196 | −0.078 | −0.190 | −0.176 | 0.479 ** | −0.211 | −0.152 | −0.047 | 0.144 | 0.004 | −0.136 | −0.083 | −0.067 | −0.090 | −0.272 | 0.533 ** | 0.305 | 1.000 | |||||||||||||||||||
Q3_4 | 0.179 | 0.078 | 0.030 | −0.132 | 0.005 | −0.013 | 0.087 | 0.056 | −0.342 * | −0.035 | −0.076 | −0.072 | −0.133 | −0.012 | −0.168 | 0.190 | 0.128 | 0.274 | 1.000 | ||||||||||||||||||
Q3_5 | −0.098 | 0.084 | −0.004 | 0.053 | 0.290 | 0.150 | 0.083 | −0.179 | 0.048 | 0.229 | 0.089 | −0.027 | 0.049 | −0.146 | −0.139 | 0.162 | 0.488 ** | 0.204 | 0.011 | 1.000 | |||||||||||||||||
Q3_6 | 0.091 | −0.227 | −0.061 | −0.054 | 0.185 | −0.070 | −0.114 | 0.069 | 0.225 | 0.041 | −0.313 * | −0.280 | −0.084 | −0.069 | 0.004 | 0.566 ** | 0.373 * | 0.430 ** | 0.070 | 0.373 * | 1.000 | ||||||||||||||||
Q3_7 | 0.248 | −0.208 | −0.122 | 0.113 | −0.139 | −0.088 | 0.050 | −0.039 | 0.201 | 0.102 | −0.162 | 0.019 | 0.023 | 0.061 | 0.068 | 0.237 | 0.263 | 0.206 | 0.187 | 0.263 | 0.237 | 1.000 | |||||||||||||||
Q4_1 | 0.198 | −0.211 | −0.185 | −0.307 | 0.094 | 0.085 | −0.130 | −0.109 | 0.062 | 0.223 | −0.159 | −0.391 | −0.178 | −0.443 ** | −0.555 ** | 0.307 | 0.327 * | 0.264 | 0.394 * | 0.119 | 0.201 | 0.250 | 1.000 | ||||||||||||||
Q4_2 | −0.023 | −0.227 | −0.207 | −0.344 | −0.136 | 0.113 | −0.296 | −0.124 | 0.040 | 0.084 | −0.014 | 0.098 | 0.060 | −0.013 | −0.049 | 0.024 | 0.162 | 0.119 | −0.050 | −0.049 | −0.085 | 0.063 | 0.094 | 1.000 | |||||||||||||
Q4_3 | 0.236 | −0.048 | −0.068 | −0.268 | −0.016 | 0.065 | −0.026 | 0.076 | 0.089 | 0.048 | −0.077 | −0.197 | −0.085 | −0.100 | 0.014 | 0.124 | 0.295 | 0.079 | −0.009 | 0.075 | 0.011 | 0.150 | 0.043 | 0.463 ** | 1.000 | ||||||||||||
Q4_4 | −0.162 | 0.018 | −0.069 | −0.121 | −0.017 | 0.135 | −0.102 | −0.080 | 0.030 | 0.162 | 0.074 | −0.058 | 0.222 | −0.234 | −0.100 | 0.120 | 0.120 | 0.077 | 0.127 | 0.220 | 0.120 | 0.156 | 0.272 | 0.018 | 0.306 | 1.000 | |||||||||||
Q4_5 | −0.247 | −0.212 | 0.124 | 0.184 | 0.017 | 0.126 | 0.036 | −0.017 | −0.107 | −0.072 | −0.106 | −0.020 | −0.113 | −0.229 | −0.081 | 0.222 | 0.204 | −0.089 | −0.070 | 0.103 | 0.119 | 0.206 | 0.060 | −0.088 | −0.029 | 0.077 | 1.000 | ||||||||||
Q4_6 | 0.093 | −0.171 | −0.070 | −0.049 | −0.184 | 0.088 | 0.050 | 0.024 | −0.017 | −0.103 | −0.172 | −0.165 | −0.075 | −0.276 | −0.366 | 0.204 | 0.146 | 0.130 | 0.088 | −0.306 | −0.028 | 0.172 | 0.346 * | 0.088 | 0.094 | 0.040 | 0.019 | 1.000 | |||||||||
Q4_7 | 0.013 | −0.106 | −0.139 | −0.236 | 0.165 | −0.314 | 0.091 | −0.164 | 0.007 | 0.010 | −0.033 | −0.190 | −0.217 | −0.091 | −0.117 | 0.111 | 0.145 | 0.121 | 0.038 | 0.298 | 0.268 | −0.123 | −0.026 | −0.360 | −0.240 | −0.382 | −0.179 | −0.226 | 1.000 | ||||||||
Q5 | −0.079 | −0.311 * | 0.105 | −0.025 | −0.353 * | 0.109 | 0.037 | 0.045 | −0.082 | 0.112 | 0.075 | 0.072 | −0.097 | 0.069 | 0.053 | −0.005 | −0.033 | −0.129 | 0.059 | −0.225 | −0.005 | 0.092 | −0.019 | −0.005 | −0.231 | −0.274 | 0.249 | 0.170 | 0.105 | 1.000 | |||||||
Q6 | 0.124 | 0.126 | 0.169 | 0.287 | −0.104 | 0.058 | 0.237 | 0.157 | −0.204 | 0.066 | 0.151 | 0.130 | −0.033 | 0.277 | 0.138 | −0.190 | 0.036 | −0.121 | 0.195 | 0.036 | −0.190 | 0.149 | −0.210 | −0.327 * | 0.007 | −0.183 | 0.010 | −0.018 | −0.029 | .370 * | 1.000 | ||||||
Q7 | 0.174 | 0.102 | 0.155 | 0.104 | 0.234 | −0.009 | −0.019 | 0.139 | −0.050 | −0.112 | −0.151 | −0.304 | −0.172 | 0.108 | 0.192 | 0.125 | −0.064 | 0.146 | −0.017 | 0.139 | 0.229 | 0.110 | 0.080 | 0.020 | 0.106 | −0.227 | 0.146 | −0.161 | 0.162 | 0.144 | 0.013 | 1.000 | |||||
Q8_1 | 0.062 | −0.144 | −0.074 | −0.002 | −0.198 | −0.335 * | −0.122 | 0.150 | 0.200 | −0.230 | 0.071 | 0.195 | −0.022 | 0.341 * | 0.385 * | 0.090 | −0.172 | 0.169 | 0.012 | −0.085 | −0.018 | 0.068 | −0.421 ** | 0.217 | −0.019 | −0.251 | −0.098 | −0.204 | 0.062 | 0.155 | 0.045 | 0.142 | 1.000 | ||||
Q8_2 | 0.074 | 0.061 | −0.009 | 0.166 | −0.046 | −0.021 | 0.048 | 0.174 | 0.018 | −0.063 | −0.038 | 0.213 | 0.104 | 0.362 * | 0.214 | −0.124 | −0.161 | 0.016 | −0.227 | −0.039 | −0.189 | 0.183 | −0.303 | 0.229 | −0.083 | −0.175 | −0.205 | −0.067 | −0.179 | 0.183 | 0.350 * | 0.254 | 0.314 * | 1.000 | |||
Q8_3 | 0.114 | −0.194 | −0.248 | −0.142 | −0.087 | −0.052 | −0.403 ** | −0.060 | 0.006 | −0.007 | 0.160 | 0.378 * | 0.193 | 0.092 | 0.077 | 0.059 | −0.075 | 0.241 | −0.003 | −0.027 | 0.020 | −0.098 | −0.164 | 0.237 | −0.019 | −0.052 | −0.107 | −0.083 | −0.204 | −0.157 | 0.069 | −0.149 | 0.350 * | 0.253 | 1.000 | ||
Q8_4 | −0.292 | −0.131 | −0.288 | −0.042 | 0.125 | −0.121 | −0.168 | −0.250 | −0.358 * | 0.099 | 0.205 | 0.185 | 0.191 | 0.029 | 0.025 | 0.103 | −0.071 | 0.214 | −0.124 | 0.182 | 0.000 | 0.044 | −0.151 | 0.231 | −0.041 | −0.111 | 0.131 | −0.135 | 0.063 | −0.062 | 0.052 | 0.264 | 0.241 | 0.361 * | 0.375 * | 1.000 | |
Age | −0.251 | −0.042 | −0.130 | −0.053 | 0.249 | 0.272 | −0.101 | −0.278 | −0.287 | 0.197 | 0.027 | 0.211 | 0.005 | −0.178 | −0.357 * | 0.107 | 0.252 | 0.394 * | 0.101 | 0.148 | 0.031 | −0.003 | −0.026 | 0.190 | 0.084 | 0.014 | 0.110 | 0.044 | −0.089 | −0.032 | 0.137 | −0.193 | −0.190 | −0.047 | 0.239 | 0.202 | 1 |
References
- Tovaas, K.; Govender, S.; Brand, R.; Masnata, M.; Melchiorre, C.; Lorenzini, A.; Sala, L.; Brooke, S.; Cottrill, C.; Wright, S.; et al. Compilation of 51 Case Study Profiles; Overviews and In-Depth Investigations; Report to the European Union’s Horizon Research and Innovation Programme Funded INCLUSION Project. 2019. Available online: https://www.rupprecht-consult.eu/fileadmin/migratedRupprechtAssets/Documents/INC_D3.3_51-case-study-profiles_pending-EU-approval.pdf (accessed on 23 December 2022).
- Kawgan-Kagan, I.; Popp, M. Sustainability and Gender: A mixed-method analysis of urban women’s mode choice with particular consideration of e-carsharing. Transp. Res. Procedia 2018, 31, 146–159. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Kester, J.; Noel, L.; de Rubens, G.Z. The demographics of decarbonizing transport: The influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Glob. Environ. Chang. 2018, 52, 86–100. [Google Scholar] [CrossRef]
- DfT. National Travel Survey 2021: Trips by Purpose, Age and Sex. Department for Transport, UK Government. 2022. Available online: https://www.gov.uk/government/statistics/national-travel-survey-2021/national-travel-survey-2021-trips-by-purpose-age-and-sex (accessed on 7 September 2024).
- Saigal, T.; Vaish, A.K.; Rao, N.V.M. Gender and class distinction in travel behavior: Evidence from India. Ecofeminism Clim. Chang. 2021, 2, 42–48. [Google Scholar] [CrossRef]
- Loukaitou-Sideris, A. Fear and safety in transit environments from the women’s perspective. Secur. J. 2014, 27, 242–256. [Google Scholar] [CrossRef]
- Gardner, N.; Cui, J.; Coiacetto, E. Harassment on public transport and its impacts on women’s travel behaviour. Aust. Plan. 2017, 54, 8–15. [Google Scholar] [CrossRef]
- Rosenbloom, S. Women’s Travel Patterns, Attitudes, and Constraints Around the World. Int. Encycl. Transp. 2021, 193–202. [Google Scholar] [CrossRef]
- Adams, L.; Hilger, L.; Moselen, E.; Basi, T.; Gooding, O.; Hull, J. 2020 Sexual Harassment Survey; Government Equalities Office, UK Government. 2021. Available online: https://assets.publishing.service.gov.uk/media/60f03e068fa8f50c77458285/2021-07-12_Sexual_Harassment_Report_FINAL.pdf (accessed on 7 September 2024).
- del Mar Rodas-Zuleta, M.; Cardona, S.; Escobar, D.A. Gender-based violence and Women’s mobility, findings from a medium-sized Colombian city: A quantitative approach. J. Transp. Health 2022, 25, 101376. [Google Scholar] [CrossRef]
- Quinones, L.M. Sexual harassment in public transport in Bogotá. Transp. Res. Part A Policy Pract. 2020, 139, 54–69. [Google Scholar] [CrossRef]
- Shah, S.; Viswanath, K.; Vyas, S.; Gadepalli, S. Women and Transport in Indian Cities; Institute for Transportation & Development Policy (ITDP) and Safeipin: New Delhi. 2017. Available online: https://www.itdp.in/wp-content/uploads/2018/01/181202_Women-and-Transport-in-Indian-Cities.pdf (accessed on 7 September 2024).
- Ding, H.; Loukaitou-Sideris, A.; Agrawal, A.W. Sexual Harassment and Assault in Transit Environments: A Review of the English-language Literature. J. Plan. Lit. 2020, 35, 267–280. [Google Scholar] [CrossRef]
- Kumar, D.; Aggarwal, S. Analysis of Women Safety in Indian Cities Using Machine Learning on Tweets. In Proceedings of the Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019; pp. 159–162. [Google Scholar] [CrossRef]
- Choudhary, M.; Dube, S.; Verma, R. Women Safety in Public Transport. Int. J. Manag. Technol. Eng. 2018, 8, 162–170. [Google Scholar]
- Stark, J.; Meschik, M. Women’s everyday mobility: Frightening situations and their impacts on travel behaviour. Transp. Res. Part F Traffic Psychol. Behav. 2018, 54, 311–323. [Google Scholar] [CrossRef]
- Alemi, F.; Circella, G.; Handy, S.; Mokhtarian, P. What influences travelers to use Uber? Exploring the factors affecting the adoption of on-demand ride services in California. Travel. Behav. Soc. 2018, 13, 88–104. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Siiba, A.; Okyere, D.K.; Tuffour, J.P. Mobility-on-demand: An empirical study of internet-based ride-hailing adoption factors, travel characteristics and mode substitution effects. Transp. Res. Part C Emerg. Technol. 2020, 115, 102638. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, A.; Parida, M.; Chauhan, V. Service quality assessment of ride-sourcing services: A distinction between ride-hailing and ride-sharing services. Transp. Policy 2022, 127, 61–79. [Google Scholar] [CrossRef]
- Meshram, A.; Choudhary, P.; Velaga, N.R. Assessing and Modelling Perceived Safety and Comfort of Women during Ridesharing. Transp. Res. Procedia 2020, 48, 2852–2869. [Google Scholar] [CrossRef]
- Mukerjee, N. Investigating women’s safety in New Delhi’s urban transport systems. Int. J. Soc. Sci. Econ. Res. 2019, 4, 3876–3886. [Google Scholar]
- Renalds, A.; Smith, T.H.; Hale, P.J. A systematic review of built environment and health. Fam. Community Health 2010, 33, 68–78. [Google Scholar] [CrossRef]
- Basu, N.; Oviedo-Trespalacios, O.; King, M.; Kamruzzaman, M.; Haque, M.M. The influence of the built environment on pedestrians’ perceptions of attractiveness, safety and security. Transp. Res. Part F Traffic Psychol. Behav. 2022, 87, 203–218. [Google Scholar] [CrossRef]
- Brüchert, T.; Quentin, P.; Bolte, G. The relationship between perceived built environment and cycling or e-biking for transport among older adults–a cross-sectional study. PLoS ONE 2022, 17, e0267314. [Google Scholar] [CrossRef]
- Adlakha, D.; Hipp, J.A.; Sallis, J.F.; Brownson, R.C. Exploring Neighborhood Environments and Active Commuting in Chennai, India. Int. J. Environ. Res. Public Health 2018, 15, 1840. [Google Scholar] [CrossRef]
- Cerin, E.; Conway, T.L.; Adams, M.A.; Barnett, A.; Cain, K.L.; Owen, N.; Christiansen, L.B.; van Dyck, D.; Mitáš, J.; Sarmiento, O.L.; et al. Objectively-assessed neighbourhood destination accessibility and physical activity in adults from 10 countries: An analysis of moderators and perceptions as mediators. Soc. Sci. Med. 2018, 211, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Masud, M.; Chan, H.; Chan, W.; Brubacher, J.R. Intersectionality and urban mobility: A systematic review on gender differences in active transport uptake. J. Transp. Health 2023, 29, 101572. [Google Scholar] [CrossRef]
- Lorenc, T.; Petticrew, M.; Whitehead, M.; Neary, D.; Clayton, S.; Wright, K.; Thomson, H.; Cummins, S.; Sowden, A.; Renton, A. Environmental interventions to reduce fear of crime: Systematic review of effectiveness. Syst. Rev. 2013, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Torrao, G. Speed related variables for crash injury risk analysis: What has been used? Int. J. Crashworthiness 2021, 27, 1560–1567. [Google Scholar] [CrossRef]
- Kumar, J.S.; Amiruzzaman, M.; Bhuiyan, A.A.; Bhati, D. Predictive Analytics in Law Enforcement: Unveiling Patterns in NYPD Crime through Machine Learning and Data Mining. Res. Briefs Inf. Commun. Technol. Evol. 2024, 10, 36–59. [Google Scholar]
- Tsiktsiris, D.; Dimitriou, N.; Lalas, A.; Dasygenis, M.; Votis, K.; Tzovaras, D. Real-time abnormal event detection for enhanced security in autonomous shuttles mobility infrastructures. Sensors 2020, 20, 4943. [Google Scholar] [CrossRef]
- Zhang, M.; Li, T.; Yu, Y.; Li, Y.; Hui, P.; Zheng, Y. Urban Anomaly Analytics: Description, Detection, and Prediction. IEEE Trans. Big Data 2020, 8, 809–826. [Google Scholar] [CrossRef]
- Affonso, G.A.; De Menezes, A.L.; Nunes, R.B.; Almonfrey, D. Using Artificial Intelligence for Anomaly Detection Using Security Cameras. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, 7–8 October 2021. [Google Scholar] [CrossRef]
- Papini, M.; Iqbal, U.; Barthelemy, J.; Ritz, C. The Role of Deep Learning Models in the Detection of Anti-Social Behaviours towards Women in Public Transport from Surveillance Videos: A Scoping Review. Safety 2023, 9, 91. [Google Scholar] [CrossRef]
- Akram, W.; Jain, M.; Hemalatha, C. Design of a Smart Safety Device for Women using IoT. Procedia Comput. Sci. 2019, 165, 656–662. [Google Scholar] [CrossRef]
- Huang, X.Y.; West, E.; Pinnelli, S.S.K. Crowdsourcing Data for Safer Travel Experiences for Women in India. In Proceedings of the Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Adlakha, D.; Parra, D.C. Mind the gap: Gender differences in walkability, transportation and physical activity in urban India. J. Transp. Health 2020, 18, 100875. [Google Scholar] [CrossRef]
- Carlson, J.A.; Frank, L.D.; Ulmer, J.; Conway, T.L.; Saelens, B.E.; Cain, K.L.; Sallis, J.F. Work and Home Neighborhood Design and Physical Activity. Am. J. Health Promot. 2018, 32, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Salvo, G.; Lashewicz, B.M.; Doyle-Baker, P.K.; McCormack, G.R. A Mixed Methods Study on the Barriers and Facilitators of Physical Activity Associated with Residential Relocation. J. Environ. Public Health 2018, 2018, 1094812. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.; Camacho-Collados, J.; Neves, L.; Espinosa-Anke, L. TweetEval: Unified Benchmark and Comparative Evaluation for Tweet Classification. arXiv 2020, arXiv:2010.12421. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019. Available online: https://arxiv.org/abs/1907.11692 (accessed on 20 September 2024).
- Vaswani, A.; Shazeer, N.; Jones, L.; Gomez, A.; Kaiser, L.; Polo, I.N.; Parmar, N.; Uszkoreit, J. The Annotated Transformer. Available online: https://nlp.seas.harvard.edu/2018/04/03/attention.html (accessed on 20 September 2024).
- Camacho-Collados, J.; Rezaee, K.; Riahi, T.; Ushio, A.; Loureiro, D.; Antypas, D.; Boisson, J.; Espinosa-Anke, L.E.; Liu, F.; Martínez-Cámara, E.; et al. TweetNLP: Cutting-edge Natural Language Processing for Social Media. arXiv 2022, arXiv:2206.14774. [Google Scholar]
- Abay, K.A.; Mannering, F.L. An empirical analysis of risk-taking in car driving and other aspects of life. Accid. Anal. Prev. 2016, 97, 57–68. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, J.; Ma, K.; Chen, H.; Zhang, J. A wristband device for detecting human pulse and motion based on the Internet of Things. Measurement 2020, 163, 108036. [Google Scholar] [CrossRef]
- Lakens, D. Sample size justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
- Fugard, A.J.B.; Potts, H.W.W. Supporting thinking on sample sizes for thematic analyses: A quantitative tool. Int. J. Soc. Res. Methodol. 2015, 18, 669–684. [Google Scholar] [CrossRef]
- Etz, K.E.; Arroyo, J.A. Small Sample Research: Considerations Beyond Statistical Power. Prev. Sci. 2015, 16, 1033–1036. [Google Scholar] [CrossRef]
- Nordhoff, S.; de Winter, J.; Kyriakidis, M.; van Arem, B.; Happee, R. Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study. J. Adv. Transp. 2018, 2018, 5382192. [Google Scholar] [CrossRef]
- Torrao, G.; Lehtonen, E.; Innamaa, S. The gender gap in the acceptance of automated vehicles in Europe. Transp. Res. Part F Traffic Psychol. Behav. 2024, 101, 199–217. [Google Scholar] [CrossRef]
- Coşkun, M.; Uçar, A.; Yildirim, Ö.; Demir, Y. Face recognition based on convolutional neural network. In Proceedings of the 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 15–17 November 2017; pp. 376–379. [Google Scholar] [CrossRef]
- Uma, J.; Suguna, S. IoT and AI Based Android App for Safety Assistance and Recommendation. In Proceedings of the 2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 11–12 March 2024; pp. 741–746. [Google Scholar]
- Qi, B.; Costin, A.; Jia, M. A framework with efficient extraction and analysis of Twitter data for evaluating public opinions on transportation services. Travel. Behav. Soc. 2020, 21, 10–23. [Google Scholar] [CrossRef]
Questionnaire Item | M | SD | Relative Frequencies (%) | ||||
---|---|---|---|---|---|---|---|
Travel mode (Q1_1–Q1_8) | Never or on rare occasions | 1 to 3 days a month | Few days a week | Several days a week | Everyday | ||
Q1_1: Walking more than 500 metres per trip. | 3.8 | 1.3 | 9.8 | 9.8 | 12.2 | 26.8 | 41.5 |
Q1_2: Bicycle. | 1.6 | 1.4 | 70.7 | 9.8 | 7.3 | 9.8 | 2.4 |
Q1_3: Electric bike. | 1.3 | 0.9 | 87.8 | 0 | 4.9 | 7.3 | 0 |
Q1_4: Electric shared scooter (e.g., rental or chartered electric scooter/motorcycle). | 1.6 | 1.0 | 70.7 | 9.8 | 9.8 | 9.8 | 0 |
Q1_5: Motorcycle or moped. | 3.1 | 1.6 | 22.0 | 19.5 | 12.2 | 17.1 | 29.3 |
Q1_6: Car (as the driver). | 1.9 | 1.3 | 56.1 | 14.6 | 9.8 | 14.6 | 4.9 |
Q1_7: Car (as a passenger of private cars/taxis). | 2.9 | 1.2 | 12.2 | 31.7 | 22.0 | 24.4 | 9.8 |
Q1_8: Public transport (buses/trains/metro). | 3.2 | 1.4 | 17.1 | 17.1 | 19.5 | 26.8 | 19.5 |
Reason (Q2_1–Q2_7) | Strongly disagree (1) | Disagree (2) | Neutral (3) | Agree (4) | Strongly agree (5) | ||
Q2_1: Choosing the most low-cost travel mode. | 3.3 | 1.1 | 2.4 | 24.4 | 26.8 | 29.3 | 17.1 |
Q2_2: Choosing the fastest travel mode. | 3.9 | 1.0 | 2.4 | 4.9 | 24.4 | 34.1 | 34.1 |
Q2_3: Choosing the most comfortable travel mode. | 4.0 | 1.1 | 2.4 | 7.3 | 17.1 | 31.7 | 41.5 |
Q2_4: Choosing the safest travel mode to avoid traffic accidents. | 4.2 | 0.9 | 0.0 | 7.3 | 14.6 | 31.7 | 46.3 |
Q2_5: Choosing the securest travel mode to avoid crime/violence/harassment. | 4.3 | 1.9 | 2.4 | 2.4 | 9.8 | 31.7 | 53.7 |
Q2_6: Choosing an active travel mode to physically exercise (walking/cycling). | 3.3 | 1.2 | 4.9 | 24.4 | 26.8 | 26.8 | 17.1 |
Q2_7: Choosing the most environmentally friendly travel mode. | 3.2 | 1.3 | 7.3 | 29.3 | 17.1 | 26.8 | 19.5 |
Questionnaire Item | Relative Frequencies (%) |
---|---|
How may the built environment influence the women’s perception of safety during travel? (Q3_1–Q3_7) | |
Q3_1: Poor street lighting. | 65.9 |
Q3_2: Deserted streets or roads. | 61.0 |
Q3_3: Characteristics of sidewalks (e.g., poor line of sight due to walls/trees). | 43.9 |
Q3_4: Public space occupied by suspicious people. | 75.6 |
Q3_5: Stations/train platforms deserted or without surveillance. | 61.0 |
Q3_6: Bus stop in lonely place or without surveillance. | 65.9 |
Q3_7: Other | 9.8 |
How would feelings of fear during everyday journeys change women’s travel? (Q4_1–Q4_7) | |
Q4_1: Travelling accompanied. | 63.4 |
Q4_2: Avoiding walking at night. | 65.9 |
Q4_3: Avoiding cycling at night. | 29.3 |
Q4_4: Change route. | 51.2 |
Q4_5: Using taxicabs or private vehicles. | 43.9 |
Q4_6: Not going out for a while. | 26.8 |
Q4_7: No change, keeping the same travelling habits. | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrao, G.; Htait, A.; Wong, S.H.S. Perceptions of Women’s Safety in Transient Environments and the Potential Role of AI in Enhancing Safety: An Inclusive Mobility Study in India. Sustainability 2024, 16, 8631. https://doi.org/10.3390/su16198631
Torrao G, Htait A, Wong SHS. Perceptions of Women’s Safety in Transient Environments and the Potential Role of AI in Enhancing Safety: An Inclusive Mobility Study in India. Sustainability. 2024; 16(19):8631. https://doi.org/10.3390/su16198631
Chicago/Turabian StyleTorrao, Guilhermina, Amal Htait, and Shun Ha Sylvia Wong. 2024. "Perceptions of Women’s Safety in Transient Environments and the Potential Role of AI in Enhancing Safety: An Inclusive Mobility Study in India" Sustainability 16, no. 19: 8631. https://doi.org/10.3390/su16198631