Research on the Technological Progress of CZT Array Detectors
Abstract
:1. Introduction
- Low ionization energy: To minimize the impact of statistical fluctuations, the semiconductor material should have a low ionization energy.
- Higher average atomic number: A higher average atomic number enhances the detector’s efficiency in detecting high energy radiation.
- Sufficiently wide bandgap: A wide bandgap allows the detector to function at room temperature with minimal leakage current.
2. Development of CZT Material
2.1. The Basic Structure and Advantages of CZT Material
2.2. Preparation of CZT Materials
2.2.1. The Evolution of the Way CZT Grows
2.2.2. Doping and Performance Changes of CZT
2.2.3. Semiconductor Surface Treatment Technology
2.3. Research on the Properties of CZT Materials
2.3.1. Reaction of γ rays with CZT Material
2.3.2. Research on the Energy Resolution of CZT Materials
2.3.3. Research on the Energy Bands of CZT Crystals
3. Development of CZT Array Detectors
3.1. Different Structured CZT Detector
3.1.1. CZT Detector Structure
- N0—number of electron–hole pairs;
- d—detector thickness;
- λ—the drift length of the electron with the hole;
- x—the length of the drift that the electrons must do with the holes.
3.1.2. Operating Principle of the CZT Array Detector
3.2. Research on the Performance Optimization of CZT Array Detectors
3.2.1. Optimization of Energy Resolution
- Impact of leakage current: In CZT devices with Au and Pt contacts, the overall leakage current is restricted by the characteristics of the Schottky barrier at the metal–semiconductor interface.
- Influence of charge sharing among pixels: Inter-pixel electric conduction affects the distribution of electric field lines, leading to charge loss between adjacent anode contacts in multi-electrode devices.
- Effects of charge loss: Charge loss usually accompanies charge sharing. Some electrons in the electron cloud between pixels fall into the gap and remain uncollected by the pixel electrodes, resulting in charge loss.
3.2.2. Research on the Spatial Resolution of Array Detectors
3.2.3. Optimization of Detection Efficiency
3.3. Array Detector Electronics
3.3.1. CZT Crystal Contact Electrode
3.3.2. Readout Circuitry
3.3.3. Charge-Sensitive Preamplifier
3.3.4. Research in Signal Processing
4. Application of CZT Array Detector in Nuclear Detection and Imaging
4.1. Application of CZT Detector in Nuclear Detection
4.2. Research on the Application of Compton Imaging and Positioning
4.2.1. Principle of Image Formation
4.2.2. Developments in Imaging Technology
- Power Supply Output: provision of DC power configuration to the ASIC module as required; supply of the necessary high-voltage power to the cadmium zinc telluride detector.
- Data Communication: response to control and configuration commands from the PC; transmission of the current system status and acquired data to the PC.
- ASIC Configuration: configuration of 650 internal registers within the ASIC module based on configuration commands from the PC.
- Trigger Threshold Setting: adjustment of the trigger voltage of the ASIC module according to configuration commands from the PC.
- Conditioning and Digitization of Energy and Time Signals: energy information output by the ASIC module in the form of differential current signals necessitates analog conditioning to convert it into voltage signals before analog-to-digital conversion. Time information from the ASIC module is in the form of voltage signals, requiring initial driving before analog-to-digital conversion.
- Readout Timing Control: control of the ASIC module for data readout according to the corresponding timing circuits.
- Self-Testing Functionality: testing the status of the Ethernet connection.
- Configuration and monitoring of the current operational status of the data acquisition board;
- Real-time visualization of collected data for quick diagnosis of the detector’s operational status;
- Capability to save the collected data.
5. Conclusions
- CZT Crystal Research: enhancing crystal performance by improving semiconductor crystal fabrication methods, doping with trace elements, refining etching processes, or applying surface coatings.
- Optimization of Array Detector Electronics: improving detector readout circuit design, enhancing the performance of electronic components, and increasing detector response speed and energy resolution.
- Design of Novel CZT Array Detectors: developing and optimizing applications for CZT array detectors, especially in the detection of specific nuclear materials.
- Enhancement of Array Detector Imaging Algorithms: improving imaging algorithms to achieve better reconstruction results and generate improved 3D images.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, M.D.; Nasim, S.S.; Hasan, S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring. Prog. Nucl. Energy 2021, 140, 103918. [Google Scholar] [CrossRef]
- Dudipala, K.R.; Le, T.H.; Nie, W.; Hoye, R.L. Halide Perovskites and Their Derivatives for Efficient, High-Resolution Direct Radiation Detection: Design Strategies and Applications. Adv. Mater. 2023, 2304523. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Xiao, Y.; Zhou, C.; Yang, Y.; Wu, X.; Hu, Q.; Jin, X.; Zhang, W.; Hu, J.; Jiang, Y. Recent advances on two-dimensional metal halide perovskite X-ray detectors. Mater. Futures 2023, 2, 012104. [Google Scholar] [CrossRef]
- Arlt, R.; Brutscher, J.; Gunnink, R.; Ivanov, V.; Parnham, K.; Soldner, S.; Stein, J. Use of CdZnTe detectors in hand-held and portable isotope identifiers to detect illicit trafficking of nuclear material and radioactive sources. In Proceedings of the 2000 IEEE Nuclear Science Symposium, Conference Record (Cat. No. 00CH37149), Lyon, France, 15–20 October 2000; Volume 11, pp. 4/18–14/23. [Google Scholar]
- Sordo, S.D.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 2009, 9, 3491–3526. [Google Scholar] [CrossRef] [PubMed]
- Liu, L. The Photoelectrical Properties of CdZnTe Nuclear Radiation Detector. Master’s Thesis, Xiamen University of Technology, Xiamen, China, 2022. [Google Scholar]
- Szeles, C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi (B) 2004, 241, 783–790. [Google Scholar] [CrossRef]
- Li, X.; Chu, J.H.; Li, L.X.; Dai, N.; Zhang, F.J. Investigation of room temperature nuclear radiation CdZnTe pixel array detector. J. Optoelectron. Laser 2008, 19, 751–753. [Google Scholar]
- Handong, L. Growth and Defects of CdxZn1−xTe Single Crystals. Master’s Thesis, Sichuan University, Chengdu, China, 2004. [Google Scholar]
- Lyu, L.; Liu, J.; LI, G. Research on High-Precision mm-Level Thickness Measurement Technology Based on Cadmium Zinc Telluride Detector. J. Isot. 2023, 36, 285–294. [Google Scholar] [CrossRef]
- Zhou, H.; Song, M.; Liu, H.; Sun, T.; Li, J.; Hao, L. Simulating Response to Gamma Ray of CdZnTe Detector with CAPture Electrode Using Geant4. At. Energy Sci. Technol. 2021, 55, 1098–1104. [Google Scholar] [CrossRef]
- Eisen, Y. Current state-of-the-art industrial and research applications using room-temperature CdTe and CdZnTe solid state detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 380, 431–439. [Google Scholar] [CrossRef]
- Lihao, W. Study on the Pivotal Techniques of Gamma Spectrum Measurement in Complex Intense Radiation Field. Master’s Thesis, National University of Defense Technology, Changsha, China, 2021. [Google Scholar]
- Haijun, X. Data Acquisition System of CZT Nuclear Detector Based on FPGA. Master’s Thesis, Chongqing University, Chongqing, China, 2013. [Google Scholar]
- Li, Y.; Lei, Y.; Wang, H.; Jin, Z. Two-Dimensional Metal Halides for X-ray Detection Applications. Nano-Micro Lett. 2023, 15, 128. [Google Scholar] [CrossRef]
- Burger, A.; Groza, M.; Cui, Y.L.; Roy, U.N.; Hillman, D.; Guo, M.; Li, L.X.; Wright, G.W.; James, R.B. Development of portable CdZnTe spectrometers for remote sensing of signatures from nuclear materials. In Proceedings of the NATO Advanced Research Workshop on Advanced Materials for Radiation Detectors and Sensors/Symposium on Superconductors Held at the 2004 E-MRS Fall Meeting, Warsaw, Poland, 6–10 September 2004; pp. 1586–1591. [Google Scholar]
- Fan, Y.; Tao, W.; Boru, Z. Research Progress on CdZnTe Crystal Growth for Room Temperature Radiation Detection Applications. J. Synth. Cryst. 2020, 49, 561–569. [Google Scholar] [CrossRef]
- Jie, W. Progress of Bridgman Crystal Growth Technology. J. Synth. Cryst. 2012, 41, 24–35. [Google Scholar] [CrossRef]
- Doty, F.P.; Butler, J.F.; Schetzina, J.F.; Bowers, K.A. Properties of CdZnTe crystals grown by a high pressure Bridgman method. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1992, 10, 1418–1422. [Google Scholar] [CrossRef]
- Szeles, C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors. IEEE Trans. Nucl. Sci. 2004, 51, 1242–1249. [Google Scholar] [CrossRef]
- Szeles, C.; Cameron, S.E.; Ndap, J.O.; Chalmers, W.C. Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications. IEEE Trans. Nucl. Sci. 2002, 49, 2535–2540. [Google Scholar] [CrossRef]
- Szeles, C.; Cameron, S.E.; Ndap, J.O.; Reed, M.D. Advances in the High-pressure Crystal Growth Technology of Semi-insulating CdZnTe for Radiation Detector Applications. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 3–8 August 2003; Volume 5198. [Google Scholar] [CrossRef]
- Szeles, C.; Cameron, S.E.; Soldner, S.A.; Ndap, J.O.; Reed, M.D. Development of the high-pressure electro-dynamic gradient crystal-growth technology for semi-insulating CdZnTe growth for radiation detector applications. J. Electron. Mater. 2004, 33, 742–751. [Google Scholar] [CrossRef]
- Li, L.; Lu, F.; Lee, C.; Black, M.; Ouimette, D. New progress in large-size CZT (Zn = 10%) single crystal growth using MVB technique for room temperature radiation detectors. In Proceedings of the IEEE Symposium Conference Record Nuclear Science 2004, Rome, Italy, 16–22 October 2004. [Google Scholar] [CrossRef]
- Wang, T.; Jie, W.; Xu, Y.; Liu, W.; Zeng, D. Comparison between bottom-seeded Bridgman and accelerated crucible rotation Bridgman method for detector-grade CdZnTe growth. In Proceedings of the 2007 International Conference on Solid State Devices and Materials, Ibaraki, Japan, 18–21 September 2007. [Google Scholar] [CrossRef]
- Zha, G.-Q.; Wang, T.; Xu, Y.-D.; Jie, W.-Q. The development of CZT semiconductor X-ray and g-ray detectors. Physics 2013, 42, 862–869. [Google Scholar] [CrossRef]
- Tao, W.; Yadong, X.; Gangqiang, Z. Detector Grade CdZnTe Crystal Growth and Device Fabrication. Mech. Sci. Technol. Aerosp. Eng. 2010, 29, 546–550. [Google Scholar] [CrossRef]
- Yang, F.; Jie, W.; Wang, M.; Sun, X.; Wang, T. Growth of Single-crystal Cd0.9Zn0.1Te Ingots using Pressure Controlled Bridgman Method. Crystals 2020, 10, 261. [Google Scholar] [CrossRef]
- Hermon, H.; Schieber, M.; Goorsky, M.; Lam, T.; Meerson, E.; Yao, H.; Erickson, J.; James, R.B. Characterization of CZT detectors grown from horizontal and vertical Bridgman. In Proceedings of the Hard X-ray, Gamma-ray, and Neutron Detector Physics II, SPIE, San Diego, CA, USA, 21 November 2000; pp. 186–193. [Google Scholar] [CrossRef]
- Jung, I.; Krawczynski, H.; Burger, A.; Guo, M.; Groza, M. Detailed studies of pixelated CZT detectors grown with the modified horizontal Bridgman method—ScienceDirect. Astropart. Phys. 2007, 28, 397–408. [Google Scholar] [CrossRef]
- Wilson, M.D.; Cernik, R.; Chen, H.; Hansson, C.; Iniewski, K.; Jones, L.L.; Seller, P.; Veale, M.C. Small pixel CZT detector for hard X-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 158–161. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Zhou, B.; He, J.; Li, Y.; Yang, F.; Xu, Y.; Zha, G.; Jie, W. Study on Composition and Defects Uniformity of CdZnTe Crystal Grown by Travelling Heater Method. J. Synth. Cryst. 2013, 42, 2215–2229. [Google Scholar] [CrossRef]
- Soldner, S.A.; Narvett, A.J.; Covalt, D.E.; Szeles, C. Characterization of the charge transport uniformity of CdZnTe crystals for large-volume nuclear detector applications. IEEE Trans. Nucl. Sci. 2004, 51, 2443–2447. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Reed, M.D.; Sundaram, A.G.; Eger, J.; Hugg, J.W.; Abbaszadeh, S.; Li, M.; Montemont, G.; Verger, L. Development of Large Volume, High Performance Monolithic CZT Radiation Detector. In Proceedings of the SPIE Optical Engineering + Applications Conference, San Diego, CA, USA, 13 September 2018; Volume 10762, pp. 55–73. [Google Scholar] [CrossRef]
- Mackenzie, J.; Chen, H.; Awadalla, S.A.; Marthandam, P.; Redden, R.; Bindley, G.; He, Z.; Black, D.R.; Duff, M.; Amman, M. Recent advances in thm czt for nuclear radiation detection introduction. MRS Proc. 2009, 1164, 10. [Google Scholar] [CrossRef]
- Changhe, Z. Study on Defect Evaluation and VGF Growth Technique of CdZnTe Materials. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2021. [Google Scholar]
- Gao, X.; Sun, H.; Yang, D.; Wangyang, P.; Zhang, C.; Zhu, X. Large-area CdZnTe thick film based array X-ray detector. Vacuum 2021, 183, 10985. [Google Scholar] [CrossRef]
- Chu, M.; Terterian, S.; Ting, D.; Wang, C.; Benson, J.; Dinan, J.; James, R.; Burger, A. Effects of excess tellurium on the properties of CdZnTe radiation detectors. J. Electron. Mater. 2003, 32, 778–782. [Google Scholar] [CrossRef]
- Nan, R.-H.; Jie, W.-Q.; Zha, G.-Q.; BAI, X.-X.; Bei, W.; Hui, Y. Determination of trap levels in CZT: In by thermally stimulated current spectroscopy. Trans. Nonferrous Met. Soc. China 2012, 22, s148–s152. [Google Scholar] [CrossRef]
- Roy, U.N.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Lee, K.; Lee, W.; Tappero, R.; Yang, G.; Gul, R.; et al. High compositional homogeneity of CdTexSe1−x crystals grown by the Bridgman method. APL Mater. 2015, 3, 026102. [Google Scholar] [CrossRef]
- Roy, U.N.; Camarda, G.S.; Cui, Y.; Gul, R.; Yang, G.; Zazvorka, J.; Dedic, V.; Franc, J.; James, R.B. Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects. Sci. Rep. 2019, 9, 7303. [Google Scholar] [CrossRef]
- Roy, U.N.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Lee, K.; Marshall, M.; Yang, G.; James, R.B. Growth of CdTexSe1-x from a Te-rich solution for applications in radiation detection. J. Cryst. Growth 2014, 386, 43–46. [Google Scholar] [CrossRef]
- Nan, R.; Li, T.; Xu, G.; Jian, Z.; Li, X. Distribution of microscopic defects in Al-doped CdZnTe crystal. J. Mater. Sci. 2017, 53, 4387–4394. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, C.; Liang, H.; Wang, X.; Shangguan, M.; Gong, Y.; Zhang, B.; Zhang, H.; Xie, H.; Yan, B. Investigating the influence of CdZnTe and HgCdTe material quality on detector image performance. J. Mater. Sci. Mater. Electron. 2021, 32, 13177–13186. [Google Scholar] [CrossRef]
- Chen, H.; Chattopadhyay, K.; Chen, K.-T.; Burger, A.; George, M.; Gregory, J.; Nag, P.; Weimer, J.; James, R. Passivation of CdZnTe surfaces by oxidation in low energy atomic oxygen. J. Vac. Sci. Technol. A Vac. Surf. Film. 1999, 17, 97–101. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, S.; Zhao, B.; Gao, D.; Chen, J.; Tang, S.; Fang, J.; Chen, X. Surface Passivation Process of the Wafers for CdZnTe Detector. J. Synth. Cryst. 2006, 35, 715–718. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, L.; Ren, J.; Zha, G. Atomic oxygen exposure process on CdZnTe pixel detector suface. J. Funct. Mater. Devices 2010, 16, 515–518. [Google Scholar] [CrossRef]
- Hossain, A.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Jones, D.; Hall, J.; Kim, K.; Mwathi, J.; Tong, X.; Yang, G. Novel approach to surface processing for improving the efficiency of CdZnTe detectors. J. Electron. Mater. 2014, 43, 2771–2777. [Google Scholar] [CrossRef]
- Liu, C.; Sun, S.; Xu, H. Effect of ampoule coating technology on defects in CdZnTe crystal. In Proceedings of the Photonics and Optoelectronics Meetings, Wuhan, China, 19 February 2009. [Google Scholar]
- Zhang, L.; Zhang, Z.; Wang, D.; Xu, G.; Gao, P.; Meng, F.; Zhao, Z. CMP Parameter Optimization and Polishing Mechanism Analysis of Cadmium Zinc Telluride Wafer Based on the Orthogonal Test. Lubr. Eng. 2022, 47, 92–101. [Google Scholar] [CrossRef]
- Gao, P. Preparation of Novel Abrasives and Their Applications in Chemical Mechanical Polishing for Cadmium Zinc Telluride Substrates. Master’s Thesis, Dalian University of Technology, Dalian, China, 2021. [Google Scholar] [CrossRef]
- Yu, B.; Xu, C.; Xie, M.; Cao, M.; Zhang, J.; Jiang, Y.; Wang, L. Deposition of CdZnTe Films with CSS Method on Different Substrates for Nuclear Radiation Detector Applications. Crystals 2022, 12, 187. [Google Scholar] [CrossRef]
- Jian, J. Study of CdZnTe Pixel Arrays Nuclear Detector. Master’s Thesis, Chongqing University, Chongqing, China, 2012. [Google Scholar]
- Mayer, M.; Hamel, L.A.; Tousignant, O.; Macri, J.R.; Ryan, J.M.; Mcconnell, M.L.; Jordanov, V.T.; Butler, J.F.; Lingren, C.L. Signal formation in a CdZnTe imaging detector with coplanar pixel and control electrodes. Nucl. Instrum. Methods Phys. Res. 1999, 422, 190–194. [Google Scholar] [CrossRef]
- Beilicke, M.; De Geronimo, G.; Dowkontt, P.; Garson, A.; Guo, Q.; Lee, K.; Martin, J.; Krawczynski, H. Performance of pixelated CZT detectors as a function of pixel and steering grid layout. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 708, 88–100. [Google Scholar] [CrossRef]
- Abbene, L.; Del Sordo, S.; Caroli, E.; Gerardi, G.; Raso, G.; Caccia, S.; Bertuccio, G. Hard X-ray response of pixellated CdZnTe detectors. J. Appl. Phys. 2009, 105, 124508. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, S.; Li, M.; Zhang, L.; Chao, Y.; Chen, Y. Further polarization effect of CdZnTe detectors under high flux X-ray irradiation. High Power Laser Part. Beams 2013, 25, 773–777. [Google Scholar] [CrossRef]
- Teague, L.C.; Washington, A.L.; Duff, M.C.; Groza, M.; Buliga, V.; Burger, A. Photo-induced currents in CdZnTe crystals as a function of illumination wavelength. J. Phys. D-Appl. Phys. 2012, 45, 105101. [Google Scholar] [CrossRef]
- Dědič, V.; Franc, J.; Rejhon, M.; Grill, R.; Zázvorka, J.; Sellin, P. De-polarization of a CdZnTe radiation detector by pulsed infrared light. Appl. Phys. Lett. 2015, 107, 032105. [Google Scholar] [CrossRef]
- Wangerin, K.; Du, Y.F.; Jansen, F. CZT performance for different anode pixel geometries and data corrections. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2011, 648, S37–S41. [Google Scholar] [CrossRef]
- Takahashi, T.; Watanabe, S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 2001, 48, 950–959. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Yang, G.; Yao, H.W.; James, R.B. Internal Electric-Field-Lines Distribution in CdZnTe Detectors Measured Using X-ray Mapping. IEEE Trans. Nucl. Sci. 2009, 56, 791–794. [Google Scholar] [CrossRef]
- Xu, H.; Gong, P. Analysis of Noise and Resolution of Prototype CdZnTe Detector. Nucl. Electron. Detect. Technol. 2014, 34, 784–787. [Google Scholar]
- Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Yang, G.; Hossain, A.; Kim, K.; James, R.B. Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors. J. Cryst. Growth 2013, 379, 46–56. [Google Scholar] [CrossRef]
- Wang, C.; Zha, G.Q.; Qi, Y.; Guo, R.R.; Wang, G.Q.; Jie, W.Q. Fabrication and Characterization of CdZnTe Pixel Detector. At. Energy Sci. Technol. 2015, 49, 1320–1324. [Google Scholar] [CrossRef]
- Fan, F.; Zuo, L.; Chen, X.; Wang, J.; Zhou, Y. Study on Neutron Detection Performance of CdZnTe Detector. Nucl. Electron. Detect. Technol. 2019, 39, 463–467. [Google Scholar]
- Yan, X.; Gao, X.; Sun, H.; Yang, D.; Zeng, T.; Luo, X.; Zhu, X.; Wangyang, P. Effect of surface treatment on photo-electric properties of CZT thick film for radiation detector. Mater. Sci. Semicond. Process. 2022, 148, 106826. [Google Scholar] [CrossRef]
- Shen, M.; Xiao, S.; Zhang, L.; Cao, Y.; Chen, Y. Experiment and simulation of performance characteristics for pixellated CdZnTe detectors with various thickness. High Power Laser Part. Beams 2014, 26, 210–215. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, M.; Du, Y.; Xi, S.; Zha, G.; Jie, W. Analysis on Energy Spectra for CdZnTe Gamma Ray Detector. J. Synth. Cryst. 2021, 50, 1883–1891. [Google Scholar] [CrossRef]
- Jie, W. Researches on the Preparation and Applications of CZT for X-ray and Gamma-ray Detectors. Mater. China 2012, 815–823. [Google Scholar]
- Jie, W. Progress in Theories and Technologies of Crystal Growth of II-VI Compounds. China Basic Sci. 2001, 5, 15–19. [Google Scholar]
- Glasser, F.; Gerbe, V.; Ouvrier-Buffet, P.; Accensi, M.; Girard, J.; Renaud, M.; Gersten-Mayer, J. CdZnTe high-energy radiography detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 458, 544–550. [Google Scholar] [CrossRef]
- Höschl, P.; Ivanov, Y.M.; Belas, E.; Franc, J.; Toth, A.L. Electrical and luminescence properties of (CdZn)Te single crystals prepared by the vertical gradient freezing method. J. Cryst. Growth 1998, 184–185, 1039–1043. [Google Scholar] [CrossRef]
- Toney, J.E.; Brunett, B.A.; Schlesinger, T.E.; Van Scyoc, J.M.; James, R.B.; Schieber, M.; Goorsky, M.; Yoon, H.; Eissler, E.; Johnson, C. Uniformity of Cd1−xZnxTe grown by high-pressure Bridgman. Nucl. Instrum. Methods Phys. Res. 1996, 380, 132–135. [Google Scholar] [CrossRef]
- Li, Z.-F.; Lu, W.; Huang, G.; Yang, J.; He, L.; Shen, S. Microphotoluminescence mapping on CdZnTe: Zn distribution. J. Appl. Phys. 2001, 90, 260–264. [Google Scholar] [CrossRef]
- Polichar, R.; Schirato, R.; Reed, J. Development of CdZnTe energy selective arrays for industrial and medical radiation imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 353, 349–355. [Google Scholar] [CrossRef]
- Tobin, S.; Tower, J.; Norton, P.; Chandler-Horowitz, D.; Amirtharaj, P.M.; Lopes, V.; Duncan, W.; Syllaios, A.; Ard, C.; Giles, N. A comparison of techniques for nondestructive composition measurements in CdZnTe substrates. J. Electron. Mater. 1995, 24, 697–705. [Google Scholar] [CrossRef]
- Chen, Y.F.; Tsai, C.S.; Chang, Y.H.; Chang, Y.M.; Chen, T.K.; Pang, Y.M. Hydrogen passivation in Cd1−xZnxTe studied by photoluminescence. Appl. Phys. Lett. 1991, 58, 493–495. [Google Scholar] [CrossRef]
- Wang, X. Principle and Experimental Characteristics of Pixellated CdZnTe Detector for Nuclear Radiation. Ph.D. Thesis, Chongqing University, Chongqing, China, 2013. [Google Scholar]
- Krsmanovic, N.; Lynn, K.G.; Weber, M.H.; Tjossem, R.; Glass, H.L. Electrical compensation in CdTe and CdZnTe by intrinsic defects. In Proceedings of the Hard X-ray, Gamma-ray, and Neutron Detector Physics II. SPIE, San Diego, CA, USA, 21 November 2000; Volume 4141. [Google Scholar] [CrossRef]
- Guo, R.; Jie, W.; Xu, Y.; Zha, G.; Wang, T.; Lin, Y.; Zhang, M.; Du, Z. Space-charge manipulation under sub-bandgap illumination in detector-grade CdZnTe. J. Electron. Mater. 2015, 44, 3229–3235. [Google Scholar] [CrossRef]
- Xiang, C.; Kan, Z.; Shuai, H.; Kai, Z.; Hetong, H.; Long, H. Improvement on γ-ray Sensitivity of Current-mode CdZnTe Detector. At. Energy Sci. Technol. 2022, 56, 387–393. [Google Scholar] [CrossRef]
- Yaxu, G. Performance Non-Uniformity of CdZnTe Nuclear Radiation Detectors. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2017. [Google Scholar]
- Sharafi, F.; Orouji, A.A.; Soroosh, M.; Sharafi, F.; Orouji, A.A.; Soroosh, M. The Novel Structure to Enhancement Ion/Ioff Ratio Based on Field Effect Diode. IEEE Trans. Device Mater. Reliab. 2021, 21, 389–393. [Google Scholar] [CrossRef]
- Olyaee, S.; Soroosh, M.; Izadpanah, M. Transfer matrix modeling of avalanche photodiode. Front. Optoelectron. 2012, 5, 317–321. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, C.; Yang, J.; Pang, C.; Yue, Y.; Zeng, C.; Zhang, B. Vertical Schottky ultraviolet photodetector based on graphene and top-down fabricated GaN nanorod arrays. J. Semicond. 2022, 43, 062804. [Google Scholar] [CrossRef]
- Xiaping, C. Research and Fabrication of 4H-SiC Ultraviolet p-i-n Photodiodes and Linear Array. Ph.D. Thesis, Xiamen University, Xiamen, China, 2007. [Google Scholar]
- Sharafi, F.; Orouji, A.A.; Soroosh, M. A novel Field Effect Photodiode to control the output photocurrent and fast optical switching. Opt. Quantum Electron. 2022, 54, 171. [Google Scholar] [CrossRef]
- Abbene, L.; Del Sordo, S.; Fauci, F.; Gerardi, G.; La Manna, A.; Raso, G.; Cola, A.; Perillo, E.; Raulo, A.; Gostilo, V.; et al. Spectroscopic response of a CdZnTe multiple electrode detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 583, 324–331. [Google Scholar] [CrossRef]
- Chengjie, F. Performance comparison of CdZnTe radiation detectors with PIN and MSM structure and the Study on leakage current of CdZnTe. Master’s Thesis, Shanghai University, Shanghai, China, 2022. [Google Scholar]
- Mitra, P. Current to Conductors Induced by a Moving Point Charge. Am. J. Phys. 1970, 38, 112. [Google Scholar] [CrossRef]
- Ramot, S.R.E. Currents induced by electron motion. Proc. IRE 1939, 27, 584–585. [Google Scholar] [CrossRef]
- Espagnet, R.; Frezza, A.; Martin, J.-P.; Hamel, L.-A.; Després, P. Conception and characterization of a virtual coplanar grid for a 11 × 11 pixelated CZT detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 860, 62–69. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, J.; Tang, X.; Zhao, R.; Lu, P.; Qv, B.; Li, M.; Qin, F. Simulation of energy spectrum characteristics of planar CdZnTe detector. Nucl. Tech. 2023, 46, 62–68. [Google Scholar] [CrossRef]
- Montémont, G.; Argues, M.; Verger, L.; Rustique, J. A capacitive Frisch grid structure for CdZnTe detectors. In Proceedings of the 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No. 00CH37149), Lyon, France, 15–20 October 2000; pp. 278–281. [Google Scholar]
- Luke, P.; Amman, M.; Lee, J.; Ludewigt, B.; Yaver, H. A CdZnTe coplanar-grid detector array for environmental remediation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 458, 319–324. [Google Scholar] [CrossRef]
- Bennett, P.R.; Shah, K.S.; Klugerman, M.; Squillante, M.R. High efficiency pixellated CdTe detector. Nucl. Instrum. Methods Phys. Res. 1997, 392, 260–263. [Google Scholar] [CrossRef]
- Bale, D.S.; Franks, L.A.; Szeles, C.; Burger, A.; James, R.B.; Barber, H.B.; Doty, F.P.; Roehrig, H. Design of high-performance CdZnTe quasi-hemispherical gamma-ray CAPture plus detectors. In Proceedings of the Hard X-ray and Gamma-Ray Detector Physics and Penetrating Radiation Systems VIII, San Diego, CA, USA, 21 September 2006. [Google Scholar] [CrossRef]
- Zhu, Y.; He, Z. Performance of Larger-Volume 40 × 40 × 10- and 40 × 40 × 15-mm3 CdZnTe Detectors. IEEE Trans. Nucl. Sci. 2021, 68, 250–255. [Google Scholar] [CrossRef]
- Veale, M.C.; Bell, S.J.; Jones, L.L.; Seller, P.; Wilson, M.D.; Allwork, C.; Kitou, D.; Sellin, P.J.; Veeramani, P.; Cernik, R.C. An ASIC for the Study of Charge Sharing Effects in Small Pixel CdZnTe X-ray Detectors. IEEE Trans. Nucl. Sci. 2011, 58, 2357–2362. [Google Scholar] [CrossRef]
- Brunett, B.A.; Van Scyoc, J.M.; James, R.B.; Schlesinger, T.E. CdZnTe pixel array detectors and implications for producing large volume gamma-ray spectrometers. J. Appl. Phys. 1999, 86, 3926–3933. [Google Scholar] [CrossRef]
- Jun, W.; Xiaopan, J.; Zhiming, Z.; Chao, W.; Yu, X.; Yan, L.; Guoqiang, Z. Research on depth sensitivity and energy correction technology based on pixel CZT detector. Comput. Tech. Geophys. Geochem. Explor. 2020, 42, 401–406. [Google Scholar] [CrossRef]
- Jun, W. Study and Test of Energy Spectrum Reading of Pixel and Hemispherical Cadmium Zinc Telluride Detectors. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2020. [Google Scholar]
- Zheng, W. Design of Electronics Readout System for Multilayer Array of CZT Detectors. Master’s Thesis, North China Electric Power University, Beijing, China, 2020. [Google Scholar]
- Mele, F.; Quercia, J.; Abbene, L.; Benassi, G.; Bettelli, M.; Buttacavoli, A.; Principato, F.; Zappettini, A.; Bertuccio, G. Advances in High-Energy-Resolution CdZnTe Linear Array Pixel Detectors with Fast and Low Noise Readout Electronics. Sensors 2023, 23, 2167. [Google Scholar] [CrossRef] [PubMed]
- Bolotnikov, A.E.; Camarda, G.C.; Wright, G.W.; James, R.B. Factors limiting the performance of CdZnTe detectors. IEEE Trans. Nucl. Sci. 2005, 52, 589–598. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Butcher, J.; Camarda, G.S.; Cui, Y.; De Geronimo, G.; Fried, J.; Gul, R.; Fochuk, P.M.; Hamade, M.; Hossain, A.; et al. Array of Virtual Frisch-Grid CZT Detectors with Common Cathode Readout for Correcting Charge Signals and Rejection of Incomplete Charge-Collection Events. IEEE Trans. Nucl. Sci. 2012, 59, 1544–1551. [Google Scholar] [CrossRef]
- Li, Q.; Beilicke, M.; Lee, K.; Garson Iii, A.; Guo, Q.; Martin, J.; Yin, Y.; Dowkontt, P.; De Geronimo, G.; Jung, I. Study of thick CZT detectors for X-ray and Gamma-ray astronomy. Astropart. Phys. 2011, 34, 769–777. [Google Scholar] [CrossRef]
- Wilson, M.D.; Seller, P.; Veale, M.C.; Sellin, P.J. Investigation of the small pixel effect in CdZnTe detectors. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; pp. 1255–1259. [Google Scholar]
- Jianl, J.; Shalil, X.; Xin, C.; Liuqian, Z.; Yuxia, C.; Yulin, C. Noise Analysis of Array Pixellated CZT Detector. Optoelectron. Technol. 2011, 31, 98–102. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, D.; Zhao, R.; Li, B.; Zhang, S.; Xiong, D.; Li, M. A High Speed Front End Readout Circuit for CdZnTe Detectors. Microelectronics 2022, 52, 376–382. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Cook, W.R.; Harrison, F.A.; Wong, A.S.; Schindler, S.M.; Eichelberger, A.C. Charge loss between contacts of CdZnTe pixel detectors. Nucl. Instrum. Methods Phys. Res. 1999, 432, 326–331. [Google Scholar] [CrossRef]
- Bolotnikov, A.E. Optimization of virtual Frisch-grid CdZnTe detector designs for imaging and spectroscopy of gamma rays. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 21 September 2007; Volume 6706. [Google Scholar] [CrossRef]
- Iniewski, K.; Chen, H.; Bindley, G.; Kuvvetli, I.; Budtz-Jorgensen, C. Modeling charge-sharing effects in pixellated CZT detectors. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; pp. 4608–4611. [Google Scholar]
- Yin, Y.; Komarov, S.; Wu, H.; Song, T.Y.; Li, Q.; Garson, A.; Lee, K.; Simburger, G.; Dowkontt, P.; Krawczynski, H. Characterization of highly pixelated CZT detectors for sub-millimeter PET imaging. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 2411–2414. [Google Scholar]
- James, R.B.; Chen, H.; Burger, A.; Awadalla, S.A.; Iniewski, K.; Franks, L.A.; Lu, P.H.; Harris, F.; Mackenzie, J.; Hasanen, T.; et al. Large-volume high-resolution cadmium zinc telluride radiation detectors: Recent developments. In Proceedings of the Hard X-ray and Gamma-Ray Detector Physics IX, San Diego, CA, USA, 21 September 2007. [Google Scholar] [CrossRef]
- Kim, J.C.; Anderson, S.E.; Kaye, W.; Zhang, F.; Zhu, Y.; Kaye, S.J.; He, Z. Charge sharing in common-grid pixelated CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 654, 233–243. [Google Scholar] [CrossRef]
- Xu, Z. The imaging detector arrays for X and γ rays. Nucl. Electron. Detect. Technol. 2000, 20, 62–65. [Google Scholar] [CrossRef]
- Yang, J.; Guo, H.; Li, R. The Currency and Development of X or γ Detector Arrays. In Proceedings of the 13th National Conference on Nuclear Electronics and Nuclear Detection Technology, Xi’an, China, 21–25 October 2006; pp. 265–268. [Google Scholar]
- Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.; Barthelemy, S.; Baker, R.; Gehrels, N.; Nelson, K.E.; Labov, S.; Collins, J.; et al. Building large area CZT imaging detectors for a wide-field hard X-ray telescope—ProtoEXIST1. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 605, 364–373. [Google Scholar] [CrossRef]
- Grindlay, J.; Hong, J.; Allen, B.; Barthelmy, S.; Baker, R. Development of tiled imaging CZT detectors for sensitive wide-field hard X-ray surveys to EXIST. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 671–673. [Google Scholar] [CrossRef]
- Zhang, F.; Herman, C.; He, Z.; De Geronimo, G.; Vernon, E.; Fried, J. Characterization of the H3D ASIC Readout System and 6.0 cm 3-D Position Sensitive CdZnTe Detectors. Nucl. Sci. IEEE Trans. 2012, 59, 236–242. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, X.; Wu, H.; Komarov, S.; Garson, A.; Li, Q.; Guo, Q.; Krawczynski, H.; Meng, L.-J.; Tai, Y.-C. 3-D spatial resolution of 350/spl mu/m pitch pixelated CdZnTe detectors for imaging applications. IEEE Trans. Nucl. Sci. 2012, 60, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Chen, X.; Komarov, S.; Wu, H.; Wen, J.; Krawczynski, H.; Meng, L.-J.; Tai, Y.-C. Study of Highly Pixelated CdZnTe Detector for PET Applications. Phys. Procedia 2012, 37, 1537–1545. [Google Scholar] [CrossRef]
- Chen, X.; Han, H.T.; Li, G. Experimental study on high dose rate response of cadmium zinc telluride detectors to pulsed X-ray. Radiat. Meas. 2017, 97, 42–46. [Google Scholar] [CrossRef]
- Ukaegbu, I.K.; Gamage, K.A.A. A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector. Sensors 2018, 18, 1612. [Google Scholar] [CrossRef]
- Chao, P. Research on Key Technologies of Airborne Multi-beam Array Detection 3D Imaging Lidar. Ph.D. Thesis, China Academy of Launch Vehicle Technology, Beijing, China, 2022. [Google Scholar]
- He, Z.; Li, W.; Knoll, G.F.; Wehe, D.K.; Du, Y.F. Effects of charge sharing in 3-D position sensitive CdZnTe gamma-ray spectrometers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 439, 619–624. [Google Scholar] [CrossRef]
- He, Z.; Knoll, G.F.; Wehe, D.K.; Rojeski, R.; Mastrangelo, C.H.; Hammig, M.; Barrett, C.; Uritani, A. 1-D position sensitive single carrier semiconductor detectors. Nucl. Instrum. Methods Phys. Res. 1996, 380, 228–231. [Google Scholar] [CrossRef]
- Li, W.; He, Z.; Knoll, G.F.; Wehe, D.K.; Du, Y.F. A modeling method to calibrate the interaction depth in 3-D position sensitive CdZnTe gamma-ray spectrometers. IEEE Trans. Nucl. Sci. 2000, 47, 890–894. [Google Scholar] [CrossRef]
- Liptac, J.; Parker, R.; Tang, V.; Peysson, Y.; Decker, J. Hard X-ray diagnostic for lower hybrid experiments on Alcator C-Mod. Rev. Sci. Instrum. 2006, 77, 3987. [Google Scholar] [CrossRef]
- Vernon, E.; Ackley, K.; De Geronimo, G.; Fried, J.; He, Z.; Herman, C.; Zhang, F. ASIC for High Rate 3D Position Sensitive Detectors. IEEE Trans. Nucl. Sci. 2010, 57, 1536–1542. [Google Scholar] [CrossRef]
- Lee, Y. Improved quality using newly designed algorithms in gamma- and X-ray fusion images with a photon counting CZT detector: Combining the median modified Wiener filter and edge detection method. Optik 2021, 245, 167681. [Google Scholar] [CrossRef]
- Li, Y.; Gong, P.; Tang, X.; Hu, Z.; Wang, P.; Tian, F.; Wu, S.; Ye, M.; Zhou, C.; Zhu, X. DOI correction for gamma ray energy reconstruction based on energy segment in 3D position-sensitive CdZnTe detectors. J. Instrum. 2022, 17, T03004. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, S.; Zheng, Y.; Li, Y.; Liu, C.; Wang, Q. Monte Carlo Simulation Study of A Large Area Array Neutron Gamma Discrimination Detector. J. Isot. 2022, 35, 460–467. [Google Scholar] [CrossRef]
- Xie, Z.; Mao, Y.; Zhang, G.; Ruan, X.; Zhang, W. Simulation calculation of gamma-ray spectrum in CZT detector based on Monte Carlo method. Nucl. Electron. Detect. Technol. 2008, 28, 52–55. [Google Scholar] [CrossRef]
- Shen, K.; Cai, Y.; Duan, L. Study on Self-adapting Processing Method in Radiant Image. Nucl. Electron. Detect. Technol. 2009, 29, 517–520. [Google Scholar] [CrossRef]
- Xi, F.; Song, F. Fabrication and γ spectrum characteristic test of a laminated CdZnTe detector. High Power Laser Part. Beams 2018, 30, 163–167. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Boggs, S.E.; Hubert, C.M.; Cook, W.R.; Schindler, S.M. Investigation of optimal contact geometries for CdZnTe pixel detectors. In Proceedings of the Conference on Hard X-ray, Gamma-ray, and Neutron Detector Physics, San Diego, CA, USA, 21 November 2000. [Google Scholar]
- Bolotnikov, A.E.; Boggs, S.E.; Chen, C.M.H.; Cook, W.R.; Schindler, S.M. Properties of Pt Schottky Type Contacts on High-Resistivity CdZnTe Detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 482, 395–407. [Google Scholar] [CrossRef]
- Zuo, C.; Zhang, L.; Pan, X.; Tian, H.; Yan, K.; Cheng, Y.; Jin, Z.; Yi, C.; Zhang, X.; Wu, W.Q. Perovskite films with gradient bandgap for self-powered multiband photodetectors and spectrometers. Nano Res. 2023, 16, 10256–10262. [Google Scholar] [CrossRef]
- Sang, W.; Jin, W.; Zhang, Q.; Li, W.; Min, J.; Teng, J.; Qian, Y. Primary study on the contact degradation mechanism of CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 527, 487–492. [Google Scholar] [CrossRef]
- Xiaoyan, L.; Jiahua, M.; Yue, Z.; Changjun, W.; Wenbin, S.; Kaifeng, Q.; Dongni, H.; Chenying, Z. Property comparisons of Au-CZT and Au/Cr-CZT contacts. J. Funct. Mater. Devices 2010, 16, 1–5. [Google Scholar]
- Roy, U.N.; Mundle, R.M.; Camarda, G.S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Pradhan, A.K.; James, R.B. Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors. Sci. Rep. 2016, 6, 26384. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Zhang, J.; Zhao, S.; Zhang, D.; Zhang, J.; Shi, H.; Tang, K.; Liang, X.; Huang, J.; Min, J.; et al. Surface analysis and electrical measurement of the ohmic contact on p-CdZnTe (111)B face with Au/Cd composite electrode. Mater. Sci. Semicond. Process. 2019, 98, 90–94. [Google Scholar] [CrossRef]
- Benjie, Z. Research on Signal Readout Circuit Based on CdZnTe Pixel-Lated Radiation Detector. Master’s Thesis, Chongqing University of Posts and Telecommunications, Chongqing, China, 2019. [Google Scholar]
- Pan, Y.; Liu, F.; Yang, S. Design on readout circuit of CZT pixel nuclear radiation detector. Transducer Microsyst. Technol. 2012, 31, 125–127. [Google Scholar] [CrossRef]
- Xiangquan, L. Study of A Readout Circuit for CZT Surface Element Pixel Arrays Nuclear Radiation Detector. Master’s Thesis, Chongqing University, Chongqing, China, 2010. [Google Scholar]
- Xin, C. Study of CZT Pixel Arrays Nuclear Detector and Design of Electronics. Master’s Thesis, Chongqing University, Chongqing, China, 2011. [Google Scholar]
- Songmeng, F. Research on Wavefront Distortion Compensation Algorithm Based on Array Detector. Master’s Thesis, Xidian University, Xi’an, China, 2022. [Google Scholar]
- Gevin, O.; Baron, P.; Coppolani, X.; Delagnes, E.; Daly, F.; Limousin, O.; Lugiez, F.; Meuris, A.; Pinsard, F. IDeF-X ECLAIRs: An ultra low noise CMOS ASIC for the readout of Cd (Zn) Te detectors. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 1, pp. 326–332. [Google Scholar] [CrossRef]
- Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2015, 780, 15–20. [Google Scholar] [CrossRef]
- Hao, K.; Zhao, L.; Cao, Y.; Wang, H. 16-channel CdZnTe system for low-energy γ-ray measurement. Nucl. Tech. 2008, 31, 869–872. [Google Scholar]
- Hao, K.; Feng, X.; Cao, Y.; Ma, M.; Wang, H. Optimized design of Compton scattering collimators to array detectors of discriminate grade CdZnTe. Nucl. Tech. 2010, 33, 793–796. [Google Scholar]
- Thrall, C.L.; Wahl, C.G.; He, Z. Performance of five-or-more-pixel event sequence reconstruction for 3-D semiconductor gamma-ray-imaging spectrometers. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008. [Google Scholar] [CrossRef]
- Fenglin, L. A Study of a Readout Circuit Used for CZT Pixel Arrays Nuclear Radiation Detector. Master’s Thesis, Chongqing University, Chongqing, China, 2012. [Google Scholar]
- Wei, L. Design of SAR-ADC Used for CZT Detector Imaging System. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2017. [Google Scholar]
- Liu, W.; Wei, T.; Li, B.; Guo, P.; Hu, Y. Design of a 12-bit 1MS/s SAR-ADC for front-end readout of 32-channel CZT detector imaging system. Nucl. Instrum. Methods Phys. Res. Sect. A. Accel. Spectrometers Detect. Assoc. Equip. 2015, 786, 155–163. [Google Scholar] [CrossRef]
- Liu, W.; Wei, T.; Li, B.; Yang, L.; Hu, Y. A reference voltage in capacitor–resister hybrid SAR ADC for front-end readout system of CZT detector. J. Semicond. 2016, 37, 015005. [Google Scholar] [CrossRef]
- Liu, W.; Wei, T.; Yang, L.; Hu, Y. A 12-bit, 1 MS/s SAR-ADC for a CZT-based multi-channel gamma-ray imager using a new digital calibration method. J. Instrum. 2016, 11, P03018. [Google Scholar] [CrossRef]
- Krummenacher, F. Pixel detectors with local intelligence: An IC designer point of view. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1991, 305, 527–532. [Google Scholar] [CrossRef]
- Cai, X.; Xiao, S.; Zhang, L.; Chen, Y.; Cao, Y.; Jiang, J. Design of Pulse Shaped Circuit Based on CdZnTe Detector. Optoelectron. Technol. 2010, 30, 64–67. [Google Scholar] [CrossRef]
- Zhao, X.; Tong, N.; Hu, X.; Ding, S. A Fast Polar Format Imaging Algorithm of MIMO Radarwith Sparse Array Based on Two-dimensional CZT. J. Air Force Eng. Univ. 2017, 18, 32–36. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, J.; Xu, M.; Wang, Q.; Yu, A.; Zhang, Y.; Wen, W.; Wu, Y.; Tang, Z. Application and Development of Noncontact Detection Method of α-Particles Based on Radioluminescence. Sensors 2021, 22, 202. [Google Scholar] [CrossRef] [PubMed]
- Meleshenkovskii, I.; Carrel, F.; Simon, A.C.; Espagnon, I. Isotopic Composition Determination Codes: Current State-of-the-Art, Recent Developments and Future Challenges. J. Nucl. Mater. Manag. 2021, 49, 42–51. [Google Scholar]
- Goodman, D.; Streicher, M.; Zhu, Y.; Brown, S.; He, Z. 1-D Fast Neutron Source Localization Using Digital Pixelated 3-D Position-Sensitive CdZnTe Detectors. IEEE Trans. Nucl. Sci. 2017, 64, 2531–2535. [Google Scholar] [CrossRef]
- Streicher, M.; Goodman, D.; Zhu, Y.; Brown, S.; Kiff, S.; He, Z. Fast neutron detection using pixelated CdZnTe spectrometers. IEEE Trans. Nucl. Sci. 2017, 64, 1920–1926. [Google Scholar] [CrossRef]
- Streicher, M.; Brown, S.; Zhu, Y.; Goodman, D.; He, Z. Special nuclear material characterization using digital 3-D position sensitive CdZnTe detectors and high purity germanium spectrometers. IEEE Trans. Nucl. Sci. 2016, 63, 2649–2656. [Google Scholar] [CrossRef]
- He, Z.; Whe, D.; Knoll, G. Development of Gamma-Ray Compton Imager Using Room-Temperature 3-D Position Sensitive Semiconductor Detectors. Off. Sci. Tech. Inf. Tech. Rep. 2003, 1–6. [Google Scholar] [CrossRef]
- Mortreau, P.; Berndt, R. Characterisation of cadmium zinc telluride detector spectra–application to the analysis of spent fuel spectra. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 458, 183–188. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; James, R.B.; Cui, Y.; De Geronimo, G.; Vernon, E.; Camarda, G.; Hossain, A.; Yang, G.; Indusi, J.; Boyer, B. High-Efficiency CdZnTe Position-Sensitive VFG Gamma-Ray Detectors for Safeguards Applications; Brookhaven National Lab. (BNL): Upton, NY, USA, 2015. [Google Scholar]
- Bolotnikov, A.E.; Camarda, G.S.; Chen, E.; Cheng, S.; Cui, Y.; Gul, R.; Gallagher, R.; Dedic, V.; De Geronimo, G.; Ocampo Giraldo, L. CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm. Appl. Phys. Lett. 2016, 108, 093504. [Google Scholar] [CrossRef]
- Bolotnikov, A.E.; Ackley, K.; Camarda, G.S.; Cui, Y.; Eger, J.F.; De Geronimo, G.; Finfrock, C.; Fried, J.; Hossain, A.; Lee, W. High-Efficiency CdZnTe Gamma-Ray Detectors. IEEE Trans. Nucl. Sci. 2015, 62, 3193–3198. [Google Scholar] [CrossRef]
- Goodman, D.; Xia, J.; Sanders, J.; He, Z. FRAM v5. 2 estimation of plutonium and uranium isotopics using digitized 3-D position-sensitive CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 954, 161339. [Google Scholar] [CrossRef]
- Li, X.; Ni, J.; Yu, G.; Liang, J.; Zhangsun, Y.; Zhang, X. Portable Anti-Compton γ Detection Systemsfor High Activity Source Measurement. Mod. Appl. Phys. 2021, 12, 13–18. [Google Scholar] [CrossRef]
- Parajuli, R.K.; Sakai, M.; Parajuli, R.; Tashiro, M. Development and Applications of Compton Camera—A Review. Sensors 2022, 22, 7374. [Google Scholar] [CrossRef]
- Wu, C.; Li, L. Review of Compton camera imaging technology development. Nucl. Tech. 2021, 44, 45–56. [Google Scholar] [CrossRef]
- Xiaojun, D. Research on Reconstruction of Radiation Distribution Based on γ Camera Images. Master’s Thesis, China Academy of Engineering Physics, Mianyang, China, 2012. [Google Scholar]
- Yilin, L. Research on Compton Imaging Base on a 3-D Position Sensitive CdZnTe Detector. Ph.D. Thesis, Tsinghua University, Beijing, China, 2018. [Google Scholar]
- Yang, Y.; Gono, Y.; Motomura, S.; Enomoto, S.; Yano, Y. A Compton camera for multitracer imaging. IEEE Trans. Nucl. Sci. 2001, 48, 656–661. [Google Scholar] [CrossRef]
- Burger, A.; Zhang, F.; James, R.B.; He, Z.; Franks, L.A. 3D position-sensitive CdZnTe gamma-ray spectrometers: Improved performance with new ASICs. In Proceedings of the Hard X-ray and Gamma-Ray Detector Physics VI, Denver, CO, USA, 21 October 2004; pp. 135–143. [Google Scholar] [CrossRef]
- De Geronimo, G.; Vernon, E.; Ackley, K.; Dragone, A.; Fried, J.; O’Connor, P.; He, Z.; Herman, C.; Zhang, F. Readout ASIC for 3D position-sensitive detectors. In Proceedings of the 2007 IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007; Volume 1, pp. 32–41. [Google Scholar] [CrossRef]
- Wang, W.; Wahl, C.G.; He, Z. Maximum likelihood estimation maximization deconvolution in spatial and combined spatial- energy domains for a detector array system. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Honolulu, HI, USA, 26 October–3 November 2007. [Google Scholar]
- Li, M.; Xiao, S.; Zhang, L.; Cao, Y.; Chen, Y.; Shen, M.; Wang, X. Gamma source imaging based on pixeilated CdZnTe detection. High Power Laser Part. Beams 2010, 22, 2165–2170. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, S.; Zhang, L.; Chen, Y.; Cao, Y.; Li, M.; Shen, M.; Cai, X.; Jiang, J. Study of 2 × 2 pixellated nuclear radiation detector based on CdZnTe. J. Optoelectron. Laser 2010, 21, 639–643. [Google Scholar] [CrossRef]
- Li, M.; Xiao, S.; Wang, X.; Nie, L.; Zhang, L.; Cao, Y.; Chen, Y. Carrier-trapping-based imaging evaluation model and experiment of pixellated CdZnTe detector. High Power Laser Part Beams 2011, 23, 3405–3411. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, S.; Li, M.; Zhang, L.; Chen, Y. Intensifying process of polarization ef fect within pixellated CdZnTe detectors for X-ray imaging. Chin. Opt. Lett. 2011, 9, 6–8. [Google Scholar] [CrossRef]
- Miao, L. Principle, System and Characteristics of Pixellated CdZnTe Detector for High Energy Radiation. Ph.D. Thesis, Chongqing University, Chongqing, China, 2012. [Google Scholar]
- Jianqiang, F. Research on the Key Techniques of CdZnTe Detector. Ph.D. Thesis, Tsinghua University, Beijing, China, 2017. [Google Scholar]
- Kim, Y.S.; Kim, J.H.; Lee, J.; Kim, C.H. Large-Area Compton Camera for High-Speed and 3-D Imaging. IEEE Trans. Nucl. Sci. 2018, 65, 2817–2822. [Google Scholar] [CrossRef]
- Yufei, G. Research on the Image Reconstruction Algorithms for Compton Back-scattering Tomography Based on Energy Spectrum. Master’s Thesis, Information Engineering University, Zhengzhou, China, 2014. [Google Scholar]
- Yufei, G.; Bin, Y.; Lei, L.; Yu, H. Reviews of Image Reconstruction Algorithms in Compton Scattering Tomography. Comput. Tomogr. Theory Appl. 2013, 22, 553–562. [Google Scholar]
- Ge, G. Monte Carlo Simulation and Image Reconstruction of Compton Camera Based on Geant4; China Institute for Radiation Protection: Taiyuan, China, 2018. [Google Scholar]
- Wang, W.; Li, C.; Wu, J.; Li, X. Theoretical and Simulation Study on Factor Affecting Angular Resolution of Compton Imaging System. At. Energy Sci. Technol. 2019, 53, 2471–2477. [Google Scholar] [CrossRef]
- Song, Z.; Yu, D.; Cai, X. Analysis and simultion for Compton camera′s imaging resolution. Acta Phys. Sin. 2019, 68, 269–277. [Google Scholar] [CrossRef]
- Yu, Z.; Guoguang, Z. The Design and Simulation of a New Multilayer Compton Camera. Nucl. Electron. Detect. Technol. 2021, 41, 1085–1092. [Google Scholar]
- Kim, Y.; Lee, W. Development of a Virtual Frisch-Grid CZT Detector Based on the Array Structure. J. Radiat. Prot. Res. 2020, 45, 35–44. [Google Scholar] [CrossRef]
Material | Atomic Number | Density (g/cm3) | Bandgap Width (eV) | Ionization Energy (eV) | Resistivity (Ω) | μeτe | μhτh |
---|---|---|---|---|---|---|---|
Si | 14 | 2.33 | 1.12 | 3.62 | 104 | >1 | 1 |
Ge | 32 | 5.33 | 0.67 | 2.96 | 50 | >1 | >1 |
InP | 15/49 | 4.78 | 1.35 | 4.2 | 106 | 5 × 10−6 | <2 × 10−5 |
GaAs | 33/31 | 5.32 | 1.43 | 4.2 | 107 | 10−5 | 10−6 |
HgI2 | 80/53 | 6.40 | 2.13 | 4.2 | 1013 | 10−4 | 10−5 |
PbI2 | 82/53 | 6.20 | 2.3~2.6 | 4.9 | 1012 | 10−6 | 10−7 |
TlBr | 81/35 | 7.56 | 2.68 | 6.5 | 1012 | 10−5 | 10−6 |
CdTe | 48/52 | 6.20 | 1.44 | 4.43 | 109 | 10−3 | 10−4 |
Cd0.9Zn0.1Te | 48/30/52 | 5.78 | 1.57 | 4.64 | 1010~1011 | 10−3~10−2 | 10−5 |
Cd0.8Zn0.2Te | 48/30/52 | 6.02 | 1.5~2.2 | 5.0 | 1010~1011 | 10−3 | 10−6~10−5 |
Preparation Method | Advantages | Disadvantages |
---|---|---|
BV | Simple structure and ease of operation for producing uniform CZT crystals; various Bridgman method variations available as per requirement. | Potential issues of crystal cracking and occurrences of polycrystalline and twinning phenomena |
HPB | Provides a high crystal growth rate by using high-pressure inert gas to prevent element evaporation | May still encounter crystal cracking and potential polycrystalline and twinning issues |
MVB | Enhanced CZT crystal quality using improved techniques; production of relatively large CZT crystals | Possibility of twinning and grain boundary problems |
HB | Achieves a uniform matrix during growth, improving yield and cost-effectiveness | Might result in lower volume resistivity, potentially affecting energy resolution; not suitable for detecting lower energy radiation |
THM | Enables continuous crystal growth, resulting in CZT crystals with higher uniformity and lower defect density | Slower crystal growth rates, significant temperature gradients during preparation, which can lead to temperature fluctuations and uneven solute distribution |
PVT-VTE | The prepared crystal has high resistivity, small electron drift time, few defects, and good carrier transport performance | The preparation process needs to be further refined to explore its potential |
Empirical Formula | Research Group | Temperature |
---|---|---|
Eg (eV) = 1.604 + 0.42x + 0.33x2 | Taguchi | 9 K |
Eg (eV) = 1.5964 + 0.445x + 0.33x2 | Doty | 12 K |
Eg (eV) = 1.586 + 0.5006x + 0.29692x2 | 77 K | |
Eg (eV) = 1.4637 + 0.496x + 0.2289x2 | 300 K | |
Eg (eV) = 1.598 + 0.614x − 0.116x2 | Polichar | |
Eg (eV) = 1.5 + 0.5x + 0.2x2 | Toney | |
Eg (eV) = 1.5045 + 0.631x + 0.128x2 | Tobin | |
Eg (eV) = 1.606 + 0.332x + 0.462x2 | Hoschl | |
Eg (eV) = (1.494 ± 0.005) + (0.606 ± 0.010)x + (0.139 ± 0.010)x2 | Li |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Cheng, J.; Liu, F.; Wang, Q.; Wen, W.-W.; Huang, G.; Wu, Z. Research on the Technological Progress of CZT Array Detectors. Sensors 2024, 24, 725. https://doi.org/10.3390/s24030725
Li Z, Cheng J, Liu F, Wang Q, Wen W-W, Huang G, Wu Z. Research on the Technological Progress of CZT Array Detectors. Sensors. 2024; 24(3):725. https://doi.org/10.3390/s24030725
Chicago/Turabian StyleLi, Zhangwen, Jinxing Cheng, Fang Liu, Qingbo Wang, Wei-Wei Wen, Guangwei Huang, and Zeqian Wu. 2024. "Research on the Technological Progress of CZT Array Detectors" Sensors 24, no. 3: 725. https://doi.org/10.3390/s24030725