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Abstract: Young, older, frail, and disabled individuals can require some form of monitoring or
assistance, mainly when critical situations occur, such as falling and wandering. Healthcare facilities
are increasingly interested in e-health systems that can detect and respond to emergencies on time.
Indoor localization is an essential function in such e-health systems, and it typically relies on wireless
sensor networks (WSN) composed of fixed and mobile nodes. Nodes in the network can become
permanently or momentarily unavailable due to, for example, power failures, being out of range,
and wrong placement. Consequently, unavailable sensors not providing data can compromise the
system’s overall function. One approach to overcome the problem is to employ virtual sensors
as replacements for unavailable sensors and generate synthetic but still realistic data. This paper
investigated the viability of modelling and artificially reproducing the path of a monitored target
tracked by a WSN with unavailable sensors. Particularly, the case with just a single sensor was
explored. Based on the coordinates of the last measured positions by the unavailable node, a
neural network was trained with 4 min of not very linear data to reproduce the behavior of a
sensor that become unavailable for about 2 min. Such an approach provided reasonably successful
results, especially for areas close to the room’s entrances and exits, which are critical for the security
monitoring of patients in healthcare facilities.

Keywords: neural networks; machine learning; indoor localization; wireless sensor network;
virtual sensor

1. Introduction

Infants, older adults, and people with mental or physical disabilities might need
special attention in healthcare facilities. Consequently, healthcare staff need to know the
indoor location of those patients in order to provide adequate care or assistance [1]. One
approach for locating people indoors is to use a wireless sensor network (WSN) that can
include fixed and mobile nodes to acquire data to compute the target’s location [2–4].

Several technologies and methods for indoor positioning systems (IPS) exist in the
literature, as recently examined in [5]. Among these technologies, research has explored
radio-frequency identification devices (RFIDs), WiFi, Bluetooth, ZigBee, ultrawide band,
and sound for IPS. Range, power consumption, cost, latency, and accuracy are the main
criteria to compare and select these technologies. Depending on the selected technologies,
signal metrics, including received-signal strength indicator (RSSI), channel-state infor-
mation (CSI), fingerprinting analysis, angle of arrival (AoA), time of flight (ToF), time
difference of arrival (TDoA), return time of flight (RToF), and phase of arrival (PoA) are
used to estimate the target’s location. RSSI is a widely used technique due to its low cost
and no need for additional hardware [6].

Researchers in [2] evaluated WiFi, ZigBee, and Bluetooth as technologies, and fin-
gerprinting analysis, ToA, and RSSI as localization algorithms to enable IPS in a hospital.
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Besides suggesting WiFi and fingerprinting analysis as the most suitable approach for IPS
in a hospital, an important observation in that study was the impact of a nonfunctioning
node on overall system stability. One approach to overcome this problem is using machine-
learning techniques to create a model for smart virtual sensors based on past data generated
by actual sensor nodes. In run-time, and when a given node becomes unavailable, a smart
virtual sensor can provide data in place of the unavailable node. Besides IPS, there are
many other applications for smart virtual sensors. For example, the researchers in [7] used
an artificial neural network (ANN) and data-mining techniques to develop a virtual sensor
that effectively generated cylinder pressure data-predicting emissions in a diesel engine.

An ANN is inspired by natural neuronal function, having its origin in the artificial
neuron described in [8]. This artificial neuron was used to compose a network called
perceptron [9], with only one layer of binary neurons, and it was the first neural network
with commercial applications. As a remarkable evolution, the delta rule [10], which was
based on squared-error minimization, allowed for the efficient training of a one-layer
network with real domain outputs. However, this network could not solve more complex
logical problems and perform nonlinear discrimination or approximate nonlinear functions.
Multilayer-perceptron (MLP) networks, capable of approximating nonlinear functions
and nonlinear discrimination, became possible with the proposal of the backpropagation
algorithm by [11], which can calculate internal layer errors, making it possible to train
them with the delta rule. According to the universal approximation theorem [12], these
networks can precisely approximate any function with a single inner layer and 2n + 1
artificial neurons in this layer; n is the number of entries. The theorem by [13], however,
more related to practical applicability, stated that a neural network with a single hidden
layer could approximate any measurable relationship r : Rn− > Rm, where m is the
number of outputs. However, the recognized ability of functions approximation can be a
drawback because the neural network can approximate even the randomness contained in
the data. This phenomenon is called overfitting. To avoid overfitting, the most commonly
used method is cross-validation [14], which divides the original samples into three sets:
training, validation, and verification. The training set is used to train the neural network
by successively submitting all of its data to the training algorithm. Each submission may
be called a training cycle or epoch. The algorithm continuously evaluates its performance
at each training cycle, in addition to with the validation samples. Performance statistics
used internally by the performance evaluation algorithm, as a rule, are the sum of the
square of errors. When the algorithm perceives itself as adjusting too well for the training
samples but not improving the validating paths, it stops the training to avoid losing its
generalization capacity. The neural network is then applied to a set of samples (verification
sampling) that did not participate in any previous stages of training or the definition of the
neural network complexity to test its generalization capability [14]. Using neural networks
in this work is connected to its complex and dynamic structure that allows for modelling a
wide range of problems, adjusting to different situations, and recognizing patterns.

Observing the applicability of ANNs, this paper presents a method for estimating
a target location with only one sensor and a feed-forward ANN when the actual sensor
becomes unavailable for a brief period. This paper also presents an algorithm to detect the
target’s position within the range of the sensors when the network is working well, as the
system uses the data collected during this period to train the ANN further. The proposed
method is independent of the employed WSN protocol, and the developed system can
work with only one RSSI sensor with considerable accuracy. This work also presents an
evaluation of the sufficient number of neurons that the ANN requires to present acceptable
behavior when artificially replacing an actual sensor node in a WSN.

The main contributions of this work are summarized as follows:

• using of machine learning and neural networks to implement virtual sensors to replace
temporarily unavailable physical sensors nodes in order to maintain the operation of
indoor localization systems;
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• assessing of the number of neurons in the ANN that are sufficient to provide satisfac-
tory results in keeping the network computing the target’s position.

The remainder of this paper is organized as follows: Section 2 presents a discussion
on related work. Section 3 discusses the indoor-localization problem, including dealing
with failure in the nodes and an overview of the proposed solution. Section 4 presents
the fingerprint calculation. Section 5 presents the proposed system architecture, while
Section 6 presents the experimental setup and results. Lastly, Section 7 concludes the study
and presents future work.

2. Related Works

In [15], the authors proposed a machine-learning-based WSN system for autistic-
activity recognition. The system included a wearable device that tracked autistic patients
using a global-positioning-sensor (GPS) module and communicated the location to care-
givers. However, GPS consumes too much energy and does not work well for indoor
positioning [16].

The work presented in [1] proposed a novel indoor-localization system for healthcare
environments based on decentralized RSSI that focused on the placement of the nodes to
reduce attenuation caused by hospital walls. This work proved that indoor localization is
feasible in hospitals. The authors also suggested simultaneously using more than one RSSI
for propagation effects.

The researchers in [4] explored an experimental e-health application with WSN to
monitor a person’s care needs in a home environment. As part of the system, the authors
developed a simple RSSI-based IPS using ZigBee. The person’s care needs were identified
by the system using data fusion from pressure sensors in the bed, a fire sensor in the kitchen,
and wearable heart-rate monitors. Multisensor data fusion was also explored in [17] in an
indoor navigation system for environments such as hospitals. The proposed method fused
map information and data from a light sensor and Bluetooth module in a smartphone
to estimate indoor location. Compared to localization systems using inertial sensors,
the multisensor fusion approach achieved 90% improvement in localization accuracy.

The work reported in [18] described the implementation and analysis of an indoor-
location system that also employed multisensor fusion using magnetic-field sensors (MFS),
RSS sensors, and images taken with a mobile phone. A deep-learning module interpreted
the captured images and modeled the scene, which would later be fused with MFS and
RSSI sensor data to estimate a subject’s location.

The proposal presented in [16] used three different machine-learning methods and
radio fingerprints for WSN localization. Among kernel-based machine-learning techniques,
the authors selected least-squares support vector machine (SVM), support vector regres-
sion (SVR), and vector-output regularized least squares (vo-RLS) with centralized RSSI
fingerprinting. The authors claimed that their method surpassed the results achieved by
the weighted K-nearest-neighbor algorithm.

Regarding noisy fingerprint classification, a multiple layered perceptron (MLP) dealt
well with a noisy dataset by identifying and classifying it in [19]. According to [20], a
statistical method can also provide good results to correct errors in RSSI for WSNs.

The study presented in [2] investigated techniques for scene analysis (fingerprinting).
The study combined time of arrival (ToA) and RSSI multilateration with three different
wireless-communication technologies: WiFi, ZigBee, and Bluetooth Low Energy (BLE).
The authors used an indoor-positioning system with a fixed anchor and mobile nodes
spread through a hospital environment to test the different setups. The authors evaluated
the setup according to accuracy and latency. Image processing with WiFi had the best
accuracy, but the worst latency and cost. The authors also mapped the space and evaluated
the number of anchor nodes necessary for each method, and the consequences of missing
or failed nodes.

One approach to deal with unavailable or problematic nodes is to create virtual sensors
modeled to behave and produce data using the historical data of an actual node. For ex-



Sensors 2021, 21, 3912 4 of 17

ample, virtual sensors were used for predicting diesel-engine emissions using cylinder-
pressure data in [7]. This work investigated using many kernel-based machine-learning
techniques, such as ridge regression, SVM, and vector-output regularized least squares to
improve the RSS technique.

The study presented in [21] evaluated three different artificial neural networks (ANN)
using root mean square error (RMSE) for IPS using RSSI. The differences in these methods
lay in the type of neural network backpropagation, which can be feed-forward, cascade-
forward, or Elman. For a distance range of 100 m, Elman backpropagation presented the
least RMSE, which was more accurate.

The work reported in [22] described the development of fingerprinting mapping using
an RSSI online K-nearest-neighbor algorithm for indoor WiFi services. In [23], the authors
used a feature-adaptive online sequential extreme learning machine (another machine-
learning technique) for lifelong indoor WiFi localization that could improve its accuracy
even with fewer data. A Lagrangean programming neural network was used in [3] to
complement a TOA-based approach for indoor-positioning detection.

Aiming at recognizing indoor human activity using high-dimensional sensors and
deep neural networks, a fusion of video-camera and radar sensors by a three-dimensional
convolutional neural approach was explored in [24]. In contrast, [25] applied radio sen-
sors to fingerprint-based device-free (DF) WiFi indoor localization that coped with noisy
channel-state information.

In [26], the proposed CCPos positioning system (CADE-CNN positioning) used a
convolutional noise-elimination autoencoder (CDAE) and convolutional neural network
(CNN). The authors explained that in the offline stage, the system applied the K-means
algorithm to extract the validation set from the complete and online training set; the RSSI
was first demineralized, and the CDAE extracted key resources, so the location estimate
was issued by the CNN. Reported experiment results showed good performance.

In the solution proposed in [27], a scheme based on the similarity of measures us-
ing machine learning in data analysis was used to implement virtual sensors in a sensor
cloud. The physical sensors were classified into several categories using historical data,
so the k-means algorithm was explored for each class to group those with high similarity.
Lastly, a physical sensor representative of each cluster was selected to create the corre-
sponding virtual sensors. The most interesting results are related to the accuracy of the
collected data.

Finding objects in a disordered reverberating environment is extremely challeng-
ing. The authors in [28] showed that a non-emitting object’s scattering contribution to
a reverberant medium suffices to localize the object and demonstrate this finding in the
microwave domain. Then, they further simplified the scheme by replacing the temporal
degrees of freedom of the broadband measurement with spatial degrees of freedom ob-
tained from wavefront shaping. According to the study, the demonstrated ability to localize
multiple noncooperative objects with a single-frequency scheme has potential usage in
smart-home applications.

Studying the same problem of locating objects in complex environments, the work
reported in [29] revealed that environmental perturbations reduce both the diversity of
the dictionary of solutions based on wave fingerprints and their effective signal-to-noise
ratio (SNR). These effects are such that they reduce the amount of information that can be
obtained per measurement. However, the authors state that this unfavorable effect can be
fully compensated by taking additional measurements. The authors showed experiments
in which the localization of noncooperative objects is possible even when the scattering
strength of the environmental perturbation significantly exceeds that of the target object.

The authors in [30] showed that the precision of localizing a subwavelength object
could be improved by several orders of magnitude by simply enclosing it in its far field with
a reverberating chaotic cavity. Their experiment results demonstrated that their approach
could locate a subwavelength object inside a chaotic cavity using only single-frequency
single-pixel measurements.
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The work presented in [31] focused on decimeter-level localization with a single WiFi
access point (Chronos). The authors investigated whether a WiFi radio could emulate a
wide-band multi-GHz radio for the purpose of localization. The proposed solution could
compute sub-nano-second time of flight using commodity WiFi cards. As proposed in the
paper, by multiplying the time of flight with the speed of light, a MIMO access point could
compute the distance between each of its antennas and the client, hence localizing it.

Ubicarse is an accurate indoor localization with zero start-up cost presented in [32].
This system requires no specialized infrastructure nor fingerprinting. Ubicarse allows for
handheld devices to emulate large antenna arrays using a new synthetic aperture radar
(SAR). The contribution is the ability to perform SAR on handheld devices twisted by their
users along unknown paths, and is not limited to localizing RF devices; it combines RF
localization with stereovision algorithms to localize everyday objects with no RF source
attached to them.

WiTrack2.0 is a multiperson localization system that operates in multipath-rich indoor
environments presented in [33]. It pinpoints users’ locations based on the reflections of
wireless signals off their bodies. This approach works even if the user is behind a wall
or obstruction. The reported results show that it could simultaneously localize up to five
people with a median accuracy of 11.7 cm in each of the x/y dimensions, providing a coarse
tracking of body parts.

The work presented in this paper advances the state of the art by proposing an IPS
system that can support the failure of a sensor node by replacing it with a virtual ANN
sensor that provides the expected positioning data. This approach (1) overcomes the
problems and gaps associated with handling failures, (2) provides a low-cost alternative to
the related work, as it demands sophisticated hardware, and (3) does not present problems
regarding privacy issues, for example, by not handling images of a scene.

3. Problem Statement and Proposed Solution Overview

As discussed in the introduction, certain people need special healthcare attention.
In order to provide such services, healthcare personnel must constantly know where
these people are, especially for urgent needs. Assuming a WSN to monitor the patient’s
location in this environment, it is possible to model it as a Cartesian coordinate plane
where sensor nodes are displaced and can provide location information of the tracked
people. The literature presents many tactics to discover the location of tracked objects of
people in both indoor and outdoor environments. This work used an RSSI-based solution
for the indoor scenario. This solution based on WSN explores spatial diversity of the
distribution of nodes in a monitored environment. The goal of the system is not to compute
accurately the positioning of a person inside a room, but to provide information such as if
the monitored person left a room or if the person is walking by a restricted area.

As in any WSN, a sensor may fail in providing expected data due to several reasons,
such as battery depletion, interference, or hardware problems. The unavailability of a
sensor node impacts the location or tracking system because expected-positioning data are
not provided. This work is, therefore, focused on replacing these missing positioning data
so that the location service is not disturbed.

In order to address the problem of an unavailable node, this work proposes a neural
network approach that can temporarily virtually replace a real sensor when it becomes
unavailable through time-series predictions. This is a fault operation mode of the system.
The neural network separately estimates the X and Y Cartesian coordinates of the target in
the function of the measured RSSI and the learnt data. Since the two sensors (the virtual
and real one) are theoretically equal, this paper presents a comparative analysis of system
behavior when both sensors are on and when just the artificial one is activated.

The proposal is based on fingerprint calculation, which requires patients to carry
extra equipment. Alternatives using visual analysis or proximity sensors could be used.
However, the former has problems regarding the privacy of the monitored person. At the
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same time, the latter relies on sensors that may much vary in terms of accuracy considering
the type of hardware that is used to deploy the system [34].

The proposed solution considers the usage of devices that are can detect a difference
in the received RSSI with enough accuracy to support the detection of movement based on
the difference of two consecutive RSSI measurements. Moreover, considering the findings
reported in [35], this work considers that the combination of the position where sensors
are deployed in the monitored environment and the position in which the person carries
the carry-on device is such that the possible negative effects due to the antennas’ angular
configuration and a person’s body are negligible.

This work assumes that clock synchronization among sensor nodes is solved by using
approaches such as [36], which provide the necessary accuracy to enable the proposed
solution to work appropriately.

There is a small correlation (0.305) between distance measured by the bother sensors,
but it is too small to dismiss the usage of another sensor or a resource, such as the technique
proposed here, to replace the failing sensor. This correlation was found by comparing the
data registered for each of the measured positions from one sensor with the corresponding
measured position of the other sensor through MATLAB function corr(), which establishes
the pairwise correlation coefficient between each pair of vectors, which in this work
comprises the time series of the detected positions by each sensor.

4. Fingerprint Calculation

The target node exchanges messages with the anchor nodes, which detect the RSSI
of the target. The nearer the target is to the anchor, the greater the RSSI is. From this,
it is possible to calculate the distance (r) of the target according to the Friss equation
(used to find the optimal received power at an antenna from basic information about
the transmission), shown in (1), which relates this distance with the power of the Pt
transmitter, received power Pr, directivity Dt, distance Dr between (Pt) and (Pr), and signal
frequency λ. Fixing all other parameters, it is possible to establish a direct relation between
distance and received power.

(PR/Pt) = Dt ∗ Dr ∗ (
λ

(4 ∗ π ∗ r)
)2. (1)

Following the scenario representation in Figure 1, the distance between a sensor A1
and a target T is r1, while the distance between T and another sensor A2 is r2. Variable
posX represents the position of T regarding the horizontal Cartesian axis (X), while posY is
its analog to the vertical Cartesian axis (Y). So, in this work, the sensors were considered to
both be on the Y-axis. Therefore, the distances between the anchor and mobile nodes form
a triangle, represented in Figure 1.

Trigonometric algebra can calculate the posX and posY from the already known dis-
tance between nodes. Considering the distance between two sensors (d), the greater triangle
from Figure 1 is divisible into two rectangle triangles. Using the Pythagorean theorem, two
equations are achieved, (2) and (3):

r2 =
√
(pos2

X + pos2
Y), (2)

r1 =
√
(pos2

X + (d − posY)2) (3)
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Figure 1. How sensors identify target position.

Reorganizing (2) to isolate the posY variable, it becomes (4):

posY =
√

r2
2 − pos2

X , (4)

By substituting (4) into (3) and reorganizing it, it becomes Equation (5), which allows
for the calculus of posX .

posX =

√√√√( r2
2 − r2

1 − d2

(−2 ∗ d)

)2

+ r2
2. (5)

Now, the definition of posY is possible through Equation (4).
This calculus yields two possible positions: one was discarded outside the room, and

the other was mirrored in the triangle’s central X axis.

5. System Architecture

The system presented in this work has normal and fault-operation modes. First,
at normal operation mode, the two anchor node sensors track the mobile sensor (target T)
attached to the patient and retrieve its RSSI. Next, they calculate its correspondent distance.
The system then calculates the target position represented by its Cartesian coordinates,
as presented in Section 3. Next, the calculated position is recorded as data for the machine-
learning algorithm. Lastly, the cycle restarts 1 second later with another instance of data
acquisition. If one of these sensors fails, the neural network is activated. A proximity
sensor at the door is also activated in order to know if someone enters the room. So, this
neural network receives the starting position, speed, and distance acquired by the sensor
A2. From these data, the trained machine-learning algorithm estimates the position of the
target. Figure 2 presents the system operation under normal and fault conditions.
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Figure 2. Proposed system architecture.

This neural network functions as a virtual sensor to simulate the information that
would be retrieved by a faulty sensor A1 during its failure considering its past data and
current information from sensor A2. The neural network is trained with the same inputs as
those that it needs for operating. The neural network comprises an input layer, at least one
inner layer (also called a hidden layer), and one output layer.

The input layer receives the data and introduces them to the other neurons. In this
study case, the input layer needed 7 neurons to work properly, as there were 7 inputs
besides the bias, which was considered to have the value of 1. Thus, this neural net-
work received past positions (x(t − 1), y(t − 1)), (x(t − 2), y(t − 2)), current and past
distances calculated from sensor A2(r(t), r(t − 1), r(t − 2)). Comparing the last two posi-
tions allows for the machine-learning algorithm to estimate the movement’s speed and its
inertial tendency.

The output layer consisted of two neurons that provide the estimations of the patient’s
position. The outputs of the algorithm are coordinates in the X and Y axes for each
interaction step. Figure 3 shows this neural network.

Figure 3. Neural network composed of input, hidden, and output layers.

The ANN calculates the following possible positions based on the known position,
trajectory, and distance radius from the active sensor. ANN training enables it to choose
the most likely among the next possible positions considering trajectory targets that it
had found.
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A neural network can have one or more hidden layers. When it has more than one
hidden layer, it receives the name of a deep neural network capable of more complex
estimation and predictions. However, such a network requires substantial amounts of
data that are not always available, as in the present case study. Therefore, the present
study used an MLP approach with only one hidden layer. This approach was enough
to track the person’s position given by the dataset, as shown in Section 6. Remarkably,
additional sensors would improve detection accuracy, as the ANN training data would be
more robust.

In order to avoid overfitting problems, it is necessary to use cross-validation.
This technique divides a dataset into training (255 samples), validation (121 samples),
and verification (105 samples) sets. The first set is used to train the ANN by successively
submitting all of its data to the training algorithm. Each submission may be called a
training cycle or epoch. The algorithm continuously evaluates its performance at each
training cycle and with the validation samples. Performance statistics used internally
by the performance-evaluation algorithm, as a rule, are the sum of the square of errors.
When the algorithm perceives itself as adjusting too well for the training samples but not
improving for the validating paths, it stops the training to avoid losing its generalization
characteristics. The neural network is then applied to a set of samples (verification sam-
pling) that did not participate in any previous stages of training or the definition of the
neural network’s complexity to test its generalization capability [14].

6. Experiments and Results

This section presents neural network behavior as a virtual sensor for indoor human
tracking. This study compared the positions tracked by the machine-learning algorithm
with the acquired positions using two sensors (A1 and A2) from the dataset. Experiments
were conducted via simulations using the standard resources of MATLAB 2012 to program
the neural network that functioned as a virtual sensor based on data from the real sensors,
including past data from the compromised sensor.

First, repetitive tests were conducted to determine the number of neurons at the
hidden layer of the neural network that provides a better approximation of the behavior of
the sensors. The used criteria to choose the ANN complexity, represented by the number
of neurons in the inner layer, is the complexity that did not present performance reduction
with its application to the validation sampling concerning an oversized network previously
trained with cross-validation, which did not show overfitting. Therefore, the resulting
network practically presented the same performance (except for the randomness of the
indices used for the evaluation) as that of the initial network. For minor complexities, it
was verified that the lack of degrees of freedom impairs performance.

6.1. Experimental Setup

The scenario in the dataset provided by [37], which is used in this paper, consisting of
a standard four-wall room connected by a corridor to another equally sized room. Each
wall opposite the corridor entrances had two suspended anchor nodes, one at each corner
at 1.5 m of the ground. In [37], the authors established six possible paths and three different
room sizes in their acquisitions. This scenario considers that the target had a mobile node
in the chest that interacted with the anchor nodes. The system used RSSI to evaluate the
distance between mobile and anchor nodes. The corridor was long enough that the sensors
of the other room had a reach limited to point M. The dataset recorded six different paths.

The present paper considers just one room of the above-described dataset, and one
path constrained in this room, which had a length of 12.6 m and a width of 4.5 m.
Thus, the simulation employed a simplified open-space environment with fixed sensor
positions in this area of interest, i.e., the 12.6 × 4.5 m room, and the effect of the walls,
furniture, and other obstacles was not taken in account.

The dataset, and thereby this work, consider that a person can move 1 m per second.
From the distances of two or more sensors, the system could calculate the mobile node’s
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position in a Cartesian plane, as follows. Figure 4 presents a scenario used in the present
work with anchor nodes A1 and A2 at its corners. The scope of the current work considers
just the second path of the dataset, which did not transcend the limits of this room. All
sensors are supposed to be ideal with spherical radiation diagrams, and the effect of
the body and any other objects, and any potential interference were not covered in the
performed simulations.

Figure 4. Scenario: room such as the one from the dataset.

The statistics used for determining the number of neurons were the Nash efficiency
coefficient and the absolute average error between observed and calculated data. The Nash
efficiency coefficient explains the proportion of variance in the data that the model can
explain. This parameter varies from negative infinite to 1. The better the model is, the closer
the Nash coefficient is to 1. Figure 5 presents the Nash coefficient by numbers of neurons
at the hidden layer. The Nash coefficient showed a difference when 3 neurons were used
instead of 2 neurons. When the neurons in the hidden layer were increased by more than
that, the coefficient was not clearly and significantly improved.

Figure 5. Evaluation of Nash coefficient by number of neurons at the hidden layer.

Figure 6 presents an evaluation by absolute mean error for the same models previously
evaluated by the Nash coefficient. The error was more significant when the model had
one or two neurons, and started improving with 3 neurons. From that point on, both
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the average absolute error and Nash coefficient started becoming acceptable. Therefore,
the following analysis features results for a model with three neurons at the hidden layer,
which had a Nash coefficient value of 0.8246 and an average absolute error of 0.1359,
as shown in the graph.

Figure 6. Evaluation of absolute average error by number of neurons at hidden layers.

6.2. Experiment Results

Figure 7 shows how the neural network’s time-series prediction algorithm tracks
the verification set paths concerning the position of the target on the x axis. This figure
shows that the neural network followed the target’s position with considerable precision.
The model was less accurate for lateral-end positions near the path origin (lower values).
On the other hand, as the patient approached the exit (high values), the model more
accurately hit their position. For comparison purposes, a simpler model based on linear
extrapolation was used as the baseline. The model started by hitting the dashed line that
represented the original path. The model’s output starts a bit later than the original signal
from the sensors (no line filled following the dashed line in the first moments). This is
because the model needed those first sensor data from the original path. The average
neural network tracking error in relation to the X axis was 0.036 m. Comparing the mean
error with the median (0.055 m) revealed that the statistical distribution of errors presented
symmetrical behavior, perhaps with a very short tail to the left. The absolute mean error
was 0.199 m. This value shows that the neural network calculated the target’s position
for the X axis with an average error of about 20 cm. The standard deviation (STD) of
this error measure was 0.2704 m, while the root-mean-square error (RMSE) was equal to
0.271 m. These statistics show the dispersion that characterizes the statistical distribution
of the precision of this artificial-intelligence model. The Nash coefficient was 0.716. For X
positioning, the simple linear-extrapolation model presented inferior results and superior
error, i.e., absolute mean error of 0.263 m, standard deviation error m, RMSE of 0.382 m,
and a Nash coefficient of 0.438.
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Figure 7. Artificial neural network and linear extrapolation following measured patient path in
relation to X axis.

Figure 8 shows the neural network algorithm tracking the verification set paths with
respect to the position of the target on the Y axis. So, the algorithm tracked the y-positioning
with even better accuracy than that for the X axis. As was noted for the x coordinates,
the model was less accurate for lateral-end positions near the path origin (lower values),
and more accurate as the patient approached the exit (higher values).

Figure 8. Artificial neural network and linear extrapolation following measured patient path in
relation to Y axis.

Time-series correlations were performed to evaluate the linear temporal relationships
between X and Y coordinates, and the past time values of these variables and the measured
distances of sensor r2. The steps were each of the last discrete positions measured for each
variable. The time from one step to another varied according to the individual speed of the
target. Thus, decay in the accuracy of the virtual sensor is a function of the steps, and the
time of the decay varied with a proportional relation with the steps that the virtual sensor
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can reproduce and the individual speed of the target. Figure 9a shows the decay of the
importance of the past values of X and Y positions, and distance r2 for the calculation
of the current X position. The autocorrelation of X diminished and became statistically
insignificant after 8 steps, though the importance of the two other variables for calculating
the X position ends before five steps. Figure 9b shows that all variables became statistically
insignificant for the calculation of position Y after about 5 steps. The significant limits of
the correlations, considering a significance level of 0.05, are represented by the dashed lines.
These correlograms represent a linear analysis and shown what is expected considering a
linear model. However, the ANNs were nonlinear models that may perceive information
beyond the linear correlations.

Figure 9. Correlograms of distance r2, and X and Y positions in relation to (a) X and (b) Y positions.

Concerning the Y axis, the neural network tracked this position with a mean error
of −0.066 m with a median of −0.011 m. Comparing the mean error with the median
reveals that the statistical distribution of errors presents symmetrical behavior, maybe with
a very short tail to the left, similar to the behavior of the X axis. For the ANN, the absolute
mean error of the Y axis tracking is 0.222 m, its standard deviation is 0.2806 m, the RMSE
is 0.2869 m, and the Nash coefficient was 0.820. While the Linear Extrapolation achieved
a mean absolute error (MAE) of 0.572, a standard deviation error of 0.752, a RMSE of
0.749 and a Nash coefficient of −0.222. Therefore, linear extrapolation mean absolute error,
standard deviation, and RMSE are more than twice the value achieved by the ANN for
the calculation of the path considering the Y parameter. Table 1 presents a compilation
of the comparison between the results achieved by the ANN and by the simple linear
extrapolation model. Table 1 also shows the decay in the accuracy of the ANN virtual
sensor as variables moved away from their starting point (the failure of the real sensor).
The mean X position absolute error of the ANN grew from 0.185 m (at Step 1) to 0.275 m
(at Step 8), while the mean Y position absolute error of the ANN grew from 0.226 m (at
Step 1) to 0.314 m (at Step 8). The Y position Nash coefficient remains high for all eight
steps, decreasing by just 0.199, while the X position Nash coefficient decreased by 0.216.
The standard deviations in the X and Y positions increased by 0.072 and 0.110, respectively,
along with the eight steps, which were very similar values to the ones observed in the
increase in RMSE in the X and Y positions, respectively.



Sensors 2021, 21, 3912 14 of 17

Table 1. Comparison between ANN and simple linear-extrapolation-model results.

Results Linear ANN (t−1) ANN (t−2) ANN (t−3) ANN (t−4) ANN (t−5)

MAE X (m) 0.263 0.199 0.220 0.219 0.230 0.249
MAE Y (m) 0.572 0.222 0.275 0.299 0.255 0.235
STD X (m) 0.384 0.270 0.303 0.295 0.308 0.323
STD Y (m) 0.752 0.281 0.352 0.384 0.357 0.329

RMSE X (m) 0.382 0.271 0.302 0.296 0.306 0.323
RMSE Y (m) 0.749 0.287 0.351 0.382 0.357 0.331

Nash X 0.438 0.716 0.641 0.657 0.632 0.592
Nash Y −0.222 0.820 0.727 0.677 0.718 0.758

Both directions presented average errors, median errors close to zero, and similar
standard deviations and RMS. Therefore, there is not enough evidence that the model
performed differently along with the two directions. Since both Nash coefficients were
above 0.7, this model fared well in tracking for both axes. The path of the database showed
more variability for the Y axis, as confirmed by the Nash coefficient being more significant
for this axis while having a similar mean error.

Figure 10 shows the relation between the real position and its corresponding position
according to the neural network in respect to the x axis. The graph showed less dispersion
and better alignment of points with the highest coordinates corresponding to the area
closest to the exit from the room, indicating that patient tracking is more accurate the
further they were from the door, as illustrated in Figure 7.

Figure 10. Dispersion of corresponding artificial neural network to the real position considering the
X axis.

Figure 11 shows the relation between the real position and its correspondent position
according to the neural network with respect to the y axis. This graph shows that the diag-
onal alignment was greater than what was observed for the x direction, and the scatter was
smaller than what was observed for the x coordinates, notably for the lower coordinates.
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Figure 11. Dispersion of corresponding artificial neural network to the real position considering the
Y axis.

Since correlation among sensors was already very small (0.305), the virtual sensor
could replace the actual sensor for some time, provided that the past position/trajectory
was known, and the calculated position is within the active sensor radius. This replacement
would work even if the original sensor were already at a greater distance than the one
considered between the sensor nodes of the experiments performed in this work, and one
of them failed. This correlation was found by comparing the registered data for each of the
measured positions from one sensor with the corresponding measured position of the other
sensor through MATLAB function corr() that establishes the pairwise correlation coefficient
between each pair of vectors, which in this work comprised the time series of the positions
detected by each sensor.

7. Conclusions and Future Work

This paper presented a machine-learning algorithm to replace an indoor-positioning
sensor during a faulty period. The number of neurons necessary for the hidden layer of
the neural network were also presented. Once appropriately trained, the neural network
reproduced the behavior of the sensors well for a few minutes. The used method was
reasonably successful, especially for the area close to the exit of a room, which is the most
important for security monitoring because it indicates if the patient is leaving a room.
Therefore, the usefulness of models that use only one distance sensor and recent patient-
position data with artificial neural networks have proven helpful in providing approximate
location information when a second sensor occasionally fails.

A possibility of future work considering machine learning is using deep-learning
techniques such as transfer learning to further improve the system’s behavior. However,
the adoption of this approach may require a greater dataset. In addition, the use of a
virtual sensor may also present itself as an interesting solution for remote areas where
energy saving is an important concern. Other possibilities could be applying the fault-
tolerant approach proposed here in systems exploring spectral diversity (i.e., via broadband
measurement [28,29]) or configuration diversity (e.g., via a reconfigurable intelligent sur-
face [28,30]).
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