In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus Configuration
2.2. Tested Soil and Electrochemical Measurements
2.3. Characteristics Analysis
2.4. Calculation
3. Results
3.1. Nyquist Plots Represent Rs
3.2. Resistivity and EC
3.3. Carbon Mesh Layers Inside Soil
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
MFCs | Microbial fuel cells |
EC | Electrical conductivity |
EIS | Electrochemical impedance spectroscopy |
RMA | Resistance measurement apparatus |
Rs | Ohmic resistance |
Rct | Charge transfer resistance |
C | Capacitance |
CL | Catalyst layer |
GDL | Gas diffusion layer |
References
- Santini, T.C.; Fey, M.V.; Smirk, M.N. Evaluation of soil analytical methods for the characterization of alkaline technosols: I. Moisture content, pH, and electrical conductivity. J. Soils Sediments 2013, 13, 1141–1149. [Google Scholar] [CrossRef]
- Eigenberg, R.A.; Doran, J.W.; Nienaber, J.A.; Ferguson, R.B.; Woodbury, B.L. Electrical conductivity monitoring of soil condition and available n with animal manure and a cover crop. Agric. Ecosyst. Environ. 2002, 88, 183–193. [Google Scholar] [CrossRef]
- Wang, X.; Cai, Z.; Zhou, Q.; Zhang, Z.; Chen, C. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using u-tube microbial fuel cells. Biotechnol. Bioeng. 2012, 109, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Garay, A.; Berná, A.; Ortiz-Bernad, I.; Esteve-Núñez, A. Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil. Environ. Sci. Technol. 2013, 47, 2117–2122. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Huggins, T.; Jin, S.; Zuo, Y.; Ren, Z.J. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ. Sci. Technol. 2014, 48, 4021–4029. [Google Scholar] [CrossRef] [PubMed]
- Heimovaara, T.; Focke, A.; Bouten, W.; Verstraten, J. Assessing temporal variations in soil water composition with time domain reflectometry. Soil Sci. Soc. Am. J. 1995, 59, 689–698. [Google Scholar] [CrossRef]
- Corwin, D.; Lesch, S. Application of soil electrical conductivity to precision agriculture. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Manohar, A.K.; Bretschger, O.; Nealson, K.H.; Mansfeld, F. The use of electrochemical impedance spectroscopy (eis) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 2008, 72, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Slade, R.C.; Varcoe, J.R. Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chem. Soc. Rev. 2009, 38, 1926–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, X.; Zhang, Y.; Ding, N.; Zhou, Q. Opening size optimization of metal matrix in rolling-pressed activated carbon air-cathode for microbial fuel cells. Appl. Energy 2014, 123, 13–18. [Google Scholar] [CrossRef]
- Hamdan, S.H.; Molelekwa, G.F.; Van der Bruggen, B. Electrokinetic remediation technique: An integrated approach to finding new strategies for restoration of saline soil and to control seawater intrusion. ChemElectroChem 2014, 1, 1104–1117. [Google Scholar] [CrossRef]
- Li, W.; Yu, H. Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol. Adv. 2015, 33, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Ren, Z.J.; Zhang, Y.; Li, N.; Zhou, Q. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere 2015, 141, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, S.; Feng, Y.; Merrill, M.D.; Saito, T.; Logan, B.E. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol. 2009, 43, 6870–6874. [Google Scholar] [CrossRef] [PubMed]
- Liu, G. Soil Physical and Chemical Analysis and Description of Soil Profiles; China Standard Press: Beijing, China, 1996. [Google Scholar]
- Qin, X.; Li, D.; Tang, J.; Zhang, Q.; Gao, J. Effect of the salt contentin soil on bioremediation of soil by contaminated petroleum. Lett. Appl. Microbiol. 2012, 55, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wu, R.; Jia, Y.; Li, H. The study of electrical resistivity change of different saturation soils contaminated with oil sewage and the contaminated area detecting. Prog. Geophys. 2005, 20, 402–406. [Google Scholar]
- Sun, Y.; Nai, C.; Liu, Y.; Dong, L. Investigation on the electrical resistivity of chromium contaminated soil. Acta Sci. Circumst. 2005, 31, 1992–1998. [Google Scholar]
Index | Value |
---|---|
Soil density (g·cm−3) | 1.47 |
Soil total porosity (%) | 45% |
pH | 8.26 |
Conductivity (ms·cm−1) | 1.99 |
Salt content (%) | 2.86 |
Sand | 30% |
Coarse | 23% |
Fine | 25% |
MoistureContent | Distance from Air-Cathode | 1 cm | 2 cm | 3 cm | 4 cm | 5 cm |
---|---|---|---|---|---|---|
9.1% | Rs (Ω) | 34.82 | 58.23 | 29.02 | 61.04 | 69.77 |
Rct (Ω) | 72.99 | 246.4 | 105.2 | - | 1229 | |
C (Ω−1·sn) | 0.006409 | 0.000575 | 0.006406 | 0.00368 | 0.003364 | |
16.7% | Rs (Ω) | 23.37 | 33.81 | 39.92 | 41.5 | 44.16 |
Rct (Ω) | 8.651 | 150.7 | 39.54 | 40.06 | 104.2 | |
C (Ω−1·sn) | 0.001198 | 0.000211 | 0.000834 | 0.000616 | 0.003778 | |
23.1% | Rs (Ω) | 3.896 | 6.607 | 7.233 | 9.199 | 7.938 |
Rct (Ω) | 6.378 | 189.9 | 9.005 | 67.74 | 7.238 | |
C (Ω−1·sn) | 0.000188 | 0.000199 | 0.00066 | 0.000259 | 0.005059 | |
28.6% | Rs (Ω) | 3.388 | 5.582 | 6.853 | 8.762 | 8.656 |
Rct (Ω) | 13.97 | 277 | 18.28 | 36.42 | 8.126 | |
C(Ω−1·sn) | 0.000318 | 0.000204 | 0.000497 | 0.000273 | 0.003022 | |
33.3% | Rs (Ω) | 3.502 | 4.614 | 5.74 | 6.963 | 6.518 |
Rct (Ω) | 55.93 | 602.2 | 55.72 | 57.71 | 8.201 | |
C (Ω−1∙sn) | 0.000464 | 0.000211 | 0.000526 | 0.000369 | 0.004052 | |
37.5% | Rs (Ω) | 3.373 | 4.337 | 5.758 | 6.56 | 6.075 |
Rct (Ω) | 55.03 | 498.1 | 56.89 | 48.99 | 7.79 | |
C (Ω−1·sn) | 0.000457 | 0.000243 | 0.000737 | 0.000448 | 0.005716 |
Moisture Content (%) | Slope of Fitting | Resistivity (Ω·cm) | Conductivity (mS·cm−1) |
---|---|---|---|
9.1 | 5.189 | 407.543 | 2.454 |
16.7 | 5.295 | 415.868 | 2.405 |
23.1 | 1.666 | 130.847 | 7.642 |
28.6 | 1.667 | 130.926 | 7.638 |
33.3 | 1.126 | 88.436 | 11.308 |
37.5 | 1.029 | 80.817 | 12.374 |
Carbon Mesh Layer | Moisture Content (%) | Slope of Fitting | Resistivity (Ω·cm) | Conductivity (mS·cm−1) |
---|---|---|---|---|
Single | 28.6 | 2.95308 | 231.934 | 4.312 |
Multiple | 28.6 | 2.90248 | 227.960 | 4.387 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, X.; Zhao, Q.; Zhang, Y.; Zhou, Q. In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy. Sensors 2016, 16, 625. https://doi.org/10.3390/s16050625
Li X, Wang X, Zhao Q, Zhang Y, Zhou Q. In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy. Sensors. 2016; 16(5):625. https://doi.org/10.3390/s16050625
Chicago/Turabian StyleLi, Xiaojing, Xin Wang, Qian Zhao, Yueyong Zhang, and Qixing Zhou. 2016. "In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy" Sensors 16, no. 5: 625. https://doi.org/10.3390/s16050625