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Abstract: Species in the genus Utricularia are carnivorous plants that prey on invertebrates using
traps of leaf origin. The traps are equipped with numerous different glandular trichomes. Trichomes
(quadrifids) produce digestive enzymes and absorb the products of prey digestion. The main aim
of this study was to determine whether arabinogalactan proteins (AGPs) occur in the cell wall
ingrowths in the quadrifid cells. Antibodies (JIM8, JIM13, JIM14, MAC207, and JIM4) that act against
various groups of AGPs were used. AGP localization was determined using immunohistochemistry
techniques and immunogold labeling. AGPs localized with the JIM13, JIM8, and JIM14 epitopes
occurred in wall ingrowths of the pedestal cell, which may be related to the fact that AGPs regulate
the formation of wall ingrowths but also, due to the patterning of the cell wall structure, affect
symplastic transport. The presence of AGPs in the cell wall of terminal cells may be related to the
presence of wall ingrowths, but processes also involve vesicle trafficking and membrane recycling, in
which these proteins participate.

Keywords: arabinogalactan proteins; bladderworts; carnivorous plants; cell wall; cell wall mi-
crodomains; cuticle; digestive trichomes; glands; Lentibulariaceae; transfer cells; scanning transmis-
sion electron microscopy

1. Introduction

Utricularia are carnivorous plants with traps. They are the fastest moving among the
carnivorous plants [1,2] and capture fine organisms such as invertebrates, protozoa, and
algae. An Utricularia trap is a small hollow vesicle filled with trap fluid (a bladder with
elastic walls and a mobile trap door), which is called a suction trap (Figure 1A). Utricularia
traps have extremely varied structures, often linked to taxonomic relationships [3]. The
differences are mainly in the architecture of the trap entrance, the door structure, the
presence of various trichomes and accessory structures, and sometimes also the thickness
of the trap wall (e.g., [4–8]). In many Utricularia species, the inner trap surface is lined with
glandular trichomes called quadrifids (Figure 1B,C) [9,10], the primary function of which is
the secretion of digestive enzymes and resorption of released nutrients from prey, but they
likely also participate in pumping out water from the trap [10–13]. Fineran and Lee [11]
studied the ultrastructure of Utricularia quadrifids in detail and showed that the pedestal
cell of this trichome is a transfer cell (sensu Pate and Gunning [14]) with an elaborate cell
wall labyrinth. The terminal cells of quadrifids are highly specialized in parts (a basal
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part, a stalk, and an arm) with distinct structures and functions. Thus, these trichomes are
excellent models for studying the specialization of cell walls (microdomains).
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Figure 1. Distribution and morphology of the quadrifids of Utricularia dichotoma subsp. novae-zelan-
diae. Immunogold labeling of quadrifid cells with JIM13. The arabinogalactan proteins detected in 
the quadrifids (green color—signal of antibody). (A) A sagittally halved trap showing the quadrifids. 
Bar 500 µm. (B,C) The morphology of the quadrifids. Bars 20 µm. (D,E) Arabinogalactan proteins 
(labeled with JIM13) were detected in the quadrifid: arm (A), pedestal cell (Pc), basal cell (Bc). Bars 

Figure 1. Distribution and morphology of the quadrifids of Utricularia dichotoma subsp. novae-zelandiae.
Immunogold labeling of quadrifid cells with JIM13. The arabinogalactan proteins detected in the
quadrifids (green color—signal of antibody). (A) A sagittally halved trap showing the quadrifids.
Bar 500 µm. (B,C) The morphology of the quadrifids. Bars 20 µm. (D,E) Arabinogalactan proteins
(labeled with JIM13) were detected in the quadrifid: arm (A), pedestal cell (Pc), basal cell (Bc). Bars
10 µm. (F) Strong fluorescence signal of AGP epitope (labeled with JIM13) in wall ingrowths in
pedestal cell. Bar 10 µm.
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Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins that link the
cell wall and the cytoskeleton and affect cell wall structure and symplast transport, thus
playing essential roles in plants. By affecting the cytoskeleton, cell membrane, and cell
wall, they have an impact on exocytosis, endocytosis, cell wall formation, and the cortical
endoplasmic reticulum. They participate as regulatory or signal molecules in plant growth
and developmental processes, in response to biotic and abiotic stress, and in plant sexual
reproduction (e.g., [15–24]). AGPs were recorded in the wall labyrinth in transfer cells of
various species (e.g., [25–28]). Płachno and Kapusta [29] localized the AGPs in quadrifids
using whole-mount immunolabeled Utricularia traps. However, immunolabeling was
only successful in the cell walls of parts of quadrifid arms, where the cuticle has an open
structure. Thus, the method did not detect AGPs in the cell wall labyrinth in the pedestal
cell. The main aim of this study was to determine whether AGPs occur in the cell wall
ingrowths in the quadrifid cells, especially the pedestal cell. We believe that AGPs should
be present in the pedestal cell for several reasons: 1. due to the presence of the wall
labyrinth; 2. the high activity of this cell; and 3. the intense transport that occurs through
this cell. In addition, we have found AGPs in transfer cells in the trap glands of in other
carnivorous plants.

2. Results
AGP Distribution in Quadrifids

The epitope recognized by the JIM13 antibody was detected in the cell walls of all
quadrifid cells. However, the strong fluorescence signal detected by JIM13 was observed in
the cell wall ingrowths of the pedestal cell (Figure 1D,F). A fluorescence signal detected by
JIM13 was well observed in the cell walls of the arms of terminal cells. The signal occurred
mainly in the inner part of the cell walls (Figure 1D,E).

In the proximal region of the arm of the terminal cell, where there was a nucleus
and numerous organelles, the outer part of the cell wall was impregnated by cutin, and
a cuticle occurred (Figure 2A). In the proximal region of the arm of the terminal cell, the
immunogold labeling with JIM13 showed that the AGP epitopes were localized in the inner
part of the cell wall and cell wall ingrowths (Figure 2B). In the middle and distal regions of
the arm, the cuticle had discontinuities (cuticular pores), which were observable using SEM
(Figure 2C,D) and TEM (Figure 2E). In these regions, gold particles were mainly distributed
in the inner part of the cell wall and also in the cell wall ingrowths (Figure 2F). The cell wall
ingrowths were simple or branched (reticulated type). The gold particles were also found
in the cell wall where the terminal cells joined, forming a quadrifid stalk (Figure 3A–C).
Here, the wall of the stalk was densely impregnated by cutin, and cutin cystoliths occurred
(Figure 3B,C). The gold particles occurred in fibrillar, unimpregnated wall material in the
stalk; however, some gold particles also occurred in the impregnated cell wall (Figure 3C).

The immunogold labeling with JIM13 showed that the AGP epitopes were localized in
the cell walls and wall ingrowths of the pedestal cells. The gold particles were particularly
numerous in the cell wall ingrowths (Figure 3D,E). Some gold particles also occurred in the
cytoplasm. In the pedestal cells, there were numerous well-differentiated mitochondria,
which are dominated organelles (Figure 3F). The proximal region of the lateral cell wall
was completely impregnated by cutin material. The distal region of the lateral cell wall was
partially impregnated by cutin material. The gold particles were located in the regions of
the cell wall not impregnated by cutin material (Figure 3G). The gold particles were also
found in the transverse wall between the pedestal cell and the basal epidermal cell, near to
the plasmodesmata (Figure 3H). The immunogold labeling with JIM13 also showed that
the AGP epitopes were localized in the cell walls of basal cells (Figure 3I).
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Figure 2. Structure of arms and the arabinogalactan proteins that were detected in the arms. (A) 
Ultrastructure of the proximal region of the arm; wall ingrowths (arrow). Bar 1 µm. (B) Immunogold 
labeling of wall ingrowths and cell wall with JIM13 in the proximal region of the arm; wall ingrowths 
(arrow). Bar 200 nm. (C,D) SEM photos showing cuticular discontinuities in the arms. Bars 5 µm. 
(E) Ultrastructure of the middle region of the arm; cuticular discontinuity (arrow). Bar 1 µm. (F) 

Figure 2. Structure of arms and the arabinogalactan proteins that were detected in the arms. (A) Ul-
trastructure of the proximal region of the arm; wall ingrowths (arrow). Bar 1 µm. (B) Immunogold
labeling of wall ingrowths and cell wall with JIM13 in the proximal region of the arm; wall ingrowths
(arrow). Bar 200 nm. (C,D) SEM photos showing cuticular discontinuities in the arms. Bars 5 µm.
(E) Ultrastructure of the middle region of the arm; cuticular discontinuity (arrow). Bar 1 µm. (F) Im-
munogold labeling of wall ingrowths and cell wall with JIM13 in the middle region of the arm; wall
ingrowths (arrow). Bar 200 nm.
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Figure 3. Immunogold labeling of cells with JIM13 in the quadrifid. (A) A section through the stalk. 
Note four protoplasts of the terminal cells (indicated by stars). Bar 2 µm. (B,C) Immunogold labeling 
with JIM13 in the stalk. Note that gold particles occur mostly in the non-cutinized cell wall parts; 
cutin cystoliths (c). Bar 300 nm and bar 100 nm. (D,E) Immunogold labeling with JIM13 in the ped-
estal cell; wall ingrowths (in), mitochondrion (m). Bar 800 nm and bar 200 nm. (F) Ultrastructure of 
the pedestal cell (Pc) and basal cell (Bc). Note numerous mitochondria (m) and plasmodesmata (ar-
row). Bar 600 nm. (G) Immunogold labeling with JIM13 in the pedestal cell. Note that gold particles 
occur mostly in the non-cutinized cell wall parts; cutinized cell wall part (c). Bar 300 nm. (H) Immu-
nogold labeling with JIM13 in the border between pedestal cell (Pc) and basal cell (Bc). Note gold 
particles near plasmodesma (arrow); cell wall (cw). Bar 200 nm. (I) Immunogold labeling with JIM13 
in the border between parenchyma cell and basal cell; cell wall (cw). Bar 200 nm. 

The immunogold labeling with JIM13 showed that the AGP epitopes were localized 
in the cell walls and wall ingrowths of the pedestal cells. The gold particles were particu-
larly numerous in the cell wall ingrowths (Figure 3D,E). Some gold particles also occurred 
in the cytoplasm. In the pedestal cells, there were numerous well-differentiated mitochon-
dria, which are dominated organelles (Figure 3F). The proximal region of the lateral cell 
wall was completely impregnated by cutin material. The distal region of the lateral cell 

Figure 3. Immunogold labeling of cells with JIM13 in the quadrifid. (A) A section through the stalk.
Note four protoplasts of the terminal cells (indicated by stars). Bar 2 µm. (B,C) Immunogold labeling
with JIM13 in the stalk. Note that gold particles occur mostly in the non-cutinized cell wall parts; cutin
cystoliths (c). Bar 300 nm and bar 100 nm. (D,E) Immunogold labeling with JIM13 in the pedestal
cell; wall ingrowths (in), mitochondrion (m). Bar 800 nm and bar 200 nm. (F) Ultrastructure of the
pedestal cell (Pc) and basal cell (Bc). Note numerous mitochondria (m) and plasmodesmata (arrow).
Bar 600 nm. (G) Immunogold labeling with JIM13 in the pedestal cell. Note that gold particles occur
mostly in the non-cutinized cell wall parts; cutinized cell wall part (c). Bar 300 nm. (H) Immunogold
labeling with JIM13 in the border between pedestal cell (Pc) and basal cell (Bc). Note gold particles
near plasmodesma (arrow); cell wall (cw). Bar 200 nm. (I) Immunogold labeling with JIM13 in the
border between parenchyma cell and basal cell; cell wall (cw). Bar 200 nm.

The epitope recognized by the JIM8 antibody was mainly detected in the pedestal cells.
The strong fluorescence signal detected by JIM8 was observed in the cell wall ingrowths
of the pedestal cell (Figure 4A,B). The gold particles were particularly numerous in the
cell wall ingrowths (Figure 4C). In some quadrifids, the epitope recognized by the JIM8
antibody was also detected in the terminal cells in the cell walls of the arms (Figure 4D).
Some signals in the form of dots were observed in the arm vacuoles (Figure 4D).
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Figure 4. Arabinogalactan proteins detected in the quadrifids labeled with JIM8 (green color—signal 
of antibody). (A,B) Arabinogalactan proteins (labeled with JIM8) were detected in the quadrifid. 
Note the strong fluorescence signal in the pedestal cell; arm (A), pedestal cell (Pc), basal cell (Bc). 
Bar 20 µm and bar 10 µm. (C) Immunogold labeling with JIM8 in the pedestal cell; wall ingrowths 
(in). Bar 400 nm. (D) Arabinogalactan proteins (labeled with JIM8) were detected in the terminal 
cells of quadrifid. Bar 10 µm. 

Figure 4. Arabinogalactan proteins detected in the quadrifids labeled with JIM8 (green color—signal
of antibody). (A,B) Arabinogalactan proteins (labeled with JIM8) were detected in the quadrifid.
Note the strong fluorescence signal in the pedestal cell; arm (A), pedestal cell (Pc), basal cell (Bc). Bar
20 µm and bar 10 µm. (C) Immunogold labeling with JIM8 in the pedestal cell; wall ingrowths (in).
Bar 400 nm. (D) Arabinogalactan proteins (labeled with JIM8) were detected in the terminal cells of
quadrifid. Bar 10 µm.

The epitope recognized by the JIM14 antibody was observed in the cell walls of the
arms of terminal cells (Figure 5A). The fluorescence signal detected by JIM14 was observed
in the cell wall of the stalk of the terminal cell in the inner layer of the cell wall, near the
protoplast (Figure 5B). A weak fluorescence signal detected by JIM14 was observed in the
cell wall ingrowths of the pedestal cell (Figure 5C). Only some gold particles were localized
in the cell wall ingrowths (Figure 5D).

No fluorescence signals of the AGP epitope recognized by MAC207 and JIM4 were
observed in the quadrifid or bifid cells (Figure 6A,B).
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Figure 5. Arabinogalactan proteins detected in the quadrifids labeled with JIM14 (green color—signal
of antibody). (A) Arabinogalactan proteins (labeled with JIM14) were detected in the quadrifid; arm
(A), pedestal cell (Pc), basal cell (Bc). Bar 10 µm. (B) Arabinogalactan proteins (labeled with JIM14)
were detected in the terminal cells. Note the intensive signal in the internal part of the cell wall near
the protoplasts in the stalk (magnified fragment). Bar 10 µm. (C) Arabinogalactan proteins (labeled
with JIM14) were detected in the pedestal cell, and a more intense signal in terminal cells (the basal
part of terminal cells, arrow). Bar 20 µm. (D) Immunogold labeling with JIM8 in the pedestal cell;
note only a few gold particles. Bar 200 nm.



Int. J. Mol. Sci. 2024, 25, 6623 8 of 14

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 14 
 

 

No fluorescence signals of the AGP epitope recognized by MAC207 and JIM4 were 
observed in the quadrifid or bifid cells (Figure 6A,B). 

 
Figure 6. Arabinogalactan proteins detected in the internal trap glands labeled with MAC207 and 
JIM4. (A) Arabinogalactan proteins (labeled with MAC207) were detected in the quadrifid. Note 
that there is no positive signal. Bar 10 µm. (B) Arabinogalactan proteins (labeled with JIM4) were 
detected in the bifids; note that there is no positive signal. Bar 10 µm. 

3. Discussion 
Regarding the ultrastructure of quadrifids, our observations are consistent with the 

results presented by Fineran and Lee [11,30], who studied Utricularia monanthos. Cur-
rently, this taxon is treated as a subspecies of Utricularia dichotoma [31]. Apart from U. 
dichotoma, only a few species of Utricularia were investigated in the case ultrastructure of 
quadrifids: Utricularia vulgaris [32], Utricularia x australis [12,33–36], Utricularia intermedia 
[37], Utricularia multifida, and Utricularia westonii [38]. All of these authors found that the 
pedestal cell is a specialized transfer cell. It should be noted that while the basic architec-
ture of quadrifids is constant in terms of the general shape of the arms and the size or 
number of these trichomes in the traps, there can be drastic differences between species 
[3]. Therefore, the shape of the quadrifids can help distinguish between some species [39]. 
However, it should be remembered that, within a population, a single individual, or even 
a trap, there can be differences in the shape of the trichomes (in the angle of the arms) 
[40,41]. Yang et al. [42] proposed that in the genus Utricularia, there is an evolutionary 
trend of reduction in the arm number (in the sense of reducing the number of terminal 
cells) of the internal trap’s trichomes, and the occurrence of quadrifids and bifids is an 
ancestral characteristic. However, internal trichomes with one terminal cell (monofids) 
were found in U. multifida and U. westonii [38]. Also, these monofids have pedestal cells 
that function as barrier and transfer cells. This indicates that the overall architecture of the 
inner trichomes from Utricularia traps is evolutionarily stable despite differences in the 
number of terminal cells. 

When whole quadrifids were analyzed (without sectioning), it was only possible to 
detect AGPs in the arms [29]. We proposed that this was connected to the cuticle structure 
and the availability of cell wall components for antibodies. Fineran and Lee [11] described 
that the outermost region in the wall of the stalk in Utricularia monanthos (part of the ter-
minal cell) is also heavily impregnated with an opaque cuticular material, and cuticular 

Figure 6. Arabinogalactan proteins detected in the internal trap glands labeled with MAC207 and
JIM4. (A) Arabinogalactan proteins (labeled with MAC207) were detected in the quadrifid. Note
that there is no positive signal. Bar 10 µm. (B) Arabinogalactan proteins (labeled with JIM4) were
detected in the bifids; note that there is no positive signal. Bar 10 µm.

3. Discussion

Regarding the ultrastructure of quadrifids, our observations are consistent with the
results presented by Fineran and Lee [11,30], who studied Utricularia monanthos. Currently,
this taxon is treated as a subspecies of Utricularia dichotoma [31]. Apart from U. dichotoma,
only a few species of Utricularia were investigated in the case ultrastructure of quadrifids:
Utricularia vulgaris [32], Utricularia x australis [12,33–36], Utricularia intermedia [37], Utric-
ularia multifida, and Utricularia westonii [38]. All of these authors found that the pedestal
cell is a specialized transfer cell. It should be noted that while the basic architecture of
quadrifids is constant in terms of the general shape of the arms and the size or number of
these trichomes in the traps, there can be drastic differences between species [3]. Therefore,
the shape of the quadrifids can help distinguish between some species [39]. However, it
should be remembered that, within a population, a single individual, or even a trap, there
can be differences in the shape of the trichomes (in the angle of the arms) [40,41]. Yang
et al. [42] proposed that in the genus Utricularia, there is an evolutionary trend of reduction
in the arm number (in the sense of reducing the number of terminal cells) of the internal
trap’s trichomes, and the occurrence of quadrifids and bifids is an ancestral characteristic.
However, internal trichomes with one terminal cell (monofids) were found in U. multifida
and U. westonii [38]. Also, these monofids have pedestal cells that function as barrier
and transfer cells. This indicates that the overall architecture of the inner trichomes from
Utricularia traps is evolutionarily stable despite differences in the number of terminal cells.

When whole quadrifids were analyzed (without sectioning), it was only possible
to detect AGPs in the arms [29]. We proposed that this was connected to the cuticle
structure and the availability of cell wall components for antibodies. Fineran and Lee [11]
described that the outermost region in the wall of the stalk in Utricularia monanthos (part
of the terminal cell) is also heavily impregnated with an opaque cuticular material, and
cuticular impregnation also occurs at the base of the arms. We obtained similar results in
Utricularia dichotoma subsp. novae-zelandiae in the case of cell wall cutinization in quadrifid
cells. In addition, we were also able to use not only TEM, but also SEM to demonstrate
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discontinuities in the cuticles in the middle and apical parts of the quadrifid arms. These
cuticular discontinuities enable the uptake and transport of substances. Fineran and
Gilbertson [43] demonstrated apoplastic pathways in Utricularia trichomes using lanthanum
and uranyl salts as tracers. Juang et al. [44] showed the movement of the fluorescent
symplastic tracer through the quadrifids of Utricularia gibba. In the sectioned material
using the immunogold method, we found that in the arms, AGPs (labeled by JIM13)
were present mainly in the inner part of the cell wall. This result is unsurprising because
some AGPs are anchored to the cell membrane. Furthermore, AGPs are thought to be
essential in establishing a plasma membrane–cell wall connection [17,45]. Of interest is
the finding of AGPs in those parts of the cell wall of terminal cells, where cutin cystoliths
are present. However, gold particles were mostly found between cutinized regions (in
fibrillar, unimpregnated wall material). Also, in the stalk, AGPs occurred in the inner part
of the cell wall. The outer part of the cell wall in the stalk was impregnated with cutin. We
show that the terminal cells of quadrifids of Utricularia dichotoma subsp. novae-zelandiae are
transfer cells because we observed cell wall ingrowths. In Utricularia monanthos, Fineran
and Lee [11] described only short unbranched wall ingrowths in the arms. In contrast to
these authors, we also observed branched wall ingrowths in the arms. This is related to the
fact that the cell wall can be remodeled, and wall outgrowths are formed depending on the
activity of the cell (transport intensity) [46]. We localized AGPs (labeled by JIM13) in wall
ingrowths in the arms. We also demonstrated the presence of AGPs in the wall labyrinth
in the pedestal cell. Previously, we could not locate AGPs in this cell because of the thick,
heavily impregnated cell wall, which proved to be a barrier to antibodies [29]. It should be
noted, however, that not all AGPs were found (MAC207, JIM4), indicating the variation
in cell wall composition and the role of individual AGPs in different plants. According
to Merced and Renzaglia [47], the modifications in cell wall architecture and composition
may reflect taxonomic variability, functional differences, and environmental adaptations,
as well as combinations of these. We found differences in the individual AGPs detected by
the respective antibodies in the cell walls of quadrifid cells. AGPs labeled by JIM13 were
the most widespread in the cell walls of quadrifid cells. It is thought that these AGPs may
play various roles in plants, e.g., in embryo germination, cotyledon formation [48], in the
positioning of cells during organ formation [49], in defense against pathogenic attack [50],
and in abiotic stress responses such as salinity-modulating cell wall expansion [51], but
also in sclerenchyma cells and xylem differentiation [52].

It should be highlighted that AGPs are prime mediators between the cell wall, the
plasma membrane, and the cytoplasm [53]. AGPs also impact symplastic transport fol-
lowing changes in the plasmodesmata structure, acting through the regulation of cell wall
properties surrounding the plasmodesmata [54]. For these reasons, the presence of AGPs in
pedestal cells is not surprising, given their function. According to Fineran and Lee [11], all
substances (nutrients from digested prey, water) absorbed by terminal cells must eventually
pass symplastically through the pedestal cell if they are to be transported from the trap
lumen into the walls of the trap. However, the presence of AGPs in the pedestal cell may
be related to the fact that AGPs regulate the formation of wall ingrowths, as shown by
Vaughn et al. [25] in Vicia faba. Because AGPs have a role in coordinating the required
localized assembly of wall components, they play a role in forming cell wall ingrowths [46].
AGPs were found in cell wall ingrowths of various species [25–28,55,56]. AGPs were also
found in cell wall ingrowths of various glands from traps of carnivorous plants from the
genera Aldrovanda [57,58], Dionaea [59,60], and Drosophyllum [61,62]. According to Płachno
and Kapusta [29], the presence of AGPs in the cell wall of terminal cells may be related
to processes of endocytosis and exocytosis (involving vesicle trafficking and membrane
recycling), in which these proteins participate [51,63,64]. However, the presence of AGPs
in these cells may also be related to the presence of wall ingrowths.

Yariv reagent is a synthetic aromatic glycoconjugate that can precipitate arabinogalac-
tan proteins, namely, their ß-D-(1→3)-galactan structures [65]. Blocked AGPs with Yariv
reagent cause a reduction in wall ingrowth density in the cotyledon epidermal transfer
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cells of Vicia faba [25]. Using this reagent may be key to testing whether perturbations in
the development of cell wall ingrowths affect the functioning of traps in Utricularia.

4. Materials and Methods
4.1. Plant Material

Utricularia dichotoma subsp. novae-zelandiae (Hook.f) R.W. Jobson [31] plants were
grown in the greenhouses of the Botanical Garden of Jagiellonian University. The plants
were cultivated in wet peat under natural sunlight exposition.

4.2. Histological and Immunochemical Analysis

The traps were fixed in 8% (w/v) paraformaldehyde (PFA, Sigma-Aldrich, Sigma-
Aldrich Sp. z o.o. Poznań, Poland) mixed with 0.25% (v/v) glutaraldehyde (GA, Sigma-
Aldrich, Sigma-Aldrich Sp. z o.o. Poznań, Poland) in a PIPES buffer overnight at 4 ◦C. The
PIPES buffer contained 50 mM PIPES (piperazine-N,N′-bis [2-ethanesulfonic acid], Sigma-
Aldrich, Sigma-Aldrich Sp. z o.o. Poznań, Poland), 10 mM EGTA (ethylene glycol-bis[β-
aminoethyl ether]N,N,N′,N′-tetraacetic acid, Sigma Aldrich, Poznań, Poland), and 1 mM
MgCl2 (Sigma-Aldrich, Sigma-Aldrich Sp. z o.o. Poznań, Poland) at a pH of 6.8. For the
analysis of the occurrence of the major cell wall polysaccharides and glycoproteins, the plant
material was dehydrated with acetone and embedded in an Epoxy Embedding Medium
Kit (Sigma Aldrich, Poznań, Poland). Ultrathin sections were cut on a Leica ultracut
UCT ultramicrotome (Leica, Wetzlar, Germany). The rehydrated sections in PBS buffer
were blocked with 1% bovine serum albumin (BSA, Sigma-Aldrich) in a PBS buffer and
incubated with the following primary antibodies overnight at 4 ◦C: anti-AGP—JIM8, JIM13,
JIM14, MAC207 and JIM4 [66]. All of the primary antibodies were used in a 1:20 dilution.
They were purchased from Plant Probes, UK, and the goat anti-rat secondary antibody
conjugated with FITC was purchased from Abcam (Cambridge, UK). The chromatin in
the nuclei was stained with 7 µg/mL DAPI (Sigma-Aldrich) diluted in a PBS buffer. The
samples were then cover-slipped using a Mowiol mounting medium: a mixture of Mowiol
®4-88 (Sigma-Aldrich) and glycerol for fluorescence microscopy (Merck, Warsaw, Poland)
with the addition of 2.5% DABCO (Carl Roth GmbH + Co. KG, Karlsruhe, Germany).
They were viewed using a Leica STELLARIS 5 WLL confocal microscope with lightning
deconvolution. At least two different replications were performed for each of the analyzed
traps, and about five to ten sections from each organ were analyzed for each antibody used.
Negative controls were created by omitting the primary antibody step, which caused no
fluorescence signal in any of the control frames for any stained slides (Figure S1). Semi-thin
sections (0.9–1.0 µm thick) were prepared for light microscopy (LM) and stained for general
histology using aqueous methylene blue/azure II (MB/AII) for 1–2 min.

4.3. Immunogold Labeling Distribution of AGP

A Leica Ultracut UCT ultramicrotome was used to prepare ultrathin sections (50 nm).
They were blocked in 1% BSA (Aurion, Wageningen, The Netherlands) in PBS buffer for
15 min and then incubated in primary antibodies in a 1:10 dilution overnight at 4 ◦C.
This was followed by washes in PBS buffer (6 × 5 min) and the samples were incubated
with the goat anti-rat secondary antibody conjugated with 10 nm colloidal gold (Sigma
Aldrich, Poland) in a 1:50 dilution for 2 h, followed by washing in PBS buffer and distilled
water. Negative controls were created by omitting the primary antibody step. Lead citrate
(Microshop, PIK Instruments Sp. z o.o., Piaseczno, Poland) and URANYLess (Microshop,
PIK Instruments Sp. z o.o., Piaseczno, Poland) were added as contrasting agents. The
cells were visualized using a Jeol JEM 100 SX microscope (JEOL, Tokyo, Japan) at 80 kV in
the Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University,
Kraków, or a Hitachi UHR FE-SEM SU 8010 microscope (Hitachi, Tokyo, Japan) housed at
the University of Silesia in Katowice.
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4.4. Scanning Transmission Electron Microscopy

The glands were also examined using electron microscopy, as follows: Fragments of
the traps were fixed in a mixture of 2.5% glutaraldehyde with 2.5% formaldehyde in a
0.05 M cacodylate buffer (Sigma-Aldrich, Sigma-Aldrich Sp. z o.o., Poznań, Poland; pH 7.2)
for several days, and later, the material was processed as in Płachno et al. [67]. The material
was dehydrated with acetone and embedded in an Epoxy Embedding Medium Kit (Fluka).
Ultrathin sections were cut on a Leica ultracut UCT ultramicrotome. The sections were
examined using a Hitachi UHR FE-SEM SU 8010 microscope housed at the University of
Silesia in Katowice.

4.5. Scanning Electron Microscopy

For the scanning electron microscopy (SEM), the traps were fixed in a mixture of
2.5% glutaraldehyde with 2.5% formaldehyde in a 0.05 M cacodylate buffer and later
washed in buffer and transferred to ethanol, and then transferred to acetone and dried
using supercritical CO2. The material was then sputter-coated with gold and examined
using a Hitachi S-4700 scanning electron microscope (Tokyo, Japan), which is housed at the
Institute of Geological Sciences, Jagiellonian University, Kraków, Poland, or a Hitachi UHR
FE-SEM SU 8010 microscope, which is housed at the University of Silesia in Katowice.

5. Conclusions

Our cytological study showed the presence of AGPs in the wall labyrinth in the
pedestal cell, cell wall, and wall ingrowths of terminal cells. We found differences in the
individual AGPs detected by the respective antibodies in the cell walls of quadrifid cells.
AGPs labeled by JIM13 were the most widespread. Future studies using β-D-glucosyl Yariv
reagent to block AGPs or using appropriate mutants will allow us to see how AGPs act on
the development and functioning of not only the glands, but also the traps of Utricularia.
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