Coelonin, an Anti-Inflammation Active Component of Bletilla striata and Its Potential Mechanism
Abstract
:1. Introduction
2. Results
2.1. Separation, Purification and Identification of Active Components from Bletilla striata
2.2. Inhibitory Effect of Coelonin on LPS-Induced IL-1β, IL-6, TNF-α Gene Expression and Protein Secretion in RAW264.7 Macrophages
2.3. Identifying Differentially Expressed Protein Phosphorylation Sites Induced by Coelonin Treatment
2.4. Validation of Proteomic Findings–Coelonin Treatment Inhibits Inflammatory Cytokines Secretion by Blocking NF-κB Activation
2.5. Colonin May Partially Inhibit the Activation of NF-κB through PTEN/AKT Pathway
2.6. Coelonin Treatment Leads to G1 Cell Cycle Arrest through PTEN
3. Discussion
4. Materials and Methods
4.1. Active Component Separation, Purification and Identification
4.2. Cell Culture
4.3. RNA Isolation, cDNA Synthesis and RT-PCR
4.4. Cytokine Assays
4.5. Protein Extraction
4.6. Signal Pathway Phosphorylation Antibody Array Screening
4.7. Automated Western Immunoblotting
4.8. Confocal Microscopy Analysis
4.9. Cell Cycle Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TLR4 | Toll-like receptor 4 |
MyD88 | myeloid differentiation factor 88 |
IRAK | IL-1 receptor associated kinase |
TRAF6 | TNF receptor associated factor 6 |
TAK1 | TGF beta-Activated Kinase 1 |
IKKs | inhibitor of nuclear factor-κB kinase |
PTEN | phosphatase and tensin homologue on chromosome ten |
PI3K | phosphatidylinositol-3-kinases |
AKT | v-akt murine thymoma viral oncogene homolog |
p27Kip1 | cyclin dependent kinase inhibitor 1B |
NF-κB | nuclear factor-kappa B |
IκBa | inhibitor of NF-κB |
IL-1β | interleukin-1β |
iNOS | inducible nitric oxide synthase |
COX2 | cyclooxygenase 2 |
References
- Pérez, G.; Martha, R. Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. J. Med. Plants Res. 2010, 4, 592–638. [Google Scholar] [CrossRef]
- Sun, D.F.; Shi, J.S.; Zhang, W.M.; Gu, G.P.; Zhu, C.L. Study on the extraction of polysaccharides from Blettila striata by the continuous counter-current equipment (in Chinese). Chin. Wild Plant. Resour. 2006, 13, 1797–1801. [Google Scholar] [CrossRef]
- Lv, X.B.; Huang, C.Q.; Wu, Z.C.; Yang, D.J.; Den, L. The therapeutic effects of polysaccharides from Bletilla striata on gastric ulcer rats. J. Yunnan Univ. Tradit. Chin. Med. 2012, 35, 30–32. [Google Scholar]
- Luo, Y.; Diao, H.J.; Xia, S.H.; Dong, L.; Chen, J.N.; Zhang, J.F. Physiologically active polysaccharide hydrogel promotes wound healing. J. Biomed. Master Res. A 2010, 94A, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.X.; Liu, X.X.; Dong, L.; Wang, X.; Huang, Y.; Wang, Y.L. Study on hemostatic effect and mechanism of polysaccharides from Bletilla striata in blood heat and hemorrhage model rats. China Pharm. 2016, 27, 4347–4350. [Google Scholar]
- Zhang, Y.; Zhou, Q.; Lai, S. The effects of Bletilla striata polysaccharide on proliferation of hematopoietic cells and immunological function in mice treated by cyclophosphamide. Pharmacol. Clin. Chin. Mater. Med. 2009, 4. [Google Scholar]
- Liu, X.X. Hemostatic effects, mechanism and biopotency of Bletillae rhizoma. Master’s Thesis, Guiyang Medical College, Guiyang, China, 2015. [Google Scholar]
- Shi, Z.Z.; Xu, Z.H.; Fu, Y.H.; Yu, H.S.; Jiang, F.S.; Ding, Z.S. Study of Rhizoma bletillae fibrous root alcohol extract on anti gastric ulcer. J. Shanxi Coll. Tradit. Chin. Med. 2015, 28, 63–89. [Google Scholar]
- Deng, Y.Z.; Jin, L.X.; Gao, C.X.; Qian, C.D.; Jiang, F.S.; Ding, Z.S.; Li, M.Y. Research on the Anti-Pulmonary Fibrosis effect of the small molecule components of Bletilla striata in rat silicosis model. J. Chin. Med. Mater. 2016, 39, 2615–2619. [Google Scholar]
- Li, H.Y.; Shi, Z.Z.; Shu, L.F.; Wang, J.; Li, M.Y.; Ding, Z.S.; Jiang, F.S. Research on the Anti-Pulmonary Fibrosis effect of the Bletilla striata polysaccharide in rat silicosis model. J. Chin. Med. Mater. 2016, 39, 1638–1642. [Google Scholar]
- Young, K.S.; Woo, P.S.; Ran, L.M.; Young, K.E.; Taek, U.S.; Hoon, K.Y.; Sik, P.C.; Bal, L.H. Silica induced expression of IL-1β, IL-6, TNF-β, TGF-α, in the experimental murine lung fibrosis. Tuberc. Respir. Dis. 1998, 45, 835–845. [Google Scholar] [CrossRef]
- Piguet, P.F.; Vesin, C.; Grau, G.E.; Thompson, R.C. Interleukin 1 receptor antagonist (IL-1ra) prevents or cures pulmonary fibrosis elicited in mice by bleomycin or silica. Cytokine 1993, 5, 57–61. [Google Scholar] [CrossRef]
- Piguet, P.F.; Collart, M.A.; Grau, G.E.; Sappino, A.P.; Vassalli, P. Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature 1990, 344, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Smoktunowicz, N.; Alexander, R.E.; Franklin, L.; Williams, A.; Holman, B.; Mercer, P. The anti-fibrotic effect of inhibition of TGFβ-ALK5 signalling in experimental pulmonary fibrosis in mice is attenuated in the presence of concurrent γ-herpesvirus infection. Dis. Model. Mech. 2015, 8, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Z.; Jiang, H.; Wang, W.J.; Zhang, Y.M.; Liu, Y.; Chen, Y.G. Isolation and Characterization of Batatasin III and 3,4′-Dihydroxy-5-methoxybibenzyl: A Pair of Positional Isomers from Sunipia scariosa. Trop. J. Pharm. Res. 2014, 13, 533–535. [Google Scholar] [CrossRef]
- Zhang, H.L.; Tian, L.; Fu, H.W.; Pei, Y.H.; Hua, H.M. Studies on constituents from the fermentation of Alternalia sp. China J. Chin. Mater. Med. 2005, 30, 351. [Google Scholar]
- Deng, Y.Z.; Jin, L.X.; Gao, C.X.; Qian, C.D.; Jiang, F.S.; Ding, Z.S.; Li, M.Y. Study on the Active Components and Molecular Mechanism of Bletilla striata on Suppressing Pulmonary Fibrosis. J. Chin. Med. Mater. 2016, 39, 2618. [Google Scholar]
- Stoffels, M.; Zaal, R.; Kok, N.; Van der Meer, J.W.; Dinarello, C.A.; Simon, A. ATP-Induced IL-1β Specific Secretion: True Under Stringent Conditions. Front. Immunol. 2015, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Beutler, B.; Jiang, Z.; Georgel, P.; Crozat, K.; Croker, B.; Rutschmann, S.; Du, X.; Hoebe, K. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 2006, 24, 353–389. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.W.; Jia, X.X.; Zhao, T.J.; Rong, H.; Zhang, J.N.; Cheng, Y.; Zhu, H.P.; Xu, K.L.; Guo, S.Y.; Shi, Q.Y.; et al. Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression. Immunopharm. Immunot. 2016, 38, 124–130. [Google Scholar] [CrossRef]
- Zhu, Y.; Tong, Q.; Ye, J.; Ning, Y.; Xiong, Y.; Yang, M.; Xiao, H.; Lu, J.; Xu, W.; Li, J.; et al. Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7. Cell Physiol. Biochem. 2017, 41, 274–285. [Google Scholar] [CrossRef]
- Surh, Y.J.; Chun, K.S.; Cha, H.H.; Han, S.S.; Keum, Y.S.; Park, K.K.; Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 2001, 480-481, 243–268. [Google Scholar] [CrossRef]
- Wang, Q.S.; Xiang, Y.; Cui, Y.L.; Lin, K.M.; Zhang, X.F. Dietary Blue Pigments Derived from Genipin, Attenuate Inflammation by Inhibiting LPS-Induced iNOS and COX-2 Expression via the NF-κB Inactivation. PLoS ONE 2012, 7, e34122. [Google Scholar] [CrossRef] [PubMed]
- Cohen, G.; Tretiakova, M.; Carroll, R.; Bissonnette, M. COX-2 and iNOS are overexpressed in human colonic aberrant crypt foci. Gastroenterol 2003, 124, A605. [Google Scholar] [CrossRef]
- Pan, M.H.; Lai, C.S.; Wang, Y.J.; Ho, C.T. Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem. Pharmacol. 2006, 72, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Ojaniemi, M.; Glumoff, V.; Harju, K.; Liljeroos, M.; Vuori, K.; Hallman, M. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur. J. Immunol. 2003, 33, 597–605. [Google Scholar] [CrossRef] [PubMed]
- He, Z.Y.; Gao, Y.; Deng, Y.X.; Li, W.; Chen, Y.M.; Xing, S.P.; Zhao, X.Y.; Ding, J.; Wang, X.R. Lipopolysaccharide Induces Lung Fibroblast Proliferation through Toll-Like Receptor 4 Signaling and the Phosphoinositide3-Kinase-Akt Pathway. PLoS ONE 2012, 7, e35926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, C.Q.; Guo, Y.J.; Gou, X.X.; Hinsdale, M.; Lloyd, P.; Liu, L. MicroRNA-26b Modulates the NF-kB Pathway in Alveolar Macrophages by Regulating PTEN. J. Immunol. 2015, 195, 5404–5414. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cao, X.M.; Xu, W.T.; Xie, C.; Chen, J.; Zhu, Y.; Lu, N.H. Phosphorylation of phosphatase and tensin homolog induced by Helicobacter pylori promotes cell invasion by activation of focal adhesion kinase. Oncol. Lett. 2018, 15, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.J.; Liu, S.X.; Wu, C.; Kang, P.P.; Liu, Q.J.; Hao, J.; Li, F.; Zhang, Y.J.; Fu, X.H.; Zhang, S.B.; et al. The PTEN/PI3K/Akt signalling pathway mediates HMGB1-induced cell proliferation by regulating the NF-κB/cyclin D1 pathway in mouse mesangial cells. Am. J. Physiol. Cell Physiol. 2014, 306, C1119–C1128. [Google Scholar] [CrossRef] [PubMed]
- Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 2002, 296, 1655–1657. [Google Scholar] [CrossRef]
- Prasad, S.B.; Yadav, S.S.; Das, M.; Modi, A.; Kumari, S.; Pandey, L.K.; Singh, S.; Pradhan, S.; Narayan, G. PI3K/AKT pathway-mediated regulation of p27Kip1is associated with cell cycle arrest and apoptosis in cervical cancer. Cell Oncol. 2015, 38, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Slingerland, J.M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003, 2, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, X.K.; Yu, X.X.; Ge, M.L.; Wang, W.L.; Zhang, J.; Hou, Y.D. Overexpression of p27(KIP1) induced cell cycle arrest in G1 phase and subsequent apoptosis in HCC-9204 cell line. World J. Gastroenterol. 2000, 6, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.Y.P.; Hsu, H.Y.; Kok, S.H.; Kuo, R.C.; Yang, H.; Hahn, L.J.; Chiang, C.P. Prognostic role of p27Kip1expression in oral squamous cell carcinoma in Taiwan. Oral Oncol. 2002, 38, 172–178. [Google Scholar] [CrossRef]
- Mamillapalli, R.; Gavrilova, N.; Mihaylova, V.T.; Tsvetkov, L.M.; Wu, H.; Zhang, H.; Sun, H. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27KIP1 through the ubiquitin E3 ligase SCFSKP2. Curr. Biol. 2001, 11, 263–267. [Google Scholar] [CrossRef]
- Kovács, A.; Vasas, A.; Hohmann, J. Natural phenanthrenes and their biological activity. Phytochemistry 2008, 69, 1084–1110. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fang, J.C.; Wang, X.X.; Zhao, Z.F.; Chang, Y.; Guo, H.; Zheng, X. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J. Ethnopharmacol. 2017, 195, 20–38. [Google Scholar] [CrossRef]
- Qian, C.D.; Jiang, F.S.; Yu, H.S.; Shen, Y.; Fu, Y.H.; Cheng, D.Q.; Gan, L.S.; Ding, Z.S. Antibacterial Biphenanthrenes from the Fibrous Roots of Bletilla striata. J. Nat. Prod. 2015, 78, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, F.; Yang, L.; Chun, Z.; Bao, J.; Zhang, G. Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum. Phytochemistry 2013, 95, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, Y.; Ding, Y.Y.; Liu, F.; Li, N. Cytotoxic and anti-inflammatory activities of phenanthrenes from the medullae of Juncus effusus L. Arch. Pharm. Res. 2015, 39, 154–160. [Google Scholar] [CrossRef]
- Jiang, F.S.; Shen, X.T.; Ding, B.; Li, M.Y.; Ding, Z.S.; Lv, G.Y. Comparison of the contents of three active ingredients in Bletilla striata from different sources. China J. Chin. Mater. Med. 2019, 44, 115–120. [Google Scholar]
- Lawrence, T.; Natoli, G. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat. Rev. Immunol. 2011, 11, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, Y.; Basha, K.; Duche, S.; Gupte, R.; Kapat, A. Regioselective synthesis of phenanthrenes and evaluation of their anti-oxidant based anti-inflammatory potential. Eur. J. Med. Chem. 2013, 67, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Luyendyk, J.P.; Schabbauer, G.A.; Tencati, M.; Holscher, T.; Pawlinski, R.; Mackman, N. Genetic Analysis of the Role of the PI3K-Akt Pathway in Lipopolysaccharide-Induced Cytokine and Tissue Factor Gene Expression in Monocytes/Macrophages. J. Immunol. 2008, 180, 4218–4226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhou, A.; Xu, L.; Zhang, X. The role of TLR4-mediated PTEN/PI3K/AKT/NF-κB signaling pathway in neuroinflammation in hippocampal neurons. Neuroscience 2014, 269, 93–101. [Google Scholar] [CrossRef]
- Mayo, M.W.; Madrid, L.V.; Westerheide, S.D.; Jones, D.R.; Yuan, X.J.; Baldwin, A.S., Jr.; Whang, Y.E. PTEN Blocks Tumor Necrosis Factor-induced NF-κB-dependent Transcription by Inhibiting the Transactivation Potential of the p65 Subunit. J. Biol. Chem. 2002, 277, 11116–11125. [Google Scholar] [CrossRef] [PubMed]
- Vadiveloo, P.; Keramidaris, E.; Morrison, W.; Stewart, A. Lipopolysaccharide-induced cell cycle arrest in macrophages occurs independently of nitric oxide synthase II induction. BBA - Mol. Cell Res. 2001, 1539, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Prieditis, H.; Adamson, I.Y.R. Alveolar macrophage kinetics and multinucleated giant cell formation after lung injury. J. Leukocyte Biol. 1996, 59, 534–538. [Google Scholar] [CrossRef]
- Xu, M.; Shen, Y.; Zhang, K.; Liu, N.N.; Jiang, F.S.; Ding, Z.S. Antioxidant activity of total flavonoid aglycones and the main compound pinostrobin chalcone separated from leaves of Carya cathayensis. Chin. J. ETMF 2013, 19, 204–208. [Google Scholar]
- Mitchell, S.J.; Martin-Montalvo, A.; Mercken, E.M.; Palacios, H.H.; Ward, T.M.; Abulwerdi, G.; Minor, R.K.; Vlasuk, G.P.; Ellis, J.L.; Sinclair, D.A.; et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 2014, 6, 836–843. [Google Scholar] [CrossRef]
Name | Phosphorylation Site or Antibody | Gene ID | Name | Phosphorylation Site or Antibody | Gene ID |
---|---|---|---|---|---|
HSP90B | Ser254 | 3326 | Trk A | Tyr791 | 4914 |
NFκB-p65 | Ser536 | 5970 | PKC α/β II | Ab-638 | 5578 |
Ezrin | Thr566 | 7430 | MAP3K8/COT | Thr290 | 1326 |
FLT3 | Ab-599 | 2322 | NFκB-p105/p50 | Ab-932 | 4790 |
p53 | Ser33 | 7157 | p27Kip1 | Thr187 | 1027 |
CK2-b | Ab-209 | 1460 | Shc | Tyr349 | 6464 |
ATF1 | Ab-63 | 466 | Smad1 | Ab-187 | 4086 |
AXL | Tyr691 | 558 | ERK3 | Ab-189 | 5597 |
Rac1/cdc42 | Ser71 | 5879 | Caveolin-1 | Tyr14 | 857 |
PTEN | Ser380 | 5728 | MARCKS | Ser163 | 4082 |
CDK2 | Ab-160 | 1017 | GRK2 | Ser685 | 156 |
DNA-PK | Ab-2056 | 5591 | Ephrin B1 | Ab-317 | 1947 |
EGFR | Ab-1069 | 1956 | Estrogen Receptor-α | Ser104 | 2099 |
Keratin 8 | Ser73 | 3875 | BRCA1 | Ser1524 | 672 |
ATPase | Ab-16 | 476 | PTEN | Ser380/Thr382/Thr383 | 5728 |
CDC25A | Ab-75 | 993 | eIF4B | Ser422 | 1975 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, F.; Li, M.; Wang, H.; Ding, B.; Zhang, C.; Ding, Z.; Yu, X.; Lv, G. Coelonin, an Anti-Inflammation Active Component of Bletilla striata and Its Potential Mechanism. Int. J. Mol. Sci. 2019, 20, 4422. https://doi.org/10.3390/ijms20184422
Jiang F, Li M, Wang H, Ding B, Zhang C, Ding Z, Yu X, Lv G. Coelonin, an Anti-Inflammation Active Component of Bletilla striata and Its Potential Mechanism. International Journal of Molecular Sciences. 2019; 20(18):4422. https://doi.org/10.3390/ijms20184422
Chicago/Turabian StyleJiang, Fusheng, Meiya Li, Hongye Wang, Bin Ding, Chunchun Zhang, Zhishan Ding, Xiaobo Yu, and Guiyuan Lv. 2019. "Coelonin, an Anti-Inflammation Active Component of Bletilla striata and Its Potential Mechanism" International Journal of Molecular Sciences 20, no. 18: 4422. https://doi.org/10.3390/ijms20184422