Hypoglycaemic and Hypolipidaemic Effects of Withania somnifera Root and Leaf Extracts on Alloxan-Induced Diabetic Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Alloxan-induced DM
2.2. Mechanism of action of the standard drug glibenclamide
2.3. Quantification of total flavonoids in WSREt and WSLEt
2.4. Effects of WSREt and WSLEt on body weight (bw)
2.5. Effects of WSREt and WSLEt on urine sugar, blood glucose, haemoglobin (Hb), glycosylated haemoglobin (HbA1C) and liver glycogen
2.6. Effects of WSREt and WSLEt on serum and tissue lipids profile like total cholesterol (TC), triglycerides (TG) and phospholipids (PL)
2.7. Effects of WSREt and WSLEt on serum and tissues protein
2.8. Effects of WSREt and WSLEt on liver glucose-6-phosphatase (G6P) and serum enzymes like aspartate transaminase (AST), alanine transaminase (ALT), acid phosphatase (ACP) and alkaline phosphatase (ALP) activities
3. Experimental Section
3.1. Chemicals
3.2. Animals
3.3. Plant material
3.4. Preparation of WSREt and WSLEt
3.5. Determination of total flavonoids in WSREt and WSLEt
3.6. Induction of diabetes mellitus in rats
3.7. Experimental design and treatment
3.8. Collection of samples
3.8.1. Determination of urine sugar, blood sugar, Hb, HbA1C and liver glycogen
3.8.2. Determination of serum lipid profile and tissues lipids like TC, TG and PL
3.8.3. Determination of serum and tissues protein
3.8.4. Determination of assay of liver G6P and serum enzymes like AST, ALT, ACP and ALP
3.9. Statistical analysis
4. Conclusions
Acknowledgments
References and Notes
- Akhtar, FM; Ali, MR. Study of antidiabetic effect of a compound medicinal plant prescription in normal and diabetic rabbits. J. Pak. Med. Assoc 1984, 34, 239–244. [Google Scholar]
- Brinker, F. Herb contraindications and drug interactions, 2nd Ed edEclectic Medical Publications: Sandy, OR, USA, 1998; pp. 36–82. [Google Scholar]
- Pepato, MT; Baviera, AM; Vendramini, RC; Perez, MPMS; Ketelhut, IC; Brunetti, ILJ. Cissus sicyoides (princess vine) in the longterm treatment of streptozotocin-diabetic rats. Biotechnol. Appl. Biochem 2003, 37, 15–20. [Google Scholar]
- Budhiraja, RD; Sudhir, S. Review of biological activity of withanolides. J. Sci. Ind. Res 1987, 42, 488–491. [Google Scholar]
- Chopra, RN. Glossary of Indian medicinal plants; Academic Publishers: New Delhi, India, 1994. [Google Scholar]
- Glotter, E; Kirson, I; Abraham, A; Lavie, D. Constituents of Withania somnifera (L.) Dunal. XII. The withanolides of chemotype III. Tetrahedron 1973, 29, 1353–1364. [Google Scholar]
- Devi, PU; Sharada, AC; Solomon, FE. Anti-tumor and radiosensitizing effects of Withania somnifera (Ashwagandha) on a transplantable mouse tumor sarcoma 180. Indian J. Exp. Biol 1993, 31, 607–611. [Google Scholar]
- Nittala, SS; Lavie, S. Chemistry and genetics of withanolides in Withania somnifera hybrids. Phytochemistry 1988, 20, 2741–2748. [Google Scholar]
- Kandil, FE; Elsayeh, NH; Abou-Douh, AM; Ishak, MS; Mabry, TJ. Flavonol glycosides and phenolics from Withania somnifera. Phytochemistry 1994, 37, 1215–1216. [Google Scholar]
- Bhattacharya, SK; Satyam, SK; Chakrabarti, A. Effect of Trasina an Ayurvedic herbal formulation, on pancreatic islet superoxide dismutase activity in hyperglycaemic rats. Indian J. Exp. Biol 1997, 35, 297–299. [Google Scholar]
- Tripathi, AK; Shukla, YN; Sushilkumar, T. Ashwagandha Withania somnifera (L.) Dunal (Solanaceae): A status report. J. Med. Arom. Plant Sci 1996, 18, 46–62. [Google Scholar]
- Andallu, B; Radhika, B; Dawar, R. Hypoglycaemic, diuretic and hypocholesterolemic effects of winter cherry Withania somnifera (L.) Dunal root. Indian J. Exp. Biol 2000, 6, 607–609. [Google Scholar]
- Anwer, T; Sharma, M; Pillai, KK; Iqbal, M. Effect of Withania somnifera on insulin sensitivity in non insulin dependent diabetes mellitus rats. Basic Clin. Pharmacol. Toxicol 2008, 102, 498–503. [Google Scholar]
- Manach, C; Scalbert, A; Morand, C; Remesy, C; Jimenez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr 2004, 79, 727–747. [Google Scholar]
- Sharma, B; Viswanath, G; Salunke, R; Roy, P. Effects of flavonoid-rich extract from seeds of Eugenia jambolana (L.) on carbohydrate and lipid metabolism in diabetic mice. Food Chem 2008, 110, 697–705. [Google Scholar]
- Sharma, SB; Nasir, A; Prabhu, KM; Murthy, PS; Dev, G. Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds Eugenia jambolana in alloxan-induced diabetic rats. J. Ethnopharmacol 2003, 85, 201–206. [Google Scholar]
- Ju, JB; Kim, JS; Choi, CW; Lee, HK; Oh, TK; Kim, SC. Comparison between ethanolic and aqueous extracts from Chinese juniper berries for hypoglycaemic and hypolipidemic effects in alloxan-induced diabetic rats. J. Ethnopharmacol 2008, 115, 110–115. [Google Scholar]
- Panten, U; Schwanstecher, M; Schwanstecher, C. Sulfonylurea receptors and mechanism of sulfonylurea action. Exp. Clin. Endocrinol. Diabetes 1996, 104, 1–9. [Google Scholar]
- Luzi, L; Pozza, G. Glibenclamide: an old drug with a novel mechanism of action. Acta Diabetol 1997, 34, 239–244. [Google Scholar]
- Guo, L; Hu, WR; Lian, JH; Ji, W; Deng, T; Qian, M. Anti-hyperlipidemic properties of CM 108 (a flavone derivative) in vitro and in vivo. Eur. J Pharmacol 2006, 551, 80–86. [Google Scholar]
- Babu, PS; Prabuseenivasan, S; Ignacimuthu, S. Cinnamaldehyde-A potential antidibetic agent. Phytomedicine 2007, 14, 15–22. [Google Scholar]
- Al-Yassin, D; Ibrahim, K. A minor haemoglobin fraction and the level of fasting blood glucose. J. Fac. Med. Bagh 1981, 23, 373–380. [Google Scholar]
- Punitha, R; Manoharan, S. Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats. J. Ethnopharmacol 2006, 105, 39–46. [Google Scholar]
- Huang, X; Vagg, A; Hanson, M; Weng, J; Laurila, E; Group, L. Impaired insulin stimulated expression of the glycogen synthase gene in skeletal muscle of type 2 diabetic patients is acquired rather that inherited. J. Clin. Endocrinol. Metab 2000, 85, 1584. [Google Scholar]
- Leite, ACR; Aráujo, TG; Carvalho, BM; Silva, NH; Lima, VLM; Maia, MBS. Parkinsonia aculeata aqueous extract fraction: Biochemical studies in alloxan-induced diabetic rats. J. Ethnopharmacol 2007, 111, 547–552. [Google Scholar]
- Bhattacharya, SK; Satyan, KS; Ghosal, S. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J. Exp. Biol 1997, 35, 236–239. [Google Scholar]
- Sivajothi, V; Dey, A; Jayakar, B; Rajkapoor, B. Antihyperglycemic property of Tragia cannabina in streptozotocin-induced diabetic rats. J. Med. Food 2007, 10, 361–365. [Google Scholar]
- Pathak, A; Dhawan, D. Effect of lithium on the levels of blood urea and creatinine in diabetic rats. Med. Sci. Res 1998, 26, 855. [Google Scholar]
- Anbalagan, K; Sadique, J. Influence of an Indian Medicine (Ashwagandha) on acute phase reactants in inflammation. Indian J. Exp. Biol 1981, 19, 245. [Google Scholar]
- Gokce, G; Haznedaroglu, MZ. Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. J. Ethnopharmacol 2008, 115, 122–130. [Google Scholar]
- Prince, PSM; Menon, VP. Hypoglycaemic and other related actions of Tinospora cardifolia roots in alloxan – induced diabetic rats. J. Ethnopharmacol 2000, 70, 9–15. [Google Scholar]
- Bhavapriya, V; Kalpana, S; Govindasamy, S; Apparantham, T. Biochemical studies on hypoglycaemic effect of Aavirai kudineer: a herbal formulation in alloxan diabetic rats. Indian J. Exp. Biol 2001, 39, 925–928. [Google Scholar]
- Batran, SAS; El-Gengaihi, SE; Shabrawy, OA. Some toxicological studies of Momordica charantia L. on albino rats in normal and alloxan diabetic rats. J. Ethnopharmacol 2006, 108, 236–242. [Google Scholar]
- Prince, PSM; Menon, VP; Pari, L. Effect of Syzigium cumini extracts on hepatic hexokinase and glucose-6-phosphatase in experimental diabetes. Phytother. Res 1997, 11, 529–531. [Google Scholar]
- Quettier-Deleu, C; Gressier, B; Vasseur, J; Dine, T; Brunet, C; Luyckx, M; Cazin, M; Cazin, JC; Bailleul, F; Trotin, F. Phenolic compounds and antioxidant activities of buckweat hulls and flour. J. Ethnopharmacol 2000, 72, 35–42. [Google Scholar]
- Prince, PSM; Menon, VP; Pari, L. Hypoglycaemic activity of Syzigium cumini seeds: effect on lipid peroxidation in alloxan diabetic rats. J. Ethnopharmacol 1998, 61, 1–7. [Google Scholar]
- Folch, J; Lees, M; Slone Stanley, GHS. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem 1957, 226, 497–509. [Google Scholar]
- Varley, H. Practical Clinical Biochemistry, 4th Ed edCBS Publishers and Distributors: New Delhi, India, 2003; pp. 1–80. [Google Scholar]
- Sasaki, T; Matsy, S; Sonae, A. Effect of acetic acid concentration on the colour reaction in the O-toluidine boric acid method for blood glucose estimation. Rinsho Kagaku 1972, 1, 346–353. [Google Scholar]
- Dacie, JV; Lewies, SM. Practical Haematology, 3rd Ed ed; Churchill: London, UK, 1977. [Google Scholar]
- Bannon, P. Effect of pH on the estimation of the liable fraction of glycosylated haemoglobin. Clin. Chem 1982, 28, 2183. [Google Scholar]
- Carroll, NV; Longly, RW; Joseph, HR. Determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem 1956, 220, 583–593. [Google Scholar]
- Zlatkis, A; Zak, B; Boyle, AJ. A method for the direct determination of serum cholesterol. J. Lab. Clin. Med 1953, 45, 486–492. [Google Scholar]
- Foster, CS; Dunn, O. Stable reagents for determination of serum triglycerides by a colorimetric hantzsch condensation method. Clin. Chem 1973, 19, 338–340. [Google Scholar]
- Zilversmit, DB; Davies, AK. Micro determination of plasma phospholipids by TCA precipitation method. J. Lab. Clin. Med 1950, 35, 155–160. [Google Scholar]
- Burstein, M; Scholnick, HR; Morgin, R. Rapid method for the isolation of lipoprotein from human serum by precipitation with polyanion. J. Lipid Res 1970, 11, 1583–1586. [Google Scholar]
- Lowry, OH; Roesborough, MJ; Farr, AL; Randall, RJ. Protein measurement with Folin’s-phenol reagent. J. Biol. Chem 1951, 193, 265–275. [Google Scholar]
- Reinhold, JG. Standard methods in clinical chemistry; Reiner, M, Ed.; Academic Press: New York NY, USA, 1952; Volume 1, pp. 88–89. [Google Scholar]
- Koide, H; Oda, T. Pathological occurrence of glucose-6-phosphatase in serum and liver diseases. Clin. Chim. Acta 1959, 4, 554–561. [Google Scholar]
- Reitman, S; Frankel, SA. Colorimetric method for the determination of serum glutamate oxaloacetate and glutamate pyruvate transaminases. Am. J. Clin. Pathol 1957, 28, 56–63. [Google Scholar]
- King, J. Determination of serum alkaline and acid phosphatase. In Practical Clinical Enzymology; Van Nostrand: London, UK, 1959. [Google Scholar]
Extracts | Flavonoids (mg/100 g dry weight in quercetin equivalents) |
---|---|
WSREt | 530 ± 80 |
WSLEt | 520 ± 60 |
Groups | Initial weight (g) | Final weight (g) | Change in body weight (g) | Change in body weight (%) |
---|---|---|---|---|
Normal control | 160.00 ± 8.91 | 205.17 ± 9.06 | 45.17 ± 6.78 | + 28.23 |
Diabetic control | 172.00 ± 8.42 | 152.83 ± 8.78 | 19.17 ± 5.21 | −11.15 |
Diabetic + WSREt (100 mg/kg body weight) | 168.00 ± 9.24 | 208.00 ± 10.23 | 40.00 ± 7.64 | + 23.81 |
Diabetic + WSREt (200 mg/kg body weight) | 165.17 ± 10.19 | 207.33 ± 8.42 | 42.17 ± 6.42 | + 25.53 |
Diabetic + WSLEt (100 mg/kg body weight) | 165.00 ± 10.37 | 195.00 ± 7.32 | 30.00 ± 6.11 | + 18.18 |
Diabetic + WSLEt (200 mg/kg body weight) | 170.00 ± 8.16 | 212.67 ± 9.64 | 42.67 ± 7.56 | + 25.10 |
Diabetic + glibenclamide | 170.00 ± 7.89 | 208.50 ± 8.16 | 38.50 ± 5.98 | + 22.65 |
Groups | Urine Sugar | Blood glucose (mg/dL) | Hb (g/dL) | HbA1C (mg/gHb) | Liver glycogen (mg/g tissue) |
---|---|---|---|---|---|
Normal control | − | 92.17 ± 6.53 a | 15.25 ± 1.35 c | 1.84 ± 0.16 a | 28.21 ± 2.27 d |
Diabetic control | +++ | 284.75 ± 15.86 d | 10.20 ± 0.90 a | 4.23 ±0.40 c | 16.51 ± 1.46 a |
Diabetic + WSREt (100 mg/kg body weight) | + | 136.05 ± 4.92 c | 12.92 ± 1.14 bc | 2.05 ± 0.15 ab | 22.39 ± 1.09 b |
Diabetic + WSREt (200 mg/kg body weight) | + | 100.12 ± 9.67 c | 14.60 ± 1.29 de | 1.90 ± 0.18 ab | 24.78 ± 2.19 c |
Diabetic + WSLEt (100 mg/kg body weight) | + | 132.98 ± 6.52 c | 12.28 ± 0.64 b | 1.80 ± 0.09 a | 25.45 ± 1.85 c |
Diabetic + WSLEt (200 mg/kg body weight) | + | 106.19 ± 4.71 b | 14.82 ± 1.35 de | 1.85 ± 0.18 a | 28.14 ± 2.16 d |
Diabetic + glibenclamide | + | 110.77 ± 2.75 b | 13.76 ± 1.26 cd | 2.15 ± 0.20 b | 27.71 ± 1.45 d |
Groups | TC (mg/dL) | TG (mg/dL) | PL (mg/dL) | HDL-c (mg/dL) | VLDL-c (mg/dL) | LDL–c (mg/dL) |
---|---|---|---|---|---|---|
Normal control | 94.62 ± 6.71 a | 78.14 ± 6.92 a | 86.22 ± 7.64 a | 24.08 ± 1.82 c | 15.63 ± 1.38 a | 38.43 ± 7.04 a |
Diabetic control | 190.42 ± 16.20 c | 114.82 ± 10.17 c | 138.43 ± 12.26 b | 16.82 ± 1.59 a | 22.96 ± 2.03 c | 75.03 ± 4.55 c |
Diabetic + WSREt | 102.46 ± 6.92 a | 86.43 ± 7.65 ab | 89.89 ± 7.96 a | 22.31 ± 1.76 bc | 17.29 ± 1.53 ab | 47.83 ± 4.81 b |
Diabetic + WSLEt | 116.5 ± 8.20 b | 90.86 ± 8.05 b | 92.11 ± 6.69 a | 20.46 ± 1.68 b | 18.17 ± 1.61 b | 52.23 ± 8.72 b |
Diabetic + glibenclamide | 100.44 ± 4.93 a | 88.44 ± 6.42 b | 87.66 ± 6.37 a | 22.35 ± 1.84 bc | 17.69 ± 1.28 b | 48.41 ± 4.54 b |
Groups | Liver | Kidney | ||||
---|---|---|---|---|---|---|
TC | TG | PL | TC | TG | PL | |
Normal control | 5.11 ± 0.32 a | 7.27 ± 0.68 a | 13.69 ± 1.28 a | 6.22 ± 0.43a | 4.88 ± 0.28 a | 15.51 ± 1.48 a |
Diabetic control | 8.33 ± 0.86 d | 10.89 ± 0.95 e | 25.51 ± 1.86 d | 9.97 ± 0.51e | 9.12 ± 0.71 d | 30.21 ± 2.53 e |
Diabetic + WSREt | 5.43 ± 0.71 c | 7.69 ± 0.59 b | 14.09 ± 0.98 b | 6.82 ± 0.62 c | 5.29 ± 0.47 b | 16.29 ± 1.21 c |
Diabetic + WSLEt | 6.52 ± 0.65 cd | 8.43 ± 0.48 d | 16.81 ± 1.16 c | 7.69 ± 0.53d | 6.86 ± 0.36 c | 20.34 ± 2.11 d |
Diabetic + glibenclamide | 5.29 ± 0.47 b | 8.0 ± 0.92 c | 14.21 ± 1.54 b | 6.52 ± 0.61b | 5.01 ± 0.53 b | 16.05 ± 1.82 b |
Groups | Heart | ||
---|---|---|---|
TC | TG | PL | |
Normal control | 3.13 ± 0.28 a | 2.21 ± 0.21 a | 8.16 ± 0.67 a |
Diabetic control | 6.65 ± 0.75 e | 5.63 ± 0.52 e | 16.23 ± 1.25 e |
Diabetic + WSRET | 3.49 ± 0.41 b | 2.55 ± 0.26 bc | 9.01 ± 0.61 c |
Diabetic + WSLET | 4.82 ± 0.28 d | 3.64 ± 0.24 d | 11.46 ± 0.53 d |
Diabetic + glibenclamide | 3.81 ± 0.31 c | 2.43 ± 0.18 b | 8.49 ± 0.49 b |
Groups | Serum total protein (g/dL) | Albumin (g/dL) | Globulin (g/dL) | A:G ratio | Liver protein | Kidney protein | Heart protein |
---|---|---|---|---|---|---|---|
Normal control | 7.13 ± 1.76 b | 4.87 ± 2.56 b | 2.44 ± 0.18 a | 2.04 ± 0.11 b | 8.24 ± 2.38 b | 7.62 ± 1.96 b | 6.31 ± 1.76 b |
Diabetic control | 5.60 ± 0.53 a | 3.21 ± 0.31 a | 2.42 ± 0.21 a | 1.34 ± 0.09 a | 4.18 ± 0.39 a | 5.26 ± 0.50 a | 4.16 ± 0.39 a |
Diabetic + WSREt | 6.93 ± 0.56 b | 4.71 ± 0.60 b | 2.18 ± 0.12 a | 2.16 ± 0.13 b | 7.91 ± 0.56 b | 7.44 ± 0.51 b | 6.18 ± 0.80 b |
Diabetic + WSLEt | 7.08 ± 0.64 b | 4.64 ± 1.60 b | 2.35 ± 0.22a | 1.98 ± 0.10 b | 7.62 ± 0.59 b | 6.81 ± 0.70 b | 5.96 ± 0.99 b |
Diabetic + glibenclamide | 6.85 ± 0.53 b | 4.60 ± 1.17 b | 2.30 ± 0.19a | 2.00 ± 0.12 b | 8.01 ± 0.84 b | 7.69 ± 0.72 b | 5.88 ± 0.66 b |
Groups | G6P | AST | ALT | ACP | ALP |
---|---|---|---|---|---|
Normal control | 11.68 ± 1.19 a | 92.86 ± 6.64 a | 69.38 ± 7.11 a | 5.88 ± 1.78 a | 17.93 ± 1.92 a |
Diabetic control | 25.72 ± 1.68 d | 168.23 ± 7.12 c | 144.19 ± 6.96 d | 9.23 ± 2.00 b | 22.19 ± 3.00 b |
Diabetic + WSREt | 14.22 ± 0.97 c | 92.45 ± 6.53 a | 86.27 ± 5.96 b | 6.56 ± 2.22 a | 18.62 ± 1.02 a |
Diabetic + WSLEt | 13.37 ± 0.90 bc | 102.11 ± 6.89 b | 79.05 ± 5.34 b | 6.32 ± 0.71 a | 18.92 ± 2.11 a |
Diabetic + glibenclamide | 12.18 ± 1.65 ab | 96.68 ± 5.01 ab | 76.44 ± 4.62 ab | 5.92 ± 0.61 a | 18.21 ± 2.74 a |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Udayakumar, R.; Kasthurirengan, S.; Mariashibu, T.S.; Rajesh, M.; Anbazhagan, V.R.; Kim, S.C.; Ganapathi, A.; Choi, C.W. Hypoglycaemic and Hypolipidaemic Effects of Withania somnifera Root and Leaf Extracts on Alloxan-Induced Diabetic Rats. Int. J. Mol. Sci. 2009, 10, 2367-2382. https://doi.org/10.3390/ijms10052367
Udayakumar R, Kasthurirengan S, Mariashibu TS, Rajesh M, Anbazhagan VR, Kim SC, Ganapathi A, Choi CW. Hypoglycaemic and Hypolipidaemic Effects of Withania somnifera Root and Leaf Extracts on Alloxan-Induced Diabetic Rats. International Journal of Molecular Sciences. 2009; 10(5):2367-2382. https://doi.org/10.3390/ijms10052367
Chicago/Turabian StyleUdayakumar, Rajangam, Sampath Kasthurirengan, Thankaraj Salammal Mariashibu, Manoharan Rajesh, Vasudevan Ramesh Anbazhagan, Sei Chang Kim, Andy Ganapathi, and Chang Won Choi. 2009. "Hypoglycaemic and Hypolipidaemic Effects of Withania somnifera Root and Leaf Extracts on Alloxan-Induced Diabetic Rats" International Journal of Molecular Sciences 10, no. 5: 2367-2382. https://doi.org/10.3390/ijms10052367