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Abstract. We prove uniqueness within a class of discontinuous solutions to
the nonlinear and third order dispersive Degasperis-Procesi equation

∂tu− ∂3
txxu + 4u∂xu = 3∂xu∂2

xxu + u∂3
xxxu.

In a recent paper [3], we proved for this equation the existence and uniqueness

of L1∩BV weak solutions satisfying an infinite family of Kružkov-type entropy

inequalities. The purpose of this paper is to replace the Kružkov-type entropy
inequalities by an Olĕınik-type estimate and to prove uniqueness via a nonlocal

adjoint problem. An implication is that a shock wave in an entropy weak

solution to the Degasperis-Procesi equation is admissible only if it jumps down
in value (like the inviscid Burgers equation).

1. Introduction

We are interested in the uniqueness problem for discontinuous solutions to the
Degasperis-Procesi equation

(1.1) ∂tu− ∂3
txxu+ 4u∂xu = 3∂xu∂

2
xxu+ u∂3

xxxu, (t, x) ∈ (0,∞)× R,
which we augment with the initial condition

(1.2) u(0, x) = u0(x), x ∈ R.
Degasperis and Procesi [7] considered a family of third order dispersive nonlinear
equations, indexed over six constants c0, γ, α, c1, c2, c3 ∈ R,

∂tu+ c0∂xu+ γ∂3
xxxu− α2∂3

txxu = ∂x

(
c1u

2 + c2(∂xu)2 + c3u∂
2
xxu

)
.

They found that only three equations from this family were asymptotically inte-
grable up to third order: the Korteweg-deVries (KdV) equation (α = c2 = c3 = 0),
the Camassa-Holm equation (c1 = − 3c3

2α2 , c2 = c3
2 ) [1], and one new equation

(c1 = − 2c3
α2 , c2 = c3), which properly scaled reads

(1.3) ∂tu+ ∂xu+ 6u∂xu+ ∂3
xxxu− α2

(
∂3

txxu+
9
2
∂xu∂

2
xxu+

3
2
u∂3

xxxu

)
= 0.

By rescaling, shifting the dependent variable, and finally applying a Galilean boost,
equation (1.3) can be transformed into the form (1.1), see [?, ?].
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The Degasperis-Procesi equation (1.1) was considered for the first time in [7].
Then Degasperis, Holm, and Hone [?] proved the exact integrability of (1.1) by
constructing a Lax pair and showed the existence of “non-smooth” solutions that
are superpositions of multipeakons and described the integrable finite-dimensional
peakon dynamics, which were compared with the multipeakon dynamics of the
Camassa-Holm equation. An explicit solution was also found in the perfectly anti-
symmetric peakon-antipeakon collision case. Lundmark and Szmigielski [16, 17]
used an inverse scattering approach to determine a completely explicit formula for
the general n-peakon solution of the Degasperis-Procesi equation (1.1). Mustafa
[18] proved that smooth solutions to (1.1) have infinite speed of propagation. We
refer to [9] for a discussion of Camassa-Holm, Degasperis-Procesi, and other related
equations, along with many numerical examples.

Regarding the well-posedness of the initial value problem for the Degasperis-
Procesi equation, Yin has studied this within certain functional classes in a series
of papers [24, 25, 26, 27]. In particular, Yin [26] proved for (1.1), (1.2) the follow-
ing global existence result: Suppose u0 ∈ H1(R) and (1 − ∂2

xx)u0 is a nonnegative
bounded Radon measure on R, i.e., (1 − ∂2

xx)u0 ∈ M+(R). Then (1.1), (1.2) pos-
sesses a unique weak solution u belonging to W 1,∞((0,∞)×R)∩L∞loc((0,∞);H1(R)).
Furthermore, (1− ∂2

xx)u(t, ·) belongs to M+(R) for a.e. t ≥ 0 and I(u) =
∫

R u dx,
E(u) =

∫
R u

3 dx are two conservation laws.
All solutions encompassed by Yin’s well-posedness theory are regular, that is,

they are no worse than H1, a fact that is reminiscent of the Camassa-Holm equa-
tion (see for example [5]). Recently [3] we advocated the view that the Degasperis-
Procesi equation could admit discontinuous (shock wave) solutions, which means
that it would behave radically different from the Camassa-Holm equation and its
kink solutions (peaked solitons), but similar to the inviscid Burgers equation. Con-
sequently, a well-posedness theory should rely on functional spaces containing dis-
continuous functions. Indeed, in [3] we proved the existence and uniqueness of
so-called entropy weak solutions in the class L1 ∩BV . The relevance of these solu-
tions in the present context is supported by Lundmark [15], who found some explicit
shock solutions of the Degasperis-Procesi equation that are entropy weak solutions
in the sense of [3]. Numerical schemes for computing entropy weak solutions of the
Degasperis-Procesi equation is developed and analyzed in [4].

Next we discuss [3] in some more detail. First, what do we mean by a weak
solution to the Degasperis-Procesi equation (1.1)? Formally, (1.1) is equivalent to
the hyperbolic-elliptic system

(1.4) ∂tu+ ∂x

(
u2

2

)
+ ∂xP = 0, −∂2

xxP + P =
3
2
u2.

For any λ > 0 the operator (λ2 − ∂2
xx)−1 has a convolution structure:

(1.5) (λ2 − ∂2
xx)−1(f)(x) = (Gλ ? f)(x) =

1
2λ

∫
R
e−λ|x−y|f(y) dy, x ∈ R,

where Gλ(x) := 1
2λe

−|x|/λ, so that P = G1 ?
(

3
2u

2
)
. Consequently, (1.4) can be

written as a conservation law with a nonlinear and nonlocal source term:

(1.6) ∂tu+ ∂x

(
u2

2

)
+

3
4

∫
R
e−|x−y|sign (y − x) (u(t, y))2 dy = 0.



ON THE DEGASPERIS-PROCESI EQUATION 3

By a weak solution of the initial value problem (1.1), (1.2) we mean a function
u ∈ L∞((0,∞);L2(R)) that satisfies (1.6), (1.2) in D′([0,∞)× R).

We need to explain why weak solutions u(t, ·) ought to be L2 bounded (this bound
is at the heart of the matter in [3]). Our starting point is that if we introduce the
quantity v := G2 ? u, then formally the following conservation law holds [6]:

∂t

(
(∂2

xxv)
2 + 5(∂xv)2 + 4v2

)
+ ∂x

(
2
3
u3 + 4v G1 ? (u2) + ∂xv ∂x

[
G1 ? (u2)

]
− 4u2v

)
= 0,

from which it follows v(t, ·) ∈ H2(R) and thereby also u(t, ·) ∈ L2(R), for any t ≥ 0.
The L2 bound on u implies other bounds as well:

(1.7) P (t, ·) ∈W 1,∞(R), ∂2
xxP (t, ·) ∈ L1(R) ∩ L∞(R), for any t ≥ 0,

and
u(t, ·) ∈ L1(R) ∩BV (R), for any t > 0.

One may wonder why the functional space BV (bounded variation) is relevant for
the Degasperis-Procesi equation, but, at least formally, it follows from (1.4) that

d

dt

∫
R
|∂xu| dx ≤

∫
R

∣∣∂2
xxP

∣∣ dx.
If ∂2

xxP (t, ·) ∈ L1(R), then u(t, ·) ∈ BV (R) (and thus also an u(t, ·) ∈ L∞(R)), for
any t ≥ 0. But an L1(R) bound on ∂2

xxP (t, ·) is expected in view of (1.7). We refer
to [3] for details regarding the above (formal) bounds.

To establish the existence of a weak solution one must construct approximate
solutions for which bounds similar to those above can be derived rigorously. In [3],
we did this for the following fourth order viscous approximation of (1.1):

∂tuε − ∂3
txxuε + 4uε∂xuε = 3∂xuε∂

2
xxuε + uε∂

3
xxxuε + ε

(
∂2

xxuε − ∂4
xxxxuε

)
,(1.8)

for ε > 0. Assuming u0 ∈ L1(R)∩BV (R), we proved {uε}ε>0 ⊂ L∞((0,∞);L2(R))
and {uε}ε>0 ⊂ L∞((0, T );L1(R) ∩ BV (R)), for any T > 0. Consequently, the
sequence {uε}ε>0 is strongly convergent (at least along a subsequence) to a limit
function u satisfying the formal bounds discussed above. Additionally, the limit u
is a weak solution of the Degasperis-Procesi equation (1.1), (1.2).

Regarding the constructed weak solution, we point out that I(u) =
∫

R u dx is
a conservation law but E(u) :=

∫
R u

3 dx is not. Indeed, a simple calculation will
reveal that

d

dt

∫
R
u3 dx = −6ε

∫
R
uε (∂xuε)

2
dx, ε > 0,

and if a shock wave solution persists then the right-hand side of this equation will
be non-zero in the limit as ε→ 0.

To account for possibile discontinuities in our weak solutions and thus the loss
uniqueness, in [3] we restored the uniqueness by imposing an infinite family of
entropy inequalities [11]. For any convex C2 function η : R → R and corresponding
function q : R → R defined by q′(u) = η′(u)u, the following inequality holds in
D′([0,∞)× R):

(1.9) ∂tη(u) + ∂xq(u) + η′(u)
[
3
4

∫
R
e−|x−y|sign (y − x) (u(t, y))2 dy

]
≤ 0.
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We refer to (1.9) to as Kružkov-type entropy inequalities [11]. A weak solution u of
(1.1), (1.2) satisfying (1.9) is called an entropy weak solution.

We proved in [3] that the weak solution constructed by letting ε→ 0 in (1.8) is
indeed an entropy weak solution. Moreover, we proved the L1 stability and thus
the uniqueness of entropy weak solutions.

The purpose of the present paper is to point out that uniqueness still holds if
we replace the (infinite family of) Kružkov-type entropy inequalities (1.9) by the
Olĕınik-type (one-sided Lipschitz) estimate ∂xu(t, x) ≤ KT

(
1
t + 1

)
, where KT is

a finite constant. The relevance of this estimate comes from [3], where we proved
that the constructed entropy weak solution mentioned above satisfies the estimate

∂xu(t, x) ≤
1
t

+
[
6 ‖u0‖2L2(R) +

3
2

(
|u0|BV (R) + 24T ‖u0‖2L2(R)

)2
]1/2

, x ∈ R,

for each t ∈ (0, T ] with T > 0 (fixed). This estimate and the uniqueness result are
to some extent in accordance with what we know for the inviscid Burgers equation,
see for example [19, 21]. A chief difference is however that the right-hand side of
the estimate depends on the total variation of the solution (which can be estimated
in terms of the initial data as displayed in the inequality above), whereas for the
inviscid Burgers equation the so-called Olĕınik E-condition reads ∂xu(t, x) ≤ 1/t.

Before ending this introduction, we remind the reader of a couple of examples of
hyperbolic-elliptic systems that bear some resemblance to the Degasperis-Procesi
equation (1.4). The first system reads

(1.10) ∂tu+ ∂x

(
u2

2

)
+ ∂xP = 0, −∂2

xxP + P = −∂xu,

and it serves as a simplified model for radiating gases, see for example [10, 12, 14, 20]
for more details. Observe that while (1.4) can be viewed as a conservation law with
a nonlocal convective flux, ∂tu+∂x

[
u2

2 +G1 ?
(

3
2u

2
)]

= 0, the radiating gas system
can be viewed as a conservation law perturbed by a nonlocal diffusion flux, that
is, (1.10) can be written as ∂tu + ∂x

(
u2

2

)
= G1 ? (∂2

xxu) (= G1 ? u − u). Another
related system is the Whitman model for shallow water waves [23], which reads

∂tu+ ∂x

(
u2

2

)
+ ∂xP = 0, −∂2

xxP + P = u,

This system was analyzed recently in [8].
The remaining part of this paper is organized as follows: In Section 2 we state

the uniqueness result (Theorem 2.1). The proof of this result is based on [19, 21]
and uses a nonlocal adjoint problem, which is introduced in Section 3. We will
not solve the adjoint problem with the method of characteristics, but rather the
method of vanishing viscosity/smoothing of the coefficient, which is introduced and
analyzed in Section 4. Finally, in Section 5 we conclude the proof of Theorem 2.1.

2. Statement of main result

In this section we state the uniqueness result. We start however with collecting
the notions of weak and entropy weak solutions in a couple of definitions.

Definition 2.1 (Weak solution). We call a function u : (0,∞) × R → R a weak
solution of the initial value problem (1.1), (1.2) provided
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i) u ∈ L∞((0, T )× R), for any T > 0;
ii) there holds the identity

(2.1)
∫

(0,∞)

∫
R

(
u∂tφ+

u2

2
∂xφ− ∂xP

uφ

)
dx dt+

∫
R
u0(x)φ(0, x) dx = 0,

for every φ ∈ C∞([0,∞)× R) with compact support, where

Pu(t, x) = G1 ?

(
3
2
u2

)
(t, x) =

3
4

∫
R
e−|x−y|(u(t, y))2 dy.

Remark 2.1. Due to i) we have Pu ∈ L∞((0, T );W 1,1
loc (R))∩L∞((0, T );W 1,∞(R))

for any T > 0, hence (2.1) makes sense.

By requiring the fulfillment of an estimate of Olĕınik-type, we arrive at the notion
of an entropy weak solution for the Degasperis-Procesi equation (see [3] for a notion
based on Kružkov-type entropy inequalities).

Definition 2.2 (Entropy weak solution). We call a function u : (0,∞) × R → R
an entropy weak solution of the Cauchy problem (1.1), (1.2) provided

i) u is a weak solution in the sense of Definition 2.1;
ii) for each T > 0 there exists a positive constant KT such that the estimate

(2.2)
u(t, x)− u(t, y)

x− y
≤ KT

(
1
t

+ 1
)

holds for any x, y ∈ R, x 6= y, 0 < t < T .

Our main result is contained in

Theorem 2.1. Suppose u0 ∈ L∞(R). Then there exists at most one entropy weak
solution to the initial value problem (1.1), (1.2).

Remark 2.2. The existence of an entropy weak solution is proved in [3].

3. The nonlocal adjoint problem

As a preliminary step in the proof of Theorem 2.1, let u, ũ be two entropy weak
solutions of (1.1), (1.2). Then we have to prove

(3.1) u = ũ a.e. in (0,∞)× R.

Define

(3.2) ω := u− ũ, b :=
u+ ũ

2
.

For later use, observe that the following estimates hold (cf. Definitions 2.1, 2.2):

‖b‖L∞((0,T )×R) ≤
‖u‖L∞((0,T )×R) + ‖ũ‖L∞((0,T )×R)

2
=: ΛT , T > 0,(3.3)

b(t, x)− b(t, y)
x− y

≤ KT

(
1
t

+ 1
)
, x 6= y, 0 < t < T, T > 0,(3.4)

where

KT :=
Ku

T +Keu
T

2
and Ku

T ,K
eu
T denote the constants appearing in Definition 2.2 for u, ũ, respectively.
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By part ii) of Definition 2.1 and (u− ũ)|t=0 = 0, we see that (3.1) is equivalent
to

(3.5)
∫

(0,∞)×R
ωψ dt dx = 0, ∀ψ ∈ C∞c ((0,∞)× R),

where C∞c denotes the set of compactly supported C∞ functions.
The starting point for proving (3.5) is a classical method that employs the adjoint

problem, see [19] and [21, Theorem 16.10]. We derive our adjoint problem next.
Let ϕ ∈ C∞c ((0,∞)× R). Since u, ũ satisfy (2.1),

(3.6)
∫

(0,∞)×R

[
(u− ũ)∂tϕ+

u2 − ũ2

2
∂xϕ+

(
Pu − P eu)

∂xϕ

]
dt dx = 0.

Using the notations introduced in (3.2),

(3.7)
∫ ∞

0

∫
R

[
(u− ũ) ∂tϕ+

u2 − ũ2

2
∂xϕ

]
dt dx =

∫ ∞

0

∫
R
ω [∂tϕ+ b∂xϕ] dt dx.

Next, ∫
(0,∞)×R

(
Pu − P eu)

∂xϕdt dx

=
3
4

∫
(0,∞)×R×R

e−|x−y| [(u(t, y))2 − (ũ(t, y))2
]
∂xϕ(t, x) dt dx dy

=
3
2

∫
(0,∞)×R

(∫
R
e−|x−y|∂xϕ(t, x)dx

)
ω(t, y)b(t, y) dt dy

= 3
∫

(0,∞)×R
ωb∂xΦ dt dx,

(3.8)

where

Φ(t, x) :=
1
2

∫
(0,∞)×R

e−|x−y|ϕ(t, y) dy,

that is, Φ is the unique solution of the elliptic equation

(3.9) −∂2
xxΦ + Φ = ϕ.

In view of (3.7) and (3.8), we can rewrite (3.6) as

(3.10)
∫

(0,∞)×R
ω [∂tϕ+ b∂xϕ+ 3b∂xΦ] dt dx = 0.

Finally, fix ψ ∈ C∞c ((0,∞)× R) and let τ > 0 be such that

(3.11) supp (ψ) ⊂ (0, τ)× R.

Consider then the following linear hyperbolic-elliptic terminal value problem:

(3.12)


∂tϕ+ b∂xϕ+ 3b∂xΦ = ψ, (t, x) ∈ (0, τ)× R,
−∂2

xxΦ + Φ = ϕ, (t, x) ∈ (0, τ)× R,
ϕ(τ, x) = 0, x ∈ R.

We coin (3.12) the adjoint problem associated with (1.4).
The idea is to solve (3.12) and then pass from (3.10) to (3.5). Unfortunately, due

to the low regularity of the coefficient b, we cannot solve directly (3.12). Hence,
we regularize the first equation by smoothing the coefficient b by convolution and
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adding an artificial viscosity term. The next section is devoted to studying this
“approximate” adjoint problem.

Remark 3.1. The use of an adjoint problem to prove uniqueness is rather common
in the context of first order conservation laws, see for example [19, 21, 22, 13].

4. The approximate nonlocal adjoint problem

Let {ρε(t, x)}ε>0 be a sequence of standard mollifiers. Define

bε := b ? ρε, ε > 0.

Clearly, from (3.3) and (3.4),

bε → b in L2((0, T )× R), T > 0,(4.1)

‖bε‖L∞((0,T )×R) ≤
‖u‖L∞((0,T )×R) + ‖ũ‖L∞((0,T )×R)

2
=: ΛT , T, ε > 0,(4.2)

∂xbε(t, x) ≤ KT

(
1
t

+ 1
)
, x ∈ R, 0 < t < T, ε > 0.(4.3)

Now we approximate (3.12) with the following parabolic-elliptic terminal value
problem:

(4.4)


∂tϕ+ bε∂xϕ+ 3bε∂xΦ = ψ − ε∂2

xxϕ, (t, x) ∈ (0, τ)× R,
−∂2

xxΦ + Φ = ϕ, (t, x) ∈ (0, τ)× R,
ϕ(τ, x) = 0, x ∈ R.

Arguing as in [2, Theorem 2.3] we obtain

Lemma 4.1. Let ε > 0 and suppose ψ ∈ C∞([0,∞)×R)∩C([0,∞);H1(R)) obeys
(3.11). There exists a unique solution ϕ ∈ C∞([0,∞) × R) ∩ C([0,∞);H3(R)) to
the terminal value problem (4.4).

Since we feel more comfortable with initial value problem problems, we define

v(t, x) := ϕ(τ − t, x), Q(t, x) := Φ(τ − t, x),(4.5)

βε(t, x) := bε(τ − t, x), ψ̃(t, x) := −ψ(τ − t, x),(4.6)

for (t, x) ∈ (0, τ)× R. Due to Lemma 4.1, v is then the unique smooth solution of
the initial value problem

(4.7)


∂tv − βε∂xv − 3βε∂xQ = ψ̃ + ε∂2

xxv, (t, x) ∈ (0, τ)× R,
−∂2

xxQ+Q = v, (t, x) ∈ (0, τ)× R,
v(0, x) = 0, x ∈ R,

and, thanks to (4.2) and (4.3),

‖βε‖L∞((0,τ)×R) ≤
‖u‖L∞((0,τ)×R) + ‖ũ‖L∞((0,τ)×R)

2
=: Λτ , ε > 0,(4.8)

∂xβε(t, x) ≤ Kτ

(
1

τ − t
+ 1

)
, (t, x) ∈ (0, τ)× R, ε > 0.(4.9)
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4.1. A priori estimates. The following estimates constitute the key to the success
of our adjoint problem approach.

Lemma 4.2. Let ψ ∈ C∞([0,∞)×R)∩C([0,∞);H1(R))∩L∞((0,∞);H1(R)) be a
function satisfying (3.11). Then, using the notations introduced in (4.5) and (4.6),
for each ε > 0 and t ∈ (0, τ)

‖v(t, ·)‖2H1(R) + 2ε
∫ t

0

‖∂xv(s, ·)‖2H1(R) ds

≤ eCτ τ

(
τ

τ − t

)Cτ
∫ t

0

∥∥∥ψ̃(s, ·)
∥∥∥2

H1(R)
ds,

(4.10)

‖Q(t, ·)‖2H3(R) + 2ε
∫ t

0

‖∂xQ(s, ·)‖2H3(R) ds

≤ eCτ τ

(
τ

τ − t

)Cτ
∫ t

0

∥∥∥ψ̃(s, ·)
∥∥∥2

H1(R)
ds,

(4.11)

where Cτ is a constant independent of ε but dependent of τ .

Proof. From (4.7), we get the following equation for Q:

(4.12) ∂t

(
Q− ∂2

xxQ
)
− βε

(
4∂xQ− ∂3

xxxQ
)

= ψ̃ + ε∂2
xx

(
Q− ∂2

xxQ
)
.

Multiplying (4.12) by Q− ∂2
xxQ and integrating on R we get∫

R
∂t

(
Q− ∂2

xxQ
) (
Q− ∂2

xxQ
)
dx− ε

∫
R
∂2

xx

(
Q− ∂2

xxQ
) (
Q− ∂2

xxQ
)
dx

=
∫

R
βε

(
4∂xQ− ∂3

xxxQ
) (
Q− ∂2

xxQ
)
dx+

∫
R
ψ̃

(
Q− ∂2

xxQ
)
dx.

(4.13)

On the left-hand side we use the chain rule and do an integration by parts:∫
R
∂t

(
Q− ∂2

xxQ
) (
Q− ∂2

xxQ
)
dx− ε

∫
R
∂2

xx

(
Q− ∂2

xxQ
) (
Q− ∂2

xxQ
)
dx

=
1
2
d

dt

∫
R

(
Q− ∂2

xxQ
)2
dx+ ε

∫
R

(
∂xQ− ∂3

xxxQ
)2
dx

=
1
2
d

dt

∫
R

[
Q2 + 2(∂xQ)2 + (∂2

xxQ)2
]
dx

+ ε

∫
R

[
(∂xQ)2 + 2(∂2

xxQ)2 + (∂3
xxxQ)2

]
dx.

(4.14)

We estimate the right-hand side of (4.13) using (4.8):∣∣∣∣∫
R
βε

(
4∂xQ− ∂3

xxxQ
) (
Q− ∂2

xxQ
)
dx+

∫
R
ψ̃

(
Q− ∂2

xxQ
)
dx

∣∣∣∣
≤ 1

2

∫
R
β2

ε

(
4∂xQ− ∂3

xxxQ
)2
dx+

∫
R

(
Q− ∂2

xxQ
)2
dx+

1
2

∫
R
ψ̃2 dx

≤ L1,τ

∫
R

[
Q2 + (∂xQ)2 + (∂2

xxQ)2 + (∂3
xxxQ)2

]
dx+

1
2

∫
R
ψ̃2 dx,

(4.15)
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where the constant L1,τ is independent of ε. Hence, using (4.14) and (4.15) in
(4.13),

1
2
d

dt

∫
R

[
Q2 + 2(∂xQ)2 + (∂2

xxQ)2
]
dx

+ ε

∫
R

[
(∂xQ)2 + 2(∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

≤ L1,τ

∫
R

[
Q2 + (∂xQ)2 + (∂2

xxQ)2 + (∂3
xxxQ)2

]
dx+

1
2

∫
R
ψ̃2 dx.

(4.16)

We continue by x-differentiating (4.12) to obtain

∂t

(
∂xQ− ∂3

xxxQ
)
− βε∂x

(
4∂xQ− ∂3

xxxQ
)

− ∂xβε

(
4∂xQ− ∂3

xxxQ
)

= ∂xψ̃ + ε∂2
xx

(
∂xQ− ∂3

xxxQ
)
.

(4.17)

Multiplying (4.17) by 4∂xQ− ∂3
xxxQ and integrating on R we get

∫
R
∂t

(
∂xQ− ∂3

xxxQ
) (

4∂xQ− ∂3
xxxQ

)
dx

− ε

∫
R
∂2

xx

(
∂xQ− ∂3

xxxQ
) (

4∂xQ− ∂3
xxxQ

)
dx

=
∫

R
βε∂x

(
4∂xQ− ∂3

xxxQ
) (

4∂xQ− ∂3
xxxQ

)
dx

+
∫

R
∂xβε

(
4∂xQ− ∂3

xxxQ
)2
dx+

∫
R
∂xψ̃

(
4∂xQ− ∂3

xxxQ
)
dx.

(4.18)

On the left-hand side we integrate by parts to produce

∫
R

(
∂2

txQ− ∂4
txxxQ

) (
4∂xQ− ∂3

xxxQ
)
dx

− ε

∫
R

(
∂3

xxxQ− ∂5
xxxxxQ

) (
4∂xQ− ∂3

xxxQ
)
dx

=
1
2
d

dt

∫
R

[
4(∂xQ)2 + 5(∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

+ ε

∫
R

[
4(∂2

xxQ)2 + 5(∂3
xxxQ)2 + (∂4

xxxxQ)2
]
dx.

(4.19)
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On the right-hand side of (4.18) we integrate by parts and use (4.9) to obtain∫
R
βε∂x

(
4∂xQ− ∂3

xxxQ
) (

4∂xQ− ∂3
xxxQ

)
dx

+
∫

R
∂xβε

(
4∂xQ− ∂3

xxxQ
)2
dx+

∫
R
∂xψ̃

(
4∂xQ− ∂3

xxxQ
)
dx

=
1
2

∫
R
∂xβε

(
4∂xQ− ∂3

xxxQ
)2
dx+

∫
R
∂xψ̃

(
4∂xQ− ∂3

xxxQ
)
dx

≤ Kτ

2

(
1

τ − t
+ 1

) ∫
R

(
4∂xQ− ∂3

xxxQ
)2
dx

+
1
2

∫
R

(
∂xψ̃

)2

dx+
1
2

∫
R

(
4∂xQ− ∂3

xxxQ
)2
dx

≤ L2,τ

(
1

τ − t
+ 1

) ∫
R

[
(∂xQ)2 + (∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

+
1
2

∫
R

(
∂xψ̃

)2

dx,

(4.20)

where L2,τ is a constant independent of ε.
In view of (4.19) and (4.20), it follows from (4.18) that

1
2
d

dt

∫
R

[
4(∂xQ)2 + 5(∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

+ ε

∫
R

[
4(∂2

xxQ)2 + 5(∂3
xxxQ)2 + (∂4

xxxxQ)2
]
dx

≤ L2,τ

(
1

τ − t
+ 1

) ∫
R

[
(∂xQ)2 + (∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

+
1
2

∫
R

(
∂xψ̃

)2

dx.

(4.21)

Adding (4.16) and (4.21) yields

1
2
d

dt

∫
R

[
Q2 + 6(∂xQ)2 + 6(∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

+ ε

∫
R

[
(∂xQ)2 + 6(∂2

xxQ)2 + 6(∂3
xxxQ)2 + (∂4

xxxxQ)2
]
dx

≤ L1,τ

∫
R

[
Q2 + (∂xQ)2 + (∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

+ L2,τ

(
1

τ − t
+ 1

) ∫
R

[
(∂xQ)2 + (∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

+
1
2

∫
R

[
ψ̃2 +

(
∂xψ̃

)2
]
dx

≤L3,τ

2

(
1

τ − t
+ 1

) ∫
R

[
Q2 + 6(∂xQ)2 + 6(∂2

xxQ)2 + (∂3
xxxQ)2

]
dx

+
1
2

∫
R

[
ψ̃2 +

(
∂xψ̃

)2
]
dx,

(4.22)

where L3,τ is a constant independent of ε. Therefore, introducing the notation

‖φ‖ eH3(R) :=
√
φ2 + 6(∂xφ)2 + 6(∂2

xxφ)2 + (∂3
xxxφ)2,
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we can rewrite (4.22) in the following way:

d

dt
‖Q(t, ·)‖2eH3(R) + 2ε ‖∂xQ(t, ·)‖2eH3(R)

≤ L3,τ

(
1

τ − t
+ 1

)
‖Q(t, ·)‖2eH3(R) +

∥∥∥ψ̃(t, ·)
∥∥∥2

H1(R)
.

(4.23)

Let f(t) be a nonnegative, absolutely continuous function on [a, b], satisfying for
a.e. t the inequality

f ′(t) + g(t) ≤ k(t)f(t) + h(t),

where k(t), g(t), h(t) are nonnegative, integrable functions on [a, b]. Then Grönwall’s
inequality says that

f(t) +
∫ b

a

e
R t

s
k(s′) ds′g(s) ds ≤ e

R t
a

k(s) ds

[
f(a) +

∫ t

a

h(s) ds
]
, a ≤ t ≤ b.

For (4.23), k(t) = L3,τ

(
1

τ−t + 1
)

and thus e
R t

s
k(s′) ds′ = eL3,τ (t−s)

(
τ−s
τ−t

)L3,τ

, so
we obtain, keeping in mind that Q(0, ·) = 0,

‖Q(t, ·)‖2eH3(R) + 2ε
∫ t

0

eL3,τ (t−s)

(
τ − s

τ − t

)L3,τ

‖∂xQ(s, ·)‖2eH3(R) ds

≤ eL3,τ (t−s)

(
τ

τ − t

)L3,τ
∫ t

0

∥∥∥ψ̃(s, ·)
∥∥∥2

H1(R)
ds.

(4.24)

Finally, using the facts

‖·‖ eH3(R) ≥ ‖·‖H3(R) ,

1 ≤ eL3,τ τ

(
τ

τ − t

)L3,τ

, 0 ≤ s ≤ t < τ,

we get, from (4.24),

‖Q(t, ·)‖2H3(R) + 2ε
∫ t

0

‖∂xQ(s, ·)‖2H3(R) ds

≤ eL3,τ τ

(
τ

τ − t

)L3,τ
∫ t

0

∥∥∥ψ̃(s, ·)
∥∥∥2

H1(R)
ds.

Hence, (4.11) is proved.
Since

v = Q− ∂2
xxQ, ∂xv = Q− ∂3

xxxQ,

we have

‖v(t, ·)‖H1(R) ≤ ‖Q(t, ·)‖H3(R) , ‖∂xv(t, ·)‖H1(R) ≤ ‖∂xQ(t, ·)‖H3(R) ,

so (4.10) is consequence of (4.11). �

Coming back to the terminal value problem, the previous results for the initial
value problem translate into following ones for (4.4):
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Corollary 4.1. Let ψ ∈ C∞([0,∞)×R) ∩C([0,∞);H1(R)) ∩ L∞((0,∞);H1(R))
be a function satisfying (3.11). Then for each ε > 0 and t ∈ (0, τ)

‖ϕ(t, ·)‖2H1(R) + 2ε
∫ τ

t

‖∂xϕ(s, ·)‖2H1(R) ds

≤ eCτ τ
(τ
t

)Cτ
∫ τ

t

‖ψ(s, ·)‖2H1(R) ds,

(4.25)

‖Φ(t, ·)‖2H3(R) + 2ε
∫ τ

t

‖∂xΦ(s, ·)‖2H3(R) ds

≤ eCτ τ
(τ
t

)Cτ
∫ τ

t

‖ψ(s, ·)‖2H1(R) ds,

(4.26)

where Cτ is the constant from Lemma 4.2.

4.2. Existence of solutions to the nonlocal adjoint problem. Although we
will not use this fact directly, an interesting consequence of the estimates from the
previous subsection is the existence of a solution to (3.12).

Theorem 4.1. Let ψ ∈ C∞([0,∞) × R) ∩ C([0,∞);H1(R)) ∩ L∞((0,∞);H1(R))
satisfy (3.11), and fix any 0 < δ < τ . Then there exists at least one distributional
solution (ϕ,Φ) ∈ L∞((δ, τ);H1(R))×L∞((δ, τ);H3(R)) to the terminal value prob-
lem (3.12).

Proof. For each fixed ε > 0, let (ϕε,Φε) denote the solution of (4.4). Due to
Corollary 4.1,

{ϕε}ε>0 is bounded in L∞((δ, τ);H1(R)), for δ ∈ (0, τ),(4.27)

{Φε}ε>0 is bounded in L∞((δ, τ);H3(R)), for δ ∈ (0, τ).(4.28)

Then there exist

ϕ ∈ L∞((δ, τ);H1(R)), Φ ∈ L∞((δ, τ);H3(R)), 0 < δ < τ,

and {εk}k∈N, εk → 0, such that

ϕεk
⇀ ϕ weakly in Lp((δ, τ);H1(R)), for δ ∈ (0, τ), p ∈ (1,∞),(4.29)

Φεk
⇀ Φ weakly in Lp((δ, τ);H3(R)), for δ ∈ (0, τ), p ∈ (1,∞).(4.30)

It remains to verify that the limit pair (ϕ,Φ) is a solution of (3.12) in the sense
of distributions. Fix any φ ∈ C∞c ((0, τ)× R). We need to show that∫ τ

0

∫
R
φbε∂xϕε dt dx→

∫ τ

0

∫
R
φb∂xϕdt dx,(4.31) ∫ τ

0

∫
R
φbε∂xΦε dt dx→

∫ τ

0

∫
R
φb∂xΦ dt dx.(4.32)

Observe that∫ τ

0

∫
R
φ (bε∂xϕε − b∂xϕ) dt dx

=
∫ τ

0

∫
R
φ (bε − b) ∂xϕε dt dx+

∫ τ

0

∫
R
φb (∂xϕε − ∂xϕ) dt dx.

(4.33)
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Since φ has compact support in (0, τ)×R, we can employ (4.1) and (4.27) to obtain∫ τ

0

∫
R
φ (bε − b) ∂xϕε dt dx

≤ ‖bε − b‖L2((0,τ)×R) ‖φ‖L∞((0,τ)×R) ‖∂xϕε‖L∞((δ,τ);L2(R)) → 0.
(4.34)

Moreover, since φb ∈ L2((0, τ)× R), from (4.29) it follows that

(4.35)
∫ τ

0

∫
R
φb (∂xϕε − ∂xϕ) dt dx→ 0.

Clearly, (4.33), (4.34), and (4.35) imply (4.31). Since for (4.32) we can use the
same argument, the proof is completed. �

5. Proof of Theorem 2.1

In this final section we prove Theorem 2.1.

Proof of Theorem 2.1. We begin by fixing a test function ψ ∈ C∞c ((0,∞)×R). Let
0 < τ0 < τ1 be such that

(5.1) supp (ψ) ⊂ (τ0, τ1)× R.

From Lemma 4.1, for each ε > 0 there exists a unique ϕ̃ε ∈ C∞([0,∞) × R) ∩
C([0,∞);H3(R)) solving (4.4). Let {ϕε}ε ⊂ C∞c ((0, τ1)× R) be such that

ε|supp (ϕε)| → 0,(5.2)

ϕ̃ε − ϕε → 0 strongly in

{
L1((0,∞);W 2,1(R)) ∩W 1,1((0,∞)× R)∩
∩W 1,∞((0,∞);H1(R)) ∩ L∞((0,∞);H3(R)),

(5.3)

and define the family {ψε}ε as follows

(5.4) ψε := ∂tϕε + bε∂xϕε +
3
2
bε

∫
R
e−|x−y|∂xϕε(t, y)dy + ε∂2

xxϕε, ε > 0.

Clearly

(5.5) ψε ∈ C∞((0,∞)× R) ∩ C([0,∞);H1(R)), ε > 0,

and, due to (4.1), (4.2), (5.3),

(5.6) ψε → ψ strongly in L1((0,∞)× R) ∩ L∞((0,∞);H1(R)).

In particular, ϕε and ψε satisfy the two equations (see (4.4) and (5.4))

(5.7) ∂tϕε + bε∂xϕε + 3bε∂xΦε = ψε − ε∂2
xxϕε, −∂2

xxΦε + Φε = ϕε.



14 GIUSEPPE M. COCLITE AND KENNETH H. KARLSEN

Hence, using (5.1) and (5.7),∫
(0,∞)×R

ωψ dt dx =
∫ τ1

τ0

∫
R
ωψ dt dx

=
∫ τ1

τ0

∫
R
ωψε dt dx+

∫ τ1

τ0

∫
R
ω(ψ − ψε) dt dx

=
∫ τ1

τ0

∫
R
ω

(
∂tϕε + bε∂xϕε + 3bε∂xΦε + ε∂2

xxϕε

)
dt dx

+
∫ τ1

τ0

∫
R
ω(ψ − ψε) dt dx

=
∫ τ1

τ0

∫
R
ω (∂tϕε + b∂xϕε + 3b∂xΦε) dt dx

+ ε

∫ τ1

τ0

∫
R
ω∂2

xxϕε dt dx+
∫ τ1

τ0

∫
R
ω(bε − b)∂xϕε dt dx

+ 3
∫ τ1

τ0

∫
R
ω(bε − b)∂xΦε dt dx+

∫ τ1

τ0

∫
R
ω(ψ − ψε) dt dx.

(5.8)

Using the fact that ϕε ∈ C∞c ((0,∞)× R) and (3.10), we find

(5.9)
∫ τ1

τ0

∫
R
ω (∂tϕε + b∂xϕε + 3b∂xΦε) dt dx = 0.

Employing (4.25), (5.2), part i) of Definition 2.1, and Hölder’s inequality, we can
estimate as follows:∣∣∣∣ε ∫ τ1

τ0

∫
R
ω∂2

xxϕε dt dx

∣∣∣∣ ≤ ε ‖ω‖L∞((τ0,τ1)×R)

∥∥∂2
xxϕε

∥∥
L1((τ0,τ1)×R)

≤ ε ‖ω‖L∞((τ0,τ1)×R)

√
|supp (ϕε)|

∥∥∂2
xxϕε

∥∥
L2((τ0,τ1)×R)

≤
(
ε|supp (ϕε)|

2

) 1
2

‖ω‖L∞((τ0,τ1)×R)

× e
Cτ τ

2

(
τ1
τ0

)Cτ
2

(∫ τ1

τ0

‖ψε(s, ·)‖2H1(R) ds

) 1
2

→ 0.

(5.10)

By (4.25), (4.26), part i) of Definition 2.1, (4.1) and the Hölder inequality,∣∣∣∣∫ τ1

τ0

∫
R
ω (b− bε) (∂xϕε + 3∂xΦε) dt dx

∣∣∣∣
≤ ‖ω‖L∞((τ0,τ1)×R)

× ‖b− bε‖L2((τ0,τ1)×R) ‖∂xϕε + 3∂xΦε‖L2((τ0,τ1)×R)

≤ 4 ‖ω‖L∞((τ0,τ1)×R)

√
τ1 − τ0 ‖b− bε‖L2((τ0,τ1)×R)

× e
Cτ τ

2

(
τ1
τ0

)Cτ
2

(∫ τ1

τ0

‖ψε(s, ·)‖2H1(R) ds

) 1
2

→ 0.

(5.11)

Finally, from (5.6) and part i) of Definition 2.1,

(5.12)
∣∣∣∣∫ τ1

τ0

∫
R
ω (ψ − ψε) dt dx

∣∣∣∣ ≤ ‖ω‖L∞((τ0,τ1)×R) ‖ψ − ψε‖L1((0,∞)×R) → 0.
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Summarizing, using (5.9), (5.10), (5.11), (5.12) in (5.8) yields∫
(0,∞)×R

ωψ dt dx = 0.

Due to the freedom in the choice of ψ, this implies (3.1), and the proof is completed.
�
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[11] S. N. Kružkov. First order quasi-linear equations in several independent variables. Math.

USSR Sbornik, 10(2):217–243, 1970.
[12] C. Lattanzio and P. Marcati. Global well-posedness and relaxation limits of a model for

radiating gas. J. Differential Equations, 190(2):439–465, 2003.

[13] P. LeFloch and Z. P. Xin. Uniqueness via the adjoint problems for systems of conservation
laws. Comm. Pure Appl. Math., 46(11):1499–1533, 1993.

[14] H. Liu and E. Tadmor. Critical thresholds in a convolution model for nonlinear conservation

laws. SIAM J. Math. Anal., 33(4):930–945 (electronic), 2001.
[15] H. Lundmark. Formation and dynamics of shock waves in the Degasperis–Procesi equation.

Preprint, 2006.

[16] H. Lundmark and J. Szmigielski. Multi-peakon solutions of the Degasperis-Procesi equation.
Inverse Problems, 19(6):1241–1245, 2003.

[17] H. Lundmark and J. Szmigielski. Degasperis-Procesi peakons and the discrete cubic string.

IMRP Int. Math. Res. Pap., (2):53–116, 2005.
[18] O. G. Mustafa. A note on the Degasperis-Procesi equation. J. Nonlinear Math. Phys.,

12(1):10–14, 2005.
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