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1. Introduction and definitions

In equiaffine differential geometry the equiaffine surface area of a smooth hy-
persurface with everywhere positive Gauß-Kronecker curvature is defined as the
Riemannian volume with respect to the Berwald-Blaschke metric [4, §65], [21,
§1.1]. If specialized to the boundary bdK of a convex body K (nonempty, com-
pact, convex set) in Euclidean space R

d, the equiaffine surface area Oa(K) of K
can be calculated by

Oa(K) =

∫

bdK

Hd−1(K, x)
1

d+1 dHd−1(x). (1)

Here, Hd−1(K, x) is the Gauß-Kronecker curvature of bdK at x, and Hs, s ≥ 0,
denotes the s-dimensional Hausdorff measure.
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A major theme in recent investigations of affine surface area has been to
establish notions and theorems for arbitrary convex bodies which were previously
known in the smooth case. This development in particular led to the solution
of various problems (upper semicontinuity [24], valuation property [37], random
polyhedral approximation [38]), which in some cases had been unassailable even
under additional smoothness assumptions. Moreover, new interrelations between
old results were revealed. Progress in this direction is documented by the surveys
of Leichtweiß [19], [20] and Lutwak [25], and the work of Lutwak [24], Schütt
[37], Schütt & Werner [39], [40], [41], Werner [42], and Dolzmann & Hug [8]. For
connections with affine invariant polyhedral approximation see also [35], [11],
[38]. Applications of affine surface area for obtaining a priori estimates for PDEs
have been studied by Lutwak & Oliker [26].

Equation (1) already opens the way for a definition of the equiaffine sur-
face area of a general convex body K, since the notion of a generalized Gauß-
Kronecker curvature Hd−1(K, x) can still be defined for Hd−1 almost all bound-
ary points of K, cf. [16, pp. 440-446], [36, Notes for §1.5, §2.5], [34]. Henceforth,
we work in Euclidean space R

d, d ≥ 2, with scalar product 〈· , ·〉 and norm ‖ · ‖.
For all notions of convexity, which are not explicitly defined, we refer to [36];
measure geometric results are taken from [10]. Let Kd (Kd

0 resp. Kd
00) be the set

of all convex bodies K ⊂ R
d (with intK 6= ∅ resp. with o ∈ intK). Also define

Sd−1 := {x ∈ R
d | ‖x‖ = 1} and B(x0, r) := {x ∈ R

d | ‖x− x0‖ ≤ r}, if x0 ∈ R
d

and r > 0. Generalizing (1) we set, for K ∈ Kd
00 and p > 0 (K ∈ Kd for p = 1),

and for an arbitrary Hd−1 measurable set β ⊂ R
d,

Op(K, β) :=

∫

bdK∩β

{
Hd−1(K, x)

〈x, σK(x)〉(p−1) d
p

} p

d+p

dHd−1(x). (2)

Here, σK denotes the spherical image map of K. It is uniquely defined for regular
boundary points x ∈ reg K, i.e., for Hd−1 almost all x ∈ bd K, if K ∈ Kd

0 .
Obviously, for p = 1 and β = R

d the extended affine surface area, as defined in
[39], is regained. For p = d we obtain a general notion of centroaffine surface area,
which is consistent with the one defined in centroaffine differential geometry.

Previous to the work by Schütt & Werner another definition was proposed
by Leichtweiß [16], which can be generalized as well to yield a notion of p-affine
surface area. In fact, we define, for K ∈ Kd

00 and p > 0 (K ∈ Kd for p = 1), and
for an arbitrary Hd−1 measurable set ω ⊂ Sd−1,

Õp(K, ω) :=

∫

ω

{
Dd−1h(K, u)

h(K, u)p−1

} d
d+p

dHd−1(u). (3)

Here, h(K, ·) = hK denotes the support function of K, and Dd−1h(K, u) is
equal to the sum of the principal minors of order (d − 1) of the Hessian matrix
d2hK(u) which is defined for Hd−1 almost all u ∈ Sd−1, see, e.g., [16, p. 449] for
the details. Our motivation for considering p-affine surface area originates from
recent research by Lutwak [22] on the Brunn-Minkowski-Firey theory. There the
notion of p-affine surface area is defined in analogy to the definition of extended
affine surface area given in [24]. The representation in [22] can easily be localized
(for all p > 0). Minor modifications of the proof for Theorem 1 in [18] then show
that this localized definition of p-affine surface area coincides with the expression
given in (3). This proves in particular that the integral in (3) is finite. The same
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holds true for definition (2), as can be seen, e.g., from our Theorem 2.8. Finally,
it should be realized that the result of [8] immediately extends to the case of
p-affine surface area (measures).

It has been shown by Schütt [37] that

Oa(K) := O1(K, Rd) = Õ1(K, Sd−1) =: Õa(K).

However, Leichtweiß [19] has asked for a more direct approach to this equality
than the one proposed by Schütt. In the present paper we provide such a direct
route from representation (2) to (3), for general p > 0 and corresponding sets
β resp. ω (Theorem 2.8). In addition, two theorems (Theorem 3.1 and Theo-
rem 3.3) are derived, which in particular characterize those convex bodies for
which the affine surface area does not vanish. One of these, Theorem 3.1, en-
compasses earlier partial results by Leichtweiß [17, Satz 1(f)], Bárány & Larman
[3, Theorem 4], and Schütt & Werner [39, Corollary 2].

Finally, we present a direct proof of the equiaffine isoperimetric inequality for
an arbitrary convex body by using Steiner symmetrization. The case of equality
is also covered. It should be emphasized that we do not have to consider special
cases such as the centrally symmetric or the two dimensional case. Eventually,
this leads to a proof of the Blaschke-Santaló inequality, including a discussion
of the case of equality.

The first complete treatment of the Blaschke-Santaló inequality was accom-
plished by Petty [31]. In fact, Petty simultaneously proved the equiaffine isoperi-
metric inequality for convex bodies which possess a curvature function. Later
Meyer & Pajor [28] provided a direct proof of the Blaschke-Santaló inequality,
and thus they considerably simplified Petty’s original approach. At the same
time they found an improved version of the Blaschke-Santaló inequality. Then,
Leichtweiß [17, Satz 2] deduced the general equiaffine isoperimetric inequality
from the Blaschke-Santaló inequality. Lutwak found a way to define the volume
of the polar of a star body and thus obtained a version of the Blaschke-Santaló
inequality for star bodies [24]. Up to now there are two proofs ([17] and [24])
of the general equiaffine isoperimetric inequality including the characterization
of the case of equality. Both proofs make essential use of the Blaschke-Santaló
inequality together with the corresponding characterization of the case of equal-
ity. In contrast to this approach we do not assume the validity of the Blaschke-
Santaló inequality, but we rather deduce it from the equiaffine isoperimetric
inequality. This finally leads to a characterization of the case of equality in the
equiaffine isoperimetric inequality, which in turn yields the case of equality in
the Blaschke-Santaló inequality.

Basically, the idea for our approach is due to Blaschke who considered smooth
convex bodies in dimensions d = 2 and d = 3. Extensions to arbitrary dimen-
sions were given by Santaló [33], Deicke [7], and Li, Simon & Zhao [21] still
under restrictive smoothness assumptions. See [17] for an attempt to remove
such restrictions, which, however, have hitherto been indispensible for this line
of approach. The main idea of our proof for the equiaffine isoperimetric inequality
is to establish a representation of the equiaffine surface area of a general convex
body (Lemma 4.4) which allows us to show that the equiaffine surface area is not
decreasing with respect to Steiner symmetrization. It should be noted that our
method for dealing with the characterization of the case of equality is related to
Petty’s curvature-image conjecture. Whereas usually (see, e.g., [29], [41], [12])
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additional geometric information is used to guarantee sufficient smoothness in
order to be able to solve the corresponding Monge-Ampère equation [31, Lemma
8.4], we rather use such information to reduce a partial differential equation of
second order to a first order equation.

2. Proof of equality

The main obstacle for a direct transformation from bd K to Sd−1 via the spheri-
cal image map σK is the fact that σK |reg K is not Lipschitzian in general. This is
made clear by the example constructed in §6 of the classical paper by Busemann
& Feller [6]. Therefore we further restrict the domain of σK to sets (bd K)r,
r > 0 and K ∈ Kd

0 , defined by

(bd K)r :=
{
x ∈ bd K | ∃a ∈ R

d : x ∈ B(a, r) ⊂ K
}

.

The proof of our first lemma follows essentially by repeating the argument in
[16, Hilfssatz 1].

Lemma 2.1. Let K ∈ Kd
0 and r > 0. Then (bd K)r is a closed subset of bdK,

and the spherical image map σK |(bdK)r
is Lipschitzian.

The sets (bd K)r, r > 0, cover Hd−1 almost all of bdK. This observation is
contained in Lemma 2.2, for which McMullen [27] has given a simple proof.
Moreover note that

(bd K)+ :=
⋃

r>0

(bd K)r =
⋃

n∈N

(bdK) 1
n
.

Lemma 2.2. For all K ∈ Kd
0 the relation Hd−1(bd K \ (bdK)+) = 0 holds

true.

Next we calculate the approximate Jacobian of σK |(bdK)r
. This will be necessary

for the ensuing application of Federer’s area/coarea formula. But first let us agree
on some terminology. If x0 ∈ reg K, then bdK can be (locally) represented at x0

as the graph of a uniquely determined nonnegative, convex function f , defined
on a neighbourhood Df of x0 relative to the tangent space x0 + Tx0

K of K at
x0 by

f(x) := min{λ ≥ 0 | x − λσK(x0) ∈ bd K}, x ∈ Df ,

cf. [16, p. 442] and [36, §2.5]. Hence, f(x0) = 0 and df(x0) = o. Recall that f
is second order differentiable (s.o.d.) at x ∈ Df for Hd−1 almost all x ∈ Df

according to Aleksandrov’s theorem [1] (see also [2], [9], [5]). In the following we
write M(K) for the set of all x0 ∈ reg K such that the function which locally
represents bd K at x0 is s.o.d. at x0. As usual, the points of M(K) are called
normal boundary points. Finally, for a nonempty closed convex set A and x ∈ R

d

let p(A, x) be the orthogonal projection of x onto A.

Lemma 2.3. Let K ∈ Kd
0 and r > 0. Then, for Hd−1 almost all x ∈ (bdK)r,

we have apJd−1σK(x) = Hd−1(K, x).
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Proof. The set (bd K)r is closed and (d − 1)-rectifiable, and Hd−1 almost all
x ∈ (bd K)r are normal boundary points of K. For such a boundary point
x0 ∈ (bd K)r the function f which locally represents bd K at x0 is s.o.d. at x0,
and Hd−1(K, x0) = det(d2f(x0)). Here, the mapping d2f(x0) is interpreted as a
linear map from the linear space Tx0

K to itself. For the proof it is sufficient to
verify

(Hd−1 (bdK)r, d − 1)apDσK(x0) = d2f(x0), (4)

for Hd−1 almost all normal boundary points x0 ∈ (bdK)r, where f locally
represents bd K at x0. With regard to Federer’s terminology [10, p. 253] we set
X := R

d, Y := R
d, φ := Hd−1 (bdK)r, m := d−1, a := x0, where x0 ∈ M(K).

In addition, excluding a set of Hd−1 measure zero, we can assume

Tand−1(Hd−1 (bdK)r, x0) = Tan(bd K, x0) = Tx0
K.

Let (−ed) be the exterior unit normal vector of K at x0, and let (e1, . . . , ed) be
an orthonormal basis of R

d, i.e., Tx0
K = lin{e1, . . . , ed−1}. Define η ∈ R

d and
the linear map ζ : R

d → R
d by

η := −ed, ζ(h) := d2f(x0)(h − 〈h, ed〉ed).

In order to prove (4), we have to show, for an arbitrary ε > 0,

Θd−1
[
(Hd−1 (bdK)r) R

d \ {x ∈ (bd K)r |
‖σK(x) − η − ζ(x − x0)‖ ≤ ε‖x − x0‖}, x0

]
= 0.

See [10, 2.10.19] for a definition of this (d − 1)-dimensional density. Obviously,
it is sufficient to prove, for an arbitrary ε > 0, that there is some r(ε) > 0 such
that for 0 < δ ≤ r(ε)

{x ∈ (bd K)r | ‖σK(x) − η − ζ(x − x0)‖ > ε‖x − x0‖} ∩ B(x0, δ) = ∅.

Since f is s.o.d. at x0, we get for z ∈ Df

‖df(z) − df(x0) − d2f(x0)(z − x0)‖ ≤ R(‖z − x0‖)‖z − x0‖

with
lim

z→x0

R(‖z − x0‖) = 0.

Here, df denotes a subgradient choice for f (see [36, Notes for §1.5]). If we take
x ∈ (bd K)r and z := p(x0 + Tx0

K, x) ∈ Df , then f is differentiable at z, and

σK(x) =
df(z) − ed

‖df(z) − ed‖
.

Let ε ∈ (0, 1] be given and define

ε̃ := ε[1 + (1 + ‖d2f(x0)‖)2]−1.

Now we can choose r(ε) ∈ (0, ε̃) such that z ∈ Df and R(‖z−x0‖) < ε̃, provided
that z = p(x0 +Tx0

K, x) and ‖x−x0‖ ≤ r(ε). Let x ∈ B(x0, r(ε))∩ (bd K)r and
z := p(x0 + Tx0

K, x). Then we obtain



6 Daniel Hug

‖σK(x) − η − ζ(x − x0)‖

=

∥∥∥∥
df(z) − ed

‖df(z) − ed‖
+ ed − d2f(x0)(z − x0)

∥∥∥∥

≤ ‖df(z) − df(x0) − d2f(x0)(z − x0)‖ +
‖df(z)‖2

1 + ‖df(z) − ed‖
≤ ε̃‖z − x0‖ + ‖df(z)‖2

≤ ε̃‖z − x0‖ +
(
ε̃‖z − x0‖ + ‖d2f(x0)(z − x0)‖

)2

≤ ε̃‖z − x0‖ +
(
ε̃ + ‖d2f(x0)‖

)2 ‖z − x0‖2

≤ ε̃
(
1 + (1 + ‖d2f(x0)‖)2‖x − x0‖/ε̃

)
‖x − x0‖

≤ ε‖x − x0‖.

Here, we have used ε̃ ≤ 1, ‖z − x0‖ ≤ ‖x − x0‖, and ‖x − x0‖/ε̃ ≤ r(ε)/ε̃ ≤ 1.
This finishes the proof of Lemma 2.3.

In a differential geometric context our next lemma is well known. The following
more general statement, which will be needed for the proof of Lemma 2.5, has
been proved by Noll [30, Corollary 4.2].

Lemma 2.4. Let K ∈ Kd
0, x0 ∈ M(K), u0 := σK(x0), ε > 0, and let f de-

note the function representing bdK at x0. Then x0 + εu0 ∈ M(Kε), and if
the eigenvalues of d2f(x0) are denoted by k1(x0), . . . , kd−1(x0), the eigenvalues
kε
1(x0+εu0), . . . , k

ε
d−1(x0+εu0) of the function f ε representing bd Kε at x0+εu0

can be calculated by

kε
i (x0 + εu0) =

ki(x0)

1 + εki(x0)
, i = 1, . . . , d − 1,

if the ordering is chosen properly.

Lemma 2.5. Let K ∈ Kd
0 , x0 ∈ M(K), and let hK be second order differen-

tiable at u0 := σK(x0). Then Hd−1(K, x0)Dd−1h(K, u0) = 1.

Proof. For any ε > 0 the parallel body Kε is smooth, x0+εu0 ∈ M(Kε) accord-
ing to Lemma 2.4, and h(Kε, ·) is s.o.d. at u0. In this situation Leichtweiß [16,
pp. 447-449] showed that Hd−1(K

ε, x0+εu0)Dd−1h(Kε, u0) = 1. As both factors
depend continuously on ε, the statement of the lemma follows for ε → 0.

Remarks.

1. From Lemma 2.5 we learn, e.g., that hK is definitely not second order differ-
entiable at u0 := σK(x0), if x0 ∈ M(K) and Hd−1(K, x0) = 0. This situation
can occur, even if bdK is a C∞ submanifold and hK is differentiable (i.e.,
K is strictly convex).

2. The eigenvalues k1(x0), . . . , kd−1(x0), appearing in Lemma 2.4, are called the
generalized principal curvatures of K at x0. More generally, the following can
be proved by similar arguments.

Let K ∈ Kd
0, x0 ∈ M(K), and let hK be second order differentiable at u0 :=

σK(x0). If the generalized principal curvatures of K at x0 are denoted by
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k1(x0), . . . , kd−1(x0), and if the eigenvalues of d2hK(u0)|u⊥
0

: u⊥
0 → u⊥

0 are

denoted by r1(u0), . . . , rd−1(u0), then

ki(x0) = ri(u0)
−1 ∈ (0,∞), i = 1, . . . , d − 1,

if the ordering is chosen properly. In particular,

dσK(x0) ◦
(
d2hK(u0)|u⊥

0

)
= idu⊥

0
,

if dσK(x0) = d2f(x0) is suitably interpreted as a linear map of the vector
space u⊥

0 .

Note that here and subsequently we do not strictly distinguish between bilinear
forms and corresponding linear maps. The quantities r1(u0), . . . , rd−1(u0) are
called the generalized principal radii of curvature of K at u0, cf. [36, (2.5.26)]
for the C2

+-case. The preceding remark also yields generalizations of the relations
(2.5.27) and (2.5.28) from [36] in the sense of our next lemma. However, Lemma
2.6 will be sufficient for the present purpose. If hK is differentiable at u ∈ R

d,
we set ∇hK(u) := gradhK(u).

Lemma 2.6. Let K ∈ Kd
0 and r > 0. Then for Hd−1 almost all u ∈

σK((bd K)r) the mapping hK is second order differentiable at u, x := ∇hK(u) ∈
M(K), and Hd−1(K, x)Dd−1h(K, u) = 1.

Proof. In view of Lemma 2.5 it is sufficient to show that

Hd−1(σK((bd K)r) \ Sr) = 0,

if we define

Sr := {u ∈ σK((bd K)r) | hK is s.o.d. at u and ∇hK(u) ∈ M(K)}.

We observe that σK((bd K)r) \ Sr ⊂ C1 ∪ C2, where

C1 := {u ∈ Sd−1 | hK is not s.o.d. at u}

and

C2 := {u ∈ Sd−1 | hK is s.o.d. at u and ∇hK(u) ∈ (bdK)r \M(K)}.

But according to Aleksandrov’s theorem [1], Hd−1(C1) = 0 and

Hd−1({x ∈ (bdK)r | x /∈ M(K)}) = 0.

Since C2 ⊂ σK({x ∈ (bd K)r | x /∈ M(K)}) and because σK |(bdK)r
is Lip-

schitzian, we also have Hd−1(C2) = 0.

The following lemma describes what it means geometrically that all generalized
principal radii of curvature of K at u0 are positive. A dual version of Lemma
2.7 is implicitly contained in the proof of Theorem 3.1. For later reference this
will be stated as Corollary 3.2. It is probably worth mentioning that there is
some R > 0 such that K ⊂ B(∇hK(u0) − Ru0, R), if K ∈ Kd and hK is second
order differentiable at u0 ∈ Sd−1. This can be proved similarly to Lemma 2.7,
(b) ⇒ (a).
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Lemma 2.7. Let K ∈ Kd, and let hK be second order differentiable at u0 ∈
Sd−1. Then the following two conditions are equivalent.

(a) There is some r > 0 such that B(∇hK(u0) − ru0, r) ⊂ K.
(b) Dd−1h(K, u0) > 0.

Proof. We set h := hK for short. Since h is s.o.d. at u0, there is a function R
such that R(‖u − u0‖) → 0 for u → u0 and

|h(u) − h(u0) − dh(u0)(u − u0) −
1

2
d2h(u0)(u − u0, u − u0)|

≤ R(‖u − u0‖)‖u − u0‖2.

(a) ⇒ (b): Define x0 := ∇h(u0) ∈ bd K. By assumption x0 ∈ B(x0−ru0, r) ⊂ K.
We may assume o = x0 − ru0. Hence, h(u) ≥ r for all u ∈ Sd−1. Suppose
(b) is false, i.e., d2h(u0)|(u⊥

0
×u⊥

0
) is not positive definite. Then there is some

v ∈ Sd−1 ∩ u⊥
0 with d2h(u0)(v, v) = 0. So we can find a sequence (un)n∈N ⊂

Sd−1 \{u0} such that un → u0 for n → ∞ and d2h(u0)(un −u0, un−u0) = 0 for
all n ∈ N. According to our choice of the position of the origin we have h(u0) = r
and dh(u0)(un − u0) = −r(1 − 〈un, u0〉). Therefore we obtain

r(1 − 〈un, u0〉) ≤ h(un) − r − dh(u0)(un − u0)

≤ R(‖un − u0‖)‖un − u0‖2

= 2R(‖un − u0‖)(1 − 〈un, u0〉).

This implies R(‖un − u0‖) ≥ r/2 for all n ∈ N in contradiction to
R(‖un − u0‖) → 0 for n → ∞.

(b) ⇒ (a): According to the assumption there is some r1 > 0 such that
d2h(u0)(v, v) ≥ 4r1 for all v ∈ Sd−1∩u⊥

0 . We may assume that x0 := ∇h(u0) = o.
Hence, h(u0) = dh(u0)(u − u0) = 0 for all u ∈ Sd−1. Thus

h(u) ≥ 1

2
d2h(u0)(u − u0, u − u0) − R(‖u − u0‖)‖u − u0‖2

≥ 2r1‖p(u⊥
0 , u − u0)‖2 − R(‖u − u0‖)‖u − u0‖2

≥ (r1 − R(‖u − u0‖)) ‖u − u0‖2

≥ r2‖u − u0‖2, (5)

for some r2 > 0 and all u ∈ U(u0), where U(u0) is a sufficiently small, open,
spherical neighbourhood of u0. In deducing (5), we have used the elementary
estimate

‖p(u⊥
0 , u − u0)‖2 ≥ 1

2
‖u − u0‖2.

Observe that h(u) ≥ 0 for all u ∈ Sd−1, since o ∈ K. Next we show that h(u) > 0
for all u ∈ Sd−1 \ {u0}. This is proved by contradiction. Assume h(u1) = 0 for
some u1 ∈ Sd−1 \ {u0}. Let N(K, x), K ∈ Kd and x ∈ bdK, be the normal cone
of K at x. Hence, u1 ∈ N(K, x0), and this implies u0 + λu1 ∈ N(K, x0) for all
λ ≥ 0. Thus we get h(u0 + λu1) = 0 for all λ ≥ 0. If λ > 0 is sufficiently small,
‖u0 + λu1‖−1(u0 + λu1) ∈ U(u0). This, however, contradicts (5).

Since Sd−1 \ U(u0) is compact, there is a positive constant r3 > 0 such that
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h(u) ≥ 4r3 ≥ r3‖u − u0‖2, u ∈ Sd−1 \ U(u0).

Let r := 2 min{r2, r3}. Now, for all u ∈ Sd−1,

h(K, u) ≥ 1

2
r ‖u − u0‖2 = h(B(x0 − ru0, r), u),

and this proves (a).

Theorem 2.8 contains the promised transformation formula. The method, which
we employ to prove this theorem, will also turn out to be useful for characterizing
absolute continuity of Euclidean surface area and curvature measures. This will
be investigated in a subsequent paper. As regards notation used for stating
Theorem 2.8, see [36] for a definition and properties of the spherical image σ(K, ·)
and the reverse spherical image τ(K, ·). If X is a topological space, B(X) denotes
the σ-algebra of Borel sets of X [10, p. 60].

Theorem 2.8. For an arbitrary K ∈ Kd
00 and p > 0 (K ∈ Kd, if p = 1) we

have Op(K, β) = Õp(K, σ(K, β)), β ∈ B(Rd), and Õp(K, ω) = Op(K, τ(K, ω)),
ω ∈ B(Sd−1).

Proof. In case dim K ≤ d − 1 and p = 1 both integrals vanish. Thus we may
assume K ∈ Kd

00. If β ∈ B(Rd), then σ(K, β) is Hd−1 measurable [36, Lemma
2.2.10]. A similar statement holds for the reverse spherical image τ(K, ω). Note

that [10, Theorem 3.2.22] is applicable to functions with values in R
+
. In this con-

text the product g(x)apJd−1f(x) has to be interpreted as 0, if apJd−1f(x) = 0
and g(x) = ∞. Lemma 2.1 ensures that Federer’s coarea formula can be applied
to σK |(bdK)r

, for an arbitrary r > 0. Thus we obtain for β ∈ B(Rd)

∫

β∩(bdK)r

Hd−1(K, x)
1

d+1 dHd−1(x)

=

∫

β∩(bdK)r

Hd−1(K, x)−
d

d+1 apJd−1σK(x) dHd−1(x)

=

∫

Sd−1

∫

σ−1

K
({u})∩(bdK)r

1β(x)Hd−1(K, x)−
d

d+1 dH0(x) dHd−1(u)

=

∫

σK((bdK)r)

1β ◦ ∇hK(u)Hd−1(K,∇hK(u))−
d

d+1 dHd−1(u)

=

∫

σK((bdK)r)

1σ(K, β)(u)Dd−1h(K, u)
d

d+1 dHd−1(u),

where we have used Lemma 2.3, Lemma 2.6 and the fact that for Hd−1 almost all
u ∈ Sd−1 the equality 1β ◦∇hK(u) = 1σ(K, β)(u) holds true. Furthermore recall
[36, Corollary 1.7.3] for ∇hK(u) = gradhK(u), whenever hK is differentiable
at u (and this is the case for Hd−1 almost all u ∈ Sd−1). Now Lemma 2.2 and
Lebesgue’s increasing convergence theorem yield

Oa(K, β) =

∫

σK((bdK)+)

1σ(K, β)(u)Dd−1h(K, u)
d

d+1 dHd−1(u).
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Hence, the first statement of Theorem 2.8 (for p = 1) is implied by Lemma 2.7.
The second statement follows, if we observe that excluding a set of measure zero
Dd−1h(K, u) > 0 ⇒ 1τ(K, ω) ◦ ∇hK(u) = 1ω(u). For a proof of this fact Lemma
2.7 can be used. In the case of an arbitrary p > 0 the theorem follows in the
same way.

3. Properties of affine surface area

It has recently been proved that the equiaffine surface area is a valuation [37]
and upper semicontinuous [24], [18]. In the previous sections we investigated
various definitions of the p-affine surface area of an arbitrary convex body, and
in particular we proved the coincidence of these definitions. From this it is easy
to see that the p-affine surface area is a valuation and upper semicontinuous.
There is also a natural definition of mixed affine surface area (different from the
one proposed in [23]) and a number of geometric inequalities connected with this
notion (cf. [14]), which, however, we shall not pursue presently.

The set of furthest points of a convex body K ∈ Kd
0 is defined by

exp∗K := {x ∈ bd K | ∃u ∈ N(K, x) ∩ Sd−1 ∃R > 0 : K ⊂ B(x − Ru, R)},

and, for u ∈ R
d \ {o} and t ∈ R, we set Hu, t := {x ∈ R

d | 〈x, u〉 = t} and

H+
u, t := {x ∈ R

d | 〈x, u〉 ≥ t}.

Theorem 3.1. Let K ∈ Kd
00 and p > 0 (K ∈ Kd, if p = 1), and let β ⊂ R

d be
Hd−1 measurable. Then Op(K, β) > 0 if and only if Hd−1(exp∗K ∩ β) > 0.

Proof. First we assume Hd−1(exp∗K ∩ β) > 0. If we can show Hd−1(K, x) > 0
for Hd−1 almost all x ∈ exp∗K ∩ β, we obtain

Op(K, β) ≥ Op(K, exp∗K ∩ β) > 0.

In order to prove this we can assume that x ∈ exp∗K∩β∩M(K). Let us denote
by ∆(K, x, δ), δ > 0 small enough, the uniquely determined number t > 0 such
that for u := σK(x)

V
(
K ∩ H+

u, h(K,u)−t

)
= δ.

Leichtweiß [16, Hilfssatz 2] showed that

Hd−1(K, x)
1

d+1 = cd lim
δ→0

∆(K, x, δ)

δ2/d+1
,

where cd is a suitable positive constant. Especially for a ball of radius ρ > 0

ρ−
d−1

d+1 = cd lim
δ→0

∆(B(x − ρu, ρ), x, δ)

δ2/d+1
.

Since x ∈ exp∗K ∩ reg K, there is some ρ > 0 such that K ⊂ B(x− ρu, ρ). This
in turn implies ∆(B(x − ρu, ρ), x, δ) ≤ ∆(K, x, δ). Thus we have

Hd−1(K, x)
1

d+1 ≥ ρ−
d−1

d+1 > 0.
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For the converse it is sufficient to prove that if x0 ∈ M(K) and Hd−1(K, x0) > 0,
then x0 ∈ exp∗K. We may assume x0 = o. Let ed := −σK(x0), and let f locally
represent bd K at x0. Since x0 ∈ M(K), we obtain for x ∈ B(x0, r1)∩e⊥d , r1 > 0
sufficiently small,

|f(x) − 1

2
d2f(x0)(x, x)| ≤ R(‖x‖)‖x‖2,

where R(‖x‖) → 0 for x → x0. From Hd−1(K, x0) = det
(
d2f(x0)

)
> 0 we

conclude that there is a constant c > 0 such that for all x ∈ B(x0, r2) ∩ e⊥d ,
r2 ∈ (0, c) sufficiently small,

f(x) ≥ 1

2
d2f(x0)(x, x) − R(‖x‖)‖x‖2 ≥ c−1‖x‖2.

Now it is easily checked that

c−1‖x‖2 ≥ c −
√

c2 − ‖x‖2, x ∈ B(x0, r2) ∩ e⊥d .

In other words there is a neighbourhood U of x0 such that U ∩bd K is contained
in B(x0 + ced, c). This shows x0 ∈ exp∗K.

It is known that for K ∈ Kd
0 and x0 ∈ M(K) there is some r > 0 such that

x0 ∈ (bd K)r, i.e., M(K) ⊂ (bdK)+ [36, Notes for §2.5]. Corollary 3.2 provides
an analytical description of the set exp∗K∩M(K), which is dual to Lemma 2.7.

Corollary 3.2. Let K ∈ Kd and x0 ∈ M(K). Then the following two conditions
are equivalent.

(a) x0 ∈ exp∗K.

(b) Hd−1(K, x0) > 0.

The following theorem is a spherical counterpart to Theorem 3.1. It is an im-
mediate consequence of Lemma 2.7. In analogy to exp∗K the set expn∗K of
directions of nearest (boundary) points is defined by

expn∗K := {u ∈ Sd−1 | ∃x ∈ F (K, u)∃r > 0 : B(x − ru, r) ⊂ K}.

Theorem 3.3. Let K ∈ Kd
00 and p > 0 (K ∈ Kd, if p = 1), and let ω ⊂ Sd−1

be Hd−1 measurable. Then Õp(K, ω) > 0 if and only if Hd−1(expn∗K ∩ ω) > 0.

Lemma 3.4 generalizes a statement by Petty for convex bodies of class C2
+. We

shall use it to establish invariance properties of affine surface area measures,
but it seems to be helpful in other contexts, too. For the proof let us define, for
L ∈ Kd

0 , u ∈ Sd−1 and t ≥ 0, the sets L(u, t) and L+(u, t) by

L(+)(u, t) := L ∩ H
(+)
u, h(K,u)−t,

and let λd denote d-dimensional Lebesgue measure. We write α(d − 1) for the
volume of the (d − 1)-dimensional unit ball.
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Lemma 3.4. Let K ∈ Kd
0, x0 ∈ M(K), and u0 := σK(x0). Then

Hd−1(K, x0) = const(d) lim
t→0

λd(K+(u0, t))
d−1

Hd−1(K(u0, t))d+1
,

where

const(d) := (d + 1)d−1α(d − 1)2.

Proof. We only sketch the proof for the case Hd−1(K, x0) = 0, since similar
arguments have been used in [16, Hilfssatz 2] for the remaining case. Details
can be found in [14]. Let S be the Schwarz symmetrization [15, §19] of K with
respect to the line Ru0. Then by construction resp. by Fubini’s theorem

Hd−1(S(u0, t)) = Hd−1(K(u0, t)) and λd(S+(u0, t)) = λd(K+(u0, t)).

Write r(t) ≥ 0, 0 ≤ t ≤ h(K, u0) + h(K,−u0), for the radius of the (d − 1)-
dimensional ball S(u0, t). The function r is concave and continuous. If r(0) > 0,
the lemma follows from

lim
h→0

{∫ h

0

r(t)d−1 dt

}d−1

r(h)d2−1
= 0.

Now, assume r(0) = 0. Then, for h > 0 sufficiently small, the function r is
strictly increasing on [0, h]. Thus

{∫ h

0

Hd−1(K(u0, t)) dt

}d−1

Hd−1(K(u0, h))d+1
≤ hd−1 Hd−1(K(u0, h))d−1

Hd−1(K(u0, h))d+1

= 21−d Hd−1

(
1√
2h

K(u0, h)

)−2

.

Since Hd−1(K, x0) = 0, the right side converges to zero for h ↓ 0.

Corollary 3.5. Let K ∈ Kd
0, x0 ∈ M(K), and let α be a regular affine trans-

formation with α(x) = ϕ(x) + b, ϕ ∈ GL(Rd) and b ∈ R
d, for all x ∈ R

d. Then
α(x0) ∈ M(α(K)), and

Hd−1(α(K), α(x0)) =
| detϕ|d−1

√
det

(
〈ϕ(ei), ϕ(ej)〉d−1

i,j=1

)d+1
Hd−1(K, x0),

where (e1, . . . , ed−1) is an orthonormal basis of Tx0
K.

Proof. In the course of the proof we write αx instead of α(x), etc. The first
statement follows from [16, p. 444, (39) and (40)], [2, Section 4, Bemerkung 2],
and from

u ∈ N(K, x) ⇔ ϕ−tu

‖ϕ−tu‖ ∈ N(αK, αx),
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for all x ∈ bd K. The second statement then is implied by Lemma 3.4, since for
u0 := σK(x0)

| detϕ|λd(K+(u0, s)) = λd(αK+(u0, s))

= λd



αK ∩ H+

ϕ−tu0

‖ϕ−tu0‖
, h

(
αK,

ϕ−tu0

‖ϕ−tu0‖

)
−sα





= λd
(
αK ∩ H+

σαK(αx0), h(αK, σαK(αx0))−sα

)
,

where sα = ‖ϕ−tu0‖−1s, and

Hd−1(αK(u0, s)) =
√

det
(
〈ϕei, ϕej〉d−1

i,j=1

)
Hd−1(K ∩ Hu0, h(K,u0)−s).

In the case of a hypersurface of class C2 with nonvanishing Gauß-Kronecker
curvature the preceding result is due to Guggenheimer [13].

Theorem 3.6. Let K ∈ Kd
00, β ∈ B(Rd), ϕ ∈ GL(Rd), and p > 0. Then we

obtain

Op(ϕ(K), ϕ(β)) = | detϕ|
d−p

d+p Op(K, β).

In addition, O1 is invariant with respect to translations.

Proof. The proof immediately follows from Corollary 3.5 and from the relation

〈ϕ(x), σϕ(K)(ϕ(x))〉 =
| detϕ|

apJd−1ϕ(x)
〈x, σK(x)〉,

which holds for ϕ ∈ GL(Rd) and x ∈ reg K.

The following result is contained in a more elaborate statement in [14, Theorem
3.3.5]. However, Lemma 3.7 will be sufficient for an application in Section 4. In
the sequel let K∗ denote the polar body of K ∈ Kd

00 with respect to o.

Lemma 3.7. Let K ∈ Kd
00. Then Oa(K)d+1 ≤ dd+1V (K)dV (K∗). In the case

of equality there is a positive constant λ such that for Hd−1 almost all x ∈ bd K
the relation Hd−1(K, x) = λ 〈x, σK(x)〉d+1 holds.

Proof. An application of Hölder’s inequality yields

Oa(K) =

∫

bd K

{√
Hd−1(K, x)

〈x, σK(x)〉d−1

} 2
d+1

〈x, σK(x)〉 d−1

d+1 dHd−1(x)

≤ Od(K, Rd)
2

d+1 (dV (K))
d−1

d+1 .

Similarly one estimates after an application of Theorem 2.8 for p = d
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Od(K, Rd) =

∫

Sd−1

(hKDd−1hK)
1
2 (hK)−

d
2 dHd−1

≤
(∫

Sd−1

hKDd−1hK dHd−1

) 1
2

(∫

Sd−1

(hK)−d dHd−1

) 1
2

≤
(∫

Sd−1

h(K, u) dSd−1(K, u)

) 1
2

(dV (K∗))
1
2

= d
√

V (K)V (K∗).

The statement on the case of equality is implied by the condition for equality in
Hölder’s inequality.

Remark. By similar arguments the following more general result can be proved.
Let K ∈ Kd

00. Then

Op(K, Rd) ≤ [dV (K)]
d

d+p [dV (K∗)]
p

d+p .

Equality holds if and only if K has a positive, continuous curvature function fK

and there is a positive constant λ > 0 such that for all u ∈ Sd−1

fK(u) = λh(K, u)−(d+1).

See also [22, Prop. (4.6) and Prop. (4.7)] for another proof of this inequality and
for a statement on the case of equality in a more restricted situation.

4. On the affine isoperimetric inequality

In this section we provide proofs for two central inequalities of affine convex
geometry. The first two well known lemmas are included for the reader’s con-
venience. Lemma 4.1 can be found in [32, Theorem G, p. 205], and Lemma 4.2
follows from Brunn’s classical characterization of ellipsoids. Let Mn(R), n ≥ 1,
be the set of real n × n matrices.

Lemma 4.1. Let A, B ∈ Md−1(R) be symmetric and positive semidefinite.
Then

2

(
det

[
1

2
(A + B)

]) 1
d+1

≥ (detA)
1

d+1 + (detB)
1

d+1 .

If, in addition, B is positive definite, equality holds if and only if A = B.

For K ∈ Kd
0 and u ∈ Sd−1 we define by M(K, u) the set of the midpoints of all

line segments K ∩L where L varies over all lines in R
d of direction u that meet

intK.

Lemma 4.2. Let K ∈ Kd
0, and let S∗ be a dense subset of Sd−1. Then K is

an ellipsoid if and only if for each u ∈ S∗ the set M(K, u) is contained in a
hyperplane.

Lemma 4.3. Let U ⊂ R
d−1, o ∈ U , be open and convex. Let f : U → R

be locally Lipschitzian and differentiable at o. If 〈x,∇f(x)〉 = f(x) for Hd−1

almost all x ∈ U such that f is differentiable at x, then f(x) = 〈v, x〉 for all
x ∈ U and some suitable v ∈ R

d−1.
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Proof. For u ∈ Sd−2 let t(u) := sup{t ≥ 0 | tu ∈ U}. Let S∗ be the
set of all u ∈ Sd−2 such that for H1 almost all t ∈ [0, t(u)) the function
f is differentiable at tu and 〈tu,∇f(tu)〉 = f(tu). By Rademacher’s theorem
Hd−2(Sd−2 \ S∗) = 0. Fix u ∈ S∗ and consider hu : [0, t(u)) → R, t 7→ f(tu).
Then the equation h′

u(t) = 〈u,∇f(tu)〉 holds for H1 almost all t ∈ [0, t(u)). The
function ϕu(t) := t−1hu(t) is defined for t ∈ (0, t(u)), and for H1 almost all
t ∈ (0, t(u)) we obtain ϕ′

u(t) = 0. Since ϕu is locally Lipschitzian on (0, t(u)),
we get ϕu(t) = c(u) for all t ∈ (0, t(u)). Hence, f(tu) = hu(t) = c(u)t for all
t ∈ [0, t(u)) which implies that Df(o)(tu) = f(tu) first for u ∈ S∗ then by
continuity for all u ∈ Sd−2. This shows for x ∈ U and v := ∇f(o) ∈ R

d−1 that
f(x) = Df(o)(x) = 〈∇f(o), x〉 = 〈v, x〉.

Before we can proceed to Lemma 4.4, which generalizes a representation in
[16, p. 457], some definitions are required. Let K ∈ Kd

0 and u ∈ Sd−1. Then
K◦(u) := relint p(Hu,0, K), and f−

u , f+
u : K◦(u) → R are defined by

f−
u (x) := min{λ ∈ R | x + λu ∈ K}, x ∈ K◦(u),

f+
u (x) := max{λ ∈ R | x + λu ∈ K}, x ∈ K◦(u).

Finally, we set K−(u) := graph(f−
u ) and K+(u) := graph(f+

u ).

Lemma 4.4. Let K ∈ Kd
0 and u ∈ Sd−1. Then we have

Oa(K) =

∫

K◦(u)

{[
det

(
d2f−

u (x)
)] 1

d+1 +
[
det

(
d2(−f+

u )(x)
)] 1

d+1

}
dHd−1(x).

Proof. Since u is fixed in the proof, we can omit the index u of the functions

f−
u , f+

u . Obviously, we have bdK = K−(u)
·∪ K+(u)

·∪ (bd K ∩ Z(u)), where
Z(u) := relbdK◦(u)+ Ru. From generalized cylindrical coordinates it is easy to
see that ∫

bdK∩Z(u)

Hd−1(K, y)
1

d+1 dHd−1(y) = 0.

Thus we obtain

Oa(K) =

∫

K−(u)

Hd−1(K, y)
1

d+1 dHd−1(y)

+

∫

K+(u)

Hd−1(K, y)
1

d+1 dHd−1(y).

The injective mapping F− : K◦(u) → R
d, x 7→ x + f−(x)u, is locally Lip-

schitzian, and

g : K◦(u) → R
+
, x 7→ Hd−1(K, F−(x))

1
d+1 ,

is Hd−1 K◦(u) measurable. Note that for Hd−1 almost all x ∈ K◦(u)

Jd−1F
−(x) =

√
1 + ‖∇f−(x)‖2.

An immediate extension of Federer’s area formula [10, Theorem 3.2.5] to locally
Lipschitzian maps yields now
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∫

K◦(u)

Hd−1(K, F−(x))
1

d+1

√
1 + ‖∇f−(x)‖2 dHd−1(x)

=

∫

K−(u)

Hd−1(K, y)
1

d+1 dHd−1(y).

According to [16, p. 446, (49)] for Hd−1 almost all x ∈ K◦(u)

Hd−1(K, F−(x))
1

d+1 =

[
det

(
d2f−(x)

)] 1
d+1

√
1 + ‖∇f−(x)‖2

. (6)

Thus
∫

K◦(u)

[
det

(
d2f−(x)

)] 1
d+1 dHd−1(x)

=

∫

K−(u)

Hd−1(K, y)
1

d+1 dHd−1(y).

A similar argument applied to f+ concludes the proof of Lemma 4.4.

The next lemma expresses the fact that equiaffine surface area is not decreased
by Steiner symmetrization (see, e.g., [15, §18] for a definition).

Lemma 4.5. Let K ∈ Kd
0 and u ∈ Sd−1. Then Oa(K) ≤ Oa(SuK), where SuK

denotes the Steiner symmetral of K with respect to the hyperplane Hu,0.

Proof. Let f−
u and f+

u be defined as before Lemma 4.4. Then we get

Oa(SuK) = 2

∫

K◦(u)

[
det

(
d2

[
1

2
(f−

u − f+
u )

]
(x)

)] 1
d+1

dHd−1(x).

Now apply Lemma 4.1, and the proof is finished.

Theorem 4.6. For K ∈ Kd the general equiaffine isoperimetric inequality
Oa(K)d+1 ≤ dd+1α(d)2V (K)d−1 holds true.

Proof. Everything is clear, if intK = ∅. Thus we can assume K ∈ Kd
0 . Choose

a sequence (Kn)n∈N ⊂ Kd
0 such that limn→∞ Kn = B(o, r) and such that Kn

is obtained from K by repeated Steiner symmetrization [15, Korollar, p. 226].
Lemma 4.5 shows that Oa(K) ≤ Oa(Kn) for all n ∈ N. The upper semicontinuity
of affine surface area hence implies

Oa(K) ≤ lim sup
n→∞

Oa(Kn) ≤ Oa

(
lim

n→∞
Kn

)

= Oa(B(o, r)) =

(
V (K)

α(d)

) d−1

d+1

dα(d),

which was to be proved.

Using Minkowski’s existence theorem, Minkowski’s inequality and Theorem 4.6
we obtain Theorem 4.7. Moreover, if equality in Theorem 4.6 holds only for
ellipsoids, the same is true for Theorem 4.7. A short proof of these two statements
is reproduced in [36, pp. 420-421] or [14, Satz 1.1.1].
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Theorem 4.7. For K ∈ Kd
0 with s(K) = o the Blaschke-Santaló inequality

V (K)V (K∗) ≤ α(d)2 holds true.

Theorem 4.8. If K ∈ Kd
0 and Oa(K)d+1 = dd+1α(d)2V (K)d−1, then K is an

ellipsoid.

Proof. We may assume s(K) = o. From Lemma 3.7, Theorem 4.7 and from the
assumption of the theorem we infer that there is a constant λ > 0 such that for
Hd−1 almost all y ∈ bdK

Hd−1(K, y) = λ 〈y, σK(y)〉d+1. (7)

We also know that Oa(K) = Oa(SuK) for each u ∈ Sd−1. Let S∗ denote the set
of all u ∈ Sd−1 such that the functions f−

u , f+
u , defined before Lemma 4.4, are

differentiable at o. Since u ∈ S∗ if and only if the radial function ρ(K, ·) of K is
differentiable at ±u, we have Hd−1(Sd−1 \ S∗) = 0. Choose u ∈ S∗, and again
omit the index u of the functions f−

u , f+
u for the moment. From (6), (7), from the

proof of Lemma 4.5, and from Lemma 4.1 it follows that d2f−(x) = d2f+(x),
and hence in particular

det
(
d2f−(x)

)
= det

(
d2(−f+)(x)

)
, (8)

for Hd−1 almost all x ∈ K◦(u). In addition,

Hd−1(K, F−(x)) = λ 〈F−(x), σK(F−(x))〉d+1

= λ

〈
x + f−(x)u,

∇f−(x) − u√
1 + ‖∇f−(x)‖2

〉d+1

,

which together with (6) implies

det
(
d2f−(x)

)
= λ 〈x + f−(x)u,∇f−(x) − u〉d+1. (9)

A similar argument leads to

det
(
d2(−f+)(x)

)
= λ 〈x + f+(x)u,∇(−f+)(x) + u〉d+1. (10)

Thus (8), (9) and (10) yield for Hd−1 almost all x ∈ K◦(u)

〈x,∇(f− + f+)(x)〉 = (f− + f+)(x).

From Lemma 4.3 we obtain that f−
u + f+

u is linear for each u ∈ S∗. Hence, the
statement of our theorem follows by an application of Lemma 4.2.

Theorem 4.9. If K ∈ Kd
0, s(K) = o, and V (K)V (K∗) = α(d)2, then K is an

ellipsoid.
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