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Abstract

String-localized quantum field theory is a relatively recent approach to interacting quantum
field theory, which allows to deduce the interactions of the Standard Model without invoking gauge
invariance of classical Lagrangians. It proceeds at a quantum level from the start and without the
unphysical degrees of freedom which plague gauge theory. An overview is given of its origins and
motivations, its basic ideas and tools, and its achievements to-date.

1 What is string-localized quantum field theory?

String-localized quantum field theory (SQFT) has its historical roots in Quantum Electrodynamics
(QED), addressing its gauge redundancy [Jordan (1935), Dirac (1955), Mandelstam (1962)] and its
inherently non-local features related to the global Gauss Law [Ferrari et al. (1974), Buchholz (1982),
Steinmann (1984)], see the short discussion in Sect. 2. Relatively recently, it has developped into
a (mainly perturbative at the time of this writing) approach to interacting quantum field theory,
which allows to deduce the interactions of the Standard Model without invoking gauge invariance
of classical Lagrangians. It proceeds at a quantum level from the start and without the unphysical
degrees of freedom which notoriously plague gauge theory. A quote from [Schwartz (2014), Chap. 8.6]
emphasizes the conceptual shortcomings of “gauge invariance” as a physical principle:

“Gauge invariance is not physical. It is not observable and is not a symmetry of nature
[. . . It] is merely a redundancy of description we introduce to be able to describe the theory
with a local Lagrangian.”

This does not belittle its success as a heuristic principle; but it calls for a better way to look at it. SQFT
offers a radically new perspective [Rehren et al. (2024)].
In SQFT, “canonical quantization” is replaced by the direct construction of free quantum fields from
unitary representations of the Poincaré group. All the notorious problematic issues with the canonical
quantization of fields of spin or helicity ≥ 1 can be avoided if one admits localization along strings.

* Commissioned by the Encyclopedia of Mathematical Physics, 2nd edition, M. Bojowald and R.J. Szabo (eds.). To
be published by Elsevier (2024).
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In the massless case, one can construct vector potentials on the physical Hilbert space of the field
tensor. In the massive case, string-localization tames the bad UV-behaviour of local vector fields, thus
allowing renormalizable interactions (at least in the power-counting sense, see Sect. 4).
This should be compared with the standard treatment of gauge theories using vector potentials defined
on indefinite-metric state spaces, and with the treatment of weak interactions by first replacing the
massive vector bosons by massless gauge bosons, and then “making them massive” via the Higgs
mechanism.
SQFT does not refer to gauge invariance and canonical quantization. Instead, there arise constraints on
the structure of admissible interactions by the condition that observable quantities must be independent
of the auxiliary string. This condition has the same (in a few cases even superior) predictive power
for the structure of interactions between Standard Model particles, as the usually invoked “gauge
principle”.
Being based on the fundamental principle that quantum theory should be defined on a Hilbert space,
SQFT is a truly “autonomous” and gauge-free quantum approach that deduces quantum interactions
from quantum principles. It also points the way in which the traditional axiomatics for interacting
quantum fields [Streater and Wightman (1964)] must be extended in order to encompass the needs of
the Standard Model. See Sect. 3.
The general idea applies as well to self-interactions of massless particles of helicity 2 (“gravitons”)
and their couplings to matter [Gass et al. (2023)]. See Sect. 4.6.

Basic definitions of free string-localized quantum fields. The starting formula for every model of
SQFT is the definition of the free field

𝐴𝜇 (𝑥, 𝑒) :=
∫ ∞

0
𝑑𝑠 𝐹𝜇𝜈 (𝑥 + 𝑠𝑒)𝑒𝜈 . (1)

Here, 𝐹𝜇𝜈 is a massless or massive field strength tensor, defined on the “Wigner Hilbert space”: the Fock
space over the Wigner representation of helicity ℎ = ±1 or spin 𝑠 = 1, respectively [Weinberg (1964)].
𝐹𝜇𝜈 (𝑥) is a local quantum field with precisely the physical degrees of freedom of massless or massive
particles of spin/helicity 1.
In Eq. (1), 𝑒 is an arbitrary spacelike four-vector, which can be normalized as 𝑒2 = −1. (The Lorentz
metric convention is 𝜂00 = +1.) By its distributive nature, 𝐴𝜇 (𝑥, 𝑒) should be smeared with a smooth
function 𝑐(𝑒) of arbitrarily narrow support. Then 𝐴𝜇 (𝑥, 𝑐) is regarded as a distribution in 𝑥. By its
definition, 𝐴𝜇 (𝑥, 𝑐) is localized in the cone emerging from 𝑥, that is spanned by the directions 𝑒 in
the support of 𝑐. This cone is called a “string”. By the locality of 𝐹𝜇𝜈, it follows that two such fields
commute with each other whenever their strings are spacelike separated from each other.
The crucial property of the free string-localized field Eq. (1) is

𝜕𝜇𝐴𝜈 (𝑥, 𝑒) − 𝜕𝜈𝐴𝜇 (𝑥, 𝑒) = 𝐹𝜇𝜈 (𝑥). (2)

𝐴𝜇 (𝑥, 𝑒) is therefore a potential for the observable field tensor chosen in a particular gauge (an axial
gauge). The distinction from “axial gauge quantization” is, however, that 𝐹𝜇𝜈 (𝑥) is already a quantum
field on a Hilbert space, and 𝐴𝜇 (𝑥, 𝑒) is just a “function” of it. Clearly, Eq. (2) holds as well for
𝐴𝜇 (𝑥, 𝑐) smeared with a test function 𝑐(𝑒) of unit total weight.
If on the other hand, 𝐹𝜇𝜈 (𝑥) in Eq. (1) is taken as the exterior derivative of a canonically quantized
local gauge potential 𝐴𝜇 (𝑥) defined on a state space with indefinite inner product (Krein space), then
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𝐴𝜇 (𝑥, 𝑐) will be defined on the same Krein space, and differ from the former by the derivative of an
“escort field”:

𝐴𝜇 (𝑥, 𝑐) = 𝐴𝜇 (𝑥) + 𝜕𝜇𝜙(𝑥, 𝑐). (3)

Here, 𝜙(𝑥, 𝑐) is the smearing with 𝑐(𝑒) of the distribution

𝜙(𝑥, 𝑒) :=
∫ ∞

0
𝑑𝑠 𝐴𝜇 (𝑥 + 𝑠𝑒)𝑒𝜇 =

∫
𝐶𝑥,𝑒

𝐴𝜇 (𝑦) 𝑑𝑦𝜇, (4)

where the integral is along the curve 𝐶𝑥,𝑒 from 𝑥 to infinity in the direction 𝑒. As explained, this
Krein space interpretation of Eq. (1) is not quite in the vein of SQFT, but it will allow for a novel
understanding of infrared features of QED. See Sect. 4.1.
Eq. (3) is not considered as a gauge “transformation”. It is rather a consequence of the definition, and
marks the formal similarity with gauge theories: it explains – at least superficially – why the condition
of string-independence of observables in SQFT (see below and Sect. 3) gives similar results as gauge
invariance as a postulate, see also Sect. 5.
In order to monitor the string-independence of relevant quantities, one varies the smearing function
𝑐(𝑒) by a function 𝛿𝑐(𝑒) of weight zero. Under such variations, it holds

𝛿𝑐
(
𝐴𝜇 (𝑥, 𝑐)

)
= 𝜕𝜇𝑤(𝑥, 𝛿𝑐), (5)

where 𝑤 is another string-localized field on the Wigner Hilbert space. If embedded into the Krein
space, it is 𝑤(𝛿𝑐) = 𝛿𝑐 (𝜙(𝑐)).
In the massive case, the derivative part of the two-point function of the Proca field〈

0|𝐵𝜇 (𝑥)𝐵𝜈 (𝑥′) |0
〉
= −

(
𝜂𝜇𝜈 + 𝑚−2𝜕𝜇𝜕𝜈

)
𝑊𝑚 (𝑥 − 𝑥′), (6)

where 𝑊𝑚 is the standard massive scalar two-point function, gives it the UV scaling dimension 2.
As a consequence, interactions with Dirac fields are power-counting non-renormalizable. Because
the derivative term is annihilated by the exterior derivative, the field tensor 𝐹𝜇𝜈 := 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇

also has dimension 2. Then by the string integration, 𝐴𝜇 (𝑥, 𝑐) has scaling dimension 1. This
improvement of the UV behaviour renders interactions involving 𝐴𝜇 (𝑥, 𝑐) rather than 𝐵𝜇 (𝑥) power-
counting renormalizable. See Sect. 4.5.
The splitting Eq. (3) of the string-localized potential also holds in the massive case, with 𝐴𝜇 (𝑥 + 𝑠𝑒)
in Eq. (4) replaced by the Proca field 𝐵𝜇 (𝑥 + 𝑠𝑒). In contrast to the massless case, both fields 𝐴𝜇 (𝑥, 𝑐)
and 𝜙(𝑥, 𝑐) are defined on the Wigner Hilbert space of 𝐵𝜇 (𝑥).

String-independence. The string-localized free field is used to set up the perturbation theory for
interacting quantum fields, see Sect. 3. The aim is to construct an interacting QFT with a string-
independent S-matrix and string-independent local fields, to be regarded as the local observables of
the theory. It turns out that such fields exist, and the S-matrix is string-independent in their vacuum
sector.
Typically, however, charged and/or fermionic fields, which are regarded as “unobservable” already as
(anti-)local free fields, become string-dependent and string-localized. In contrast to the treatment in
gauge theories, the latter are well-defined on the Hilbert space. See Sect. 3 for the general pattern
how this occurs, and Sect. 4.1 for the example of QED, where the string-localization of the interacting
Dirac field turns into a physical feature.
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The use of string-localized free fields does not affect the particles, nor the S-matrix elements between
asymptotic many-particle states in the vacuum sector. Free fields like Eq. (1) are “made of” the same
creation and annihilation operators as the physical local free fields like Eq. (2). Their purpose is to
write the interactions used for perturbation theory in a conceptually more satisfactory way. They do not
appear in the resulting interacting quantum field theory, whose observable fields are string-independent.
Charged fields “absorb” the string-localization of the free escort fields, and asymptotic charged states
may not belong to a Wigner Hilbert space because of infrared effects. See Sect. 3

2 The origins of SQFT

String-localized fields were already considered by [Jordan (1935), Dirac (1955), Mandelstam (1962)]
in their attempts to formulate QED in terms of gauge-invariant expressions of the form

𝜓 𝑓 (𝑥) = 𝑒𝑖𝑒
∫

𝑓 𝜇 (𝑥−𝑦)𝐴𝜇 (𝑦) 𝑑4𝑦 · 𝜓(𝑥) (7)

with suitable distributions 𝑓 𝜇 (𝑥 − 𝑦) so that the exponential absorbs the multiplicative gauge transfor-
mation of the Dirac field. Among the simplest are solutions supported along a “string” (i.e., 𝑓 (𝑥 − 𝑦)
is the characteristic function of the curve 𝐶𝑥,𝑒 in Eq. (4)), so that the exponent in Eq. (7) is the es-
cort field 𝜙(𝑥, 𝑒). In these works, Eq. (7) was understood as a classical entity, guiding the way to a
gauge-invariant quantization prescription without necessarily a separate quantization of the two factors.
With the exponential understood as a quantum operator in the indefinite Fock space of gauge theory,
Eq. (7) was used by [Steinmann (1984)], in order to improve the perturbation theory of QED. [Faddeev
and Kulish (1970)] had attached similar exponential factors to the charged scattering states, in order to
absorb infrared singularities of QED.
In axiomatic treatments, the inherent “non-locality” of QED related to the global Gauss Law was
pointed out by [Ferrari et al. (1974)]: charged fields should not commute with the total charge operator
which can be represented as the electric flux at spacelike infinity. Not addressing charged fields
altogether, one can indirectly analyze their putative localization properties relative to observable fields
by studying the localization properties of charged states when tested with observables. For charged
states of QED, [Buchholz (1982)] pointed out the effect of “photon clouds” extending to infinity, but
of arbitrary shape, and [Buchholz and Fredenhagen (1982)] proved that also in theories with a mass
gap, states carrying topological charges exhibit localization properties “as if” they were created by
string-localized fields.
It was therefore quite clear for a long time that the axiomatization of quantum fields by [Streater and
Wightman (1964)] does not apply to a large class of fields in physically relevant theories.
A new development was initiated by [Mund et al. (2006)], who introduced string-localized free quantum
fields. These can be employed to formulate interaction densities, with benefits as discussed in Sect. 1.
The connection with string-localized quantum fields like Eq. (7) will become clear by Eq. (18) in
Sect. 3: The charged free fields “dynamically absorb” the string-localized free fields and become
themselves string-localized. The case of QED exactly reproduces Eq. (7) as a quantum field, as used
by [Steinmann (1984)].
The original motivation to study string-localized free quantum fields [Mund et al. (2006)] was different,
though. The authors wanted to overcome the limitations on the existence of local and covariant free
quantum fields associated with massless representations of the Poincaré group: on the one hand, for
finite helicity ℎ, such fields do not exist as tensors of rank < 2ℎ (in particular, there exists no local and
covariant vector potential 𝐴𝜇 (𝑥) on the Fock space of physical photons) [Weinberg (1964)]; and on the
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other hand, local fields for particles in the “infinite-spin” (or “unbounded-spin”) representations do not
exist at all [Yngvason (1970)].
The first no-go result is the reason why, in local settings, one is forced to work with indefinite-metric
state spaces (Krein spaces) in all gauge theories, with all the trouble that brings along. The second
no-go result is presumably mainly of academic interest because to all our knowledge particles of infinite
spin do not exist in our universe. If, however, quantum field theory would admit quantum fields with
unusual features that would out-wit the no-go result and at the same time prevent their recording in
detectors, one could imagine new candidates for “Dark Matter” [Schroer (2017)].
The new insight as compared to [Yngvason (1970)] was the groundbreaking notion of “modular
localization” of [Brunetti et al. (2002)]. Localization of quantum fields is an algebraic property (the
vanishing or non-vanishing of commutators), and not a geometric property that could be tested by
some “position operators” (which do not exist in QFT). [Brunetti et al. (2002)] proposed to identify
on the one-particle space of a given Wigner representation real subspaces 𝐻 (𝑊) of states localized in
wedge-shaped regions 𝑊 (Poincaré transforms of the standard wedge {𝑥 ∈ R4 : 𝑥1 > |𝑥0 |}), which are
characterized by their behaviour under Lorentz boosts and CPT operators associated with the wedge.
By second quantization of 𝐻 (𝑊), one obtains wedge-localized algebras of observables 𝐴(𝑊) on the
Fock space. The construction uses Tomita-Takesaki modular theory [E4], as outlined next.
In a nutshell: Modular theory (under conditions that are fulfilled in QFT) assigns to a von Neumann
algebra 𝑀 and a vector in a Hilbert space, a unitary one-parameter “modular group” and an anti-
unitary “modular conjugation”. The former acts by automorphisms on 𝑀 , and the latter maps 𝑀 to
its commutant 𝑀′. For the algebra 𝐴(𝑊) of observables localized in a wedge and the vacuum vector,
these are the boost subgroup and the CPT operator associated with 𝑊 in the given representation of
the Poincaré group, and for free fields this algebra generates a real linear subspace of the one-particle
representation space.
“Modular localization” turns the picture around: representation theory provides the desired modular
data, from which the wedge-localized one-particle subspaces𝐻 (𝑊) and algebras 𝐴(𝑊) are constructed.
States localized in smaller regions than wedges belong to intersections of several 𝐻 (𝑊). These
intersections can be computed in terms of analyticity properties of their momentum space wave
functions, and [Brunetti et al. (2002)] found that there exist one-particle states localized in arbitrarily
narrow spacelike cones, and this is the best possible localization for the infinite-spin representations.
Therefore, by second quantization, the algebras 𝐴(𝐶) of free fields localized in such cones 𝐶 should
be nontrivial. Indeed, the authors were able to construct such fields by admitting them to be localized
(in a distributional sense) on rays 𝑥 + 𝑒R+. But unlike in Eq. (1), these fields are not realized as
integrals over local fields (which do not exist by [Yngvason (1970)]). Also states containing infinite-
spin particles cannot be better localized than in cones [Longo et al. (2016)], pointing to the absence of
local “composite fields” acting in the infinite-spin Wigner space.
The inventors of SQFT [Mund et al. (2006)] (by the wondrous detour via the infinite-spin field) already
anticipated the usefulness of string-localized quantum fields, both in the massive and massless case, for
perturbative quantum field theory in and beyond the context of the Standard Model: They open the way
to formulate interactions of massless particles (of any helicity) on their physical Hilbert space without
the use of gauge theory. In the massive case, string-localized fields have a milder UV behaviour than
their local counterparts (e.g., the Proca field Eq. (6) of power-counting dimension 2), manifest in their
dimension being 1 or 3

2 (just like scalar and Dirac fields) irrespective of their spin.
In particular, the generally alleged necessity of the “Higgs mechanism” as an artifice to confer masses
to massless particles – where mass terms for vector bosons are in conflict with gauge invariance – can
be put on trial [Schroer (2016),Schroer (2019)].
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3 𝐿-𝑄-pairs and 𝐿-𝑉-pairs

Perturbative QFT starts from free fields (and their propagators) and proceeds by choosing an interaction
density (“Lagrangian” – a Wick polynomial in free fields). It is notheworthy that a “free Lagrangian”
is only required for the purpose of “canonical quantization”, and is dispensible if free quantum fields
are constructed directly on the Wigner Hilbert space.
The prototype of interactions between bosons and fermions in the Standard Model are the “minimal
interactions”

𝐿 (𝑥) = 𝑔 𝐴𝜇 (𝑥) 𝑗 𝜇 (𝑥) (8)

where 𝑗 𝜇 are conserved free Dirac currents. 𝑔 is a coupling constant. In the massles case, 𝐴𝜇 is only
defined on a Krein space, and in the massive case (with the Proca field 𝐵𝜇 as in Eq. (6) in the place of
𝐴𝜇), 𝐿 is a non-renormalizable interaction.
If one replaces 𝐴𝜇 (𝑥) in Eq. (8) by a string-localized potential 𝐴𝜇 (𝑥, 𝑐), then the resulting interaction

𝐿 (𝑥, 𝑐) = 𝑔 𝐴𝜇 (𝑥, 𝑐) 𝑗 𝜇 (𝑥) (9)

is defined on a Hilbert space and is power-counting renormalizable both in the massless and massive
case.
The challenge is to establish that the resulting perturbative S-matrix does not depend on the arbitrary
choice of the string 𝑐. To control the dependence of the interaction on 𝑐, one may take the string-
variation:

𝛿𝑐
(
𝐴𝜇 (𝑐) 𝑗 𝜇

)
= 𝜕𝜇𝑤(𝛿𝑐) 𝑗 𝜇 = 𝜕𝜇

(
𝑤(𝛿𝑐) 𝑗 𝜇

)
, (10)

or (if the escort field 𝜙 is defined) split the interaction directly

𝐴𝜇 (𝑐) 𝑗 𝜇 = 𝐴𝜇 𝑗
𝜇 + 𝜕𝜇𝜙(𝑐) 𝑗 𝜇 = 𝐴𝜇 𝑗

𝜇 + 𝜕𝜇
(
𝜙(𝑐) 𝑗 𝜇

)
(11)

into a local and a string-localized part. The crucial feature in both options is that the string-dependence
is manifested as a total derivative. Total derivatives added to the Lagrangian do not affect classical
equations of motion, but they do affect the quantum S-matrix

𝑆 = 𝑇𝑒𝑖
∫
𝑑𝑦 𝐿(𝑦) , (12)

because derivatives in general do not commute with time-ordering. As a consequence, the S-matrix
will in general suffer from “obstructions” against string-independence, and it may be necessary to add
higher-order corrections (in the coupling constant 𝑔 and in the polynomial degree in the fields) to the
interaction density which cancel the obstructions. This procedure deduces the same structure of the
higher-order interactions that is usually ascribed to gauge invariance, but with an entirely different
rationale.
In general, one will have

𝐿 (𝑦, 𝑐) = 𝑔 𝐿1(𝑦, 𝑐) +
𝑔2

2
𝐿2(𝑦, 𝑐) + . . . . (13)

In a renormalizable theory, the series should stop after the second-order term, because the polynomial
degree of the Wick polynomials 𝐿𝑛 would increase beyond the power-counting bound. That the
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obstructions can be cancelled in the first place, and that the series indeed stops automatically for all
Standard Model interactions (see Sect. 4) is perhaps one of the most compelling facts about SQFT.
At first order, the S-matrix is just 𝑖𝑔

∫
𝑑𝑦 𝐿1(𝑦, 𝑐). It is string-independent if

𝛿𝑐
(
𝐿1(𝑦, 𝑐)

) !
= 𝜕𝜇𝑄

𝜇

1 (𝑦, 𝑐, 𝛿𝑐), (14)

with some four-vector 𝑄𝜇

1 of Wick polynomials in free fields. This is in particular the case when

𝐿1(𝑦, 𝑐)
!
= 𝐿loc

1 (𝑦) + 𝜕𝜇𝑉
𝜇

1 (𝑦, 𝑐), (15)

where 𝐿loc
1 (𝑦) is a string-independent (point-localized) first-order interaction, and 𝑉

𝜇

1 another four-
vector of Wick polynomials in free fields.
The above Eq. (10) and Eq. (11) are special cases of Eq. (14) and Eq. (15). The data in Eq. (14) are
called an “𝐿-𝑄-pair”. The data in Eq. (15) are called an “𝐿-𝑉-pair”. Not every 𝐿-𝑄-pair arises from
an 𝐿-𝑉-pair on the same Hilbert space. An example is QED where 𝑤 in Eq. (10) is defined on the
Wigner Hilbert space, while 𝜙 in Eq. (11) is only defined on the Krein space.
The condition of string-independence of the S-matrix has been worked out in a model-independent
way in [Mund et al. (2023)]. (Some specific details there are too narrow to encompass theories
like Yang-Mills or QCD, but the assumptions can be easily relaxed.) The outcome is, in a nutshell,
see [Rehren (2024)]:
If one starts from an 𝐿-𝑄-pair, one obtains a recursive formula for higher-order interactions 𝐿𝑛 (𝑐)
which cancel the obstructions coming from all contributions 𝐿𝑚 (𝑐) (𝑚 < 𝑛) up to the derivative of
some higher-order four-vector 𝑄𝜇

𝑛 . The latter vanishes upon integration over 𝑦 so that the cancellation
is exact in the “adiabatic” limit where the spacetime cutoff of the coupling constant is removed.
If one starts from an 𝐿-𝑉-pair, one obtains a recursive formula for string-dependent higher-order
interactions 𝐿𝑛 (𝑐) and derivative terms 𝜕𝜇𝑉 𝜇

𝑛 (𝑐), as well as string-independent higher-order interactions
𝐿loc
𝑛 , which cancel the obstructions coming from all contributions 𝐿𝑚 (𝑐), 𝐿loc

𝑚 , 𝑉 𝜇
𝑚 with 𝑚 < 𝑛. This

formulation is more powerful than the 𝐿-𝑄-pair formulation, because it allows exact cancellations even
when the coupling constant 𝑔 is cut-off at large spacetime distances. It is therefore appropriate for the
mathematically rigorous renormalization theory of [Epstein and Glaser (1973)] (“causal perturbation
theory”, [E1]) in which the S-matrix is expanded into a series of distributions in the cut-off function
𝑔(𝑥), and UV loop renormalization is the issue of extending these distributions to their UV-singular
points.
Moreover, the 𝐿-𝑄-pair formulation just establishes the existence of a string-independent S-matrix,
while the 𝐿-𝑉-pair formulation allows to assert the equality (at tree-level) of the S-matrix obtained with
the string-dependent interaction 𝐿 (𝑐) and the S-matrix obtained with the string-independent interaction
𝐿loc. The latter is therefore also a tool to compare the results of SQFT with results obtained in local
approaches. This applies even when 𝐿loc

1 is non-renormalizable (like the minimal coupling of massive
vector bosons): The series 𝐿𝑛 (𝑐) stops with the power-counting renormalizable 𝐿2(𝑐), while the non-
renormalizable series 𝐿loc

𝑛 need not stop. The equivalence at tree-level is expected to be instrumental
for the indirect (via string-localized perturbation theory) renormalization of the non-renormalizable
local perturbation series.

The structure of obstructions. By the very derivative structure of 𝐿-𝑄- or 𝐿-𝑉-pairs and the
recursion started by them, all obstructions arise because derivatives do not commute with time-
ordering. They can be computed in terms of the quantities (where 𝑌 𝜇 and 𝑋 are Wick polynomials)

𝑂𝑌 (𝑦) (𝑋 (𝑥)) := 𝑇
(
𝜕𝜇𝑌

𝜇 (𝑦)𝑋 (𝑥)
)
− 𝜕

𝑦
𝜇𝑇

(
𝑌 𝜇 (𝑦)𝑋 (𝑥)

)
. (16)
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In contrast to ordinary perturbation theory in terms of Feynman propagators, or equivalenty in terms of
retarded propagators, the obstructions contribute additional terms to the perturbative expansion which
contain 𝛿-functions or string-integrations (similar as in Eq. (1)) over 𝛿-functions. It is essential that
the obstructions are much better localized than all other (string-independent) terms in the perturbative
expansion (completely delocalized integrals over propagators).
This feature explains, not least, why the obstructions can be cancelled by higher-order interactions. In
the construction of interacting fields, it is also responsible for an interesting new “dichotomy” to be
outlined next.

Interacting quantum fields. Interacting quantum fields are defined by “Bogoliubov’s formula”, i.e.,
formally the insertion of the free field into the S-matrix:

Φ
��
𝐿
(𝑥) :=

(
𝑇𝑒𝑖

∫
𝑑𝑦 𝐿(𝑦) )∗ (𝑇Φ0(𝑥)𝑒𝑖

∫
𝑑𝑦 𝐿(𝑦) ) . (17)

This formula can be given a rigorous meaning in causal perturbation theory in terms of “relative
S-matrices” [E1].
In gauge theories formulated on a Krein space, the interacting field is a priori a local (or anti-local)
field on the Krein space. The BRST (or Gupta-Bleuler) method allows to pass from the Krein space
to the physical Hilbert space, on which only BRST quantities are defined [Kugo and Ojima (1979)].
The interacting fields in general will not satisfy this condition. E.g., while the interacting Maxwell
tensor and Dirac current of QED are defined on the Hilbert space, the anti-local interacting charged
Dirac field is not (because its BRST variation is a ghost-valued gauge transformation). This means
that the “final” theory has charged states, but no charged fields to create them from the vacuum. See
also Sect. 5.
In SQFT, the interacting fields are constructed on the physical Hilbert space. But they will in general
be string-dependent. String-dependent fields cannot be local observables, but their presence in the
theory is a valuable tool, because they create states from the vacuum that cannot be reached by the
observables because they belong to different superselection sectors, see Sect. 4.1, and also [E3].
As pointed out in Sect. 2, the traditional axiomatization of interacting quantum fields as in [Streater
and Wightman (1964)] treating all fields in the same way, except admitting anti-locality for fermionic
fields, is too narrow for theories with long-range interactions or with topological charges. In SQFT,
one finds that many quantum fields (also bosonic ones) become string-localized under the interaction.
Only fields that remain local can be regarded as observables of the interacting QFT. In QED, this
is indeed the case for the Maxwell tensor and the Dirac current, while the interacting Dirac field is
string-localized. See Sect. 4.1.
The 𝐿-𝑄-pair formulation allows a characterization of those free fields that will remain local under
the interaction. The 𝐿-𝑉-pair formulation offers a more powerful tool to understand also the string-
localized interacting fields, by virtue of the formula [Mund et al. (2023),Rehren (2024)]

Φ
��
𝐿 (𝑐) (𝑥) =

(
Φ[𝑔]

) ��
𝐿loc (𝑥). (18)

Because 𝐿 (𝑐) is not local, one has a priori no control about the localization of the interacting field on
the left-hand side. Eq. (18) expresses it as a modified field Φ[𝑔] , perturbed with the local interaction
𝐿loc. The modified field (also called “dressed field”)

Φ[𝑔] = Φ0 + 𝑔Φ[1] +
𝑔2

2
Φ[2] + . . . (19)
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has an expansion into Wick polynomials in possibly string-localized free fields, without retarded
integrals. It therefore belongs to the (string-localized) Borchers class [Borchers (1960)] of the free
fields (it is relatively local w.r.t. the free fields) and has itself no nontrivial S-matrix. The point is
that the local interaction 𝐿loc preserves the localization of the dressed field relative to the interacting
observables, so that the right-hand side of Eq. (18) makes a statement about the localization of the
interacting field on the left-hand side.
The dressed field is much easier to compute than the actual interacting field, e.g., Eq. (20). The computa-
tion is done in terms of obstructions (regarded as derivations on the free field algebra [Rehren (2024)]).
If the dressed field is local, then so is the interacting field. This allows the identification of the
observables of the interacting QFT without their actual computation.

4 Achievements in the Standard Model (and beyond)

We summarize several studies of SQFT applied to the Standard Model and to perturbative Quantum
Gravity. The general vein of the results is that SQFT explains all the structures of interactions that
one is used to attribute to gauge invariance. The main distinction is that the predictions of SQFT arise
from the need of a renormalizable interaction on a Hilbert space, while “gauge invariance” is rather a
practical device to deal with redundancy, elevated to an esthetical “principle”.
The results presented are not (yet) established in complete mathematical rigour at all orders of per-
turbation theory. Most of them are at tree-level. The extension to loop level requires the microlocal
renormalization scheme as in [Epstein and Glaser (1973)]. SQFT, with the exception of gravity, is
power-counting renormalizable. This is true even with minimally coupled massive vector bosons,
which is non-renormalizable in local QFT. In local QFT, the power-counting criterium implies that
all renormalization constants can be “absorbed” into finite redefinitions of the masses and coupling
constants of the theory. A similar result is expected for SQFT. The microlocal renormalization problem
simplifies considerably when the string-smearing is done before the renormalization, to the extent that
the singular points in configuration space that need loop renormalization are the same as in local
QFT [Gass (2022)]. The freedom of renormalization has been discussed at tree-level in [Cardoso et
al. (2018)]; but the more recent experience with all the models presented below indicates that the
necessary string-independence can be achieved without expoiting the full freedom.
Precursors of the results to be presented (as far as S-matrices and the need for higher-order interactions
are concerned) were achieved in the local setting of gauge theory (using causal perturbation theory).
Many of them are assembled in [Scharf (2001)], see also [Aste et al. (1999)]. Also there, gauge
invariance is not assumed, but explained as a consequence of the need to be able to descend from
a Krein space to a Hilbert space. For this purpose, the consistency of the BRST construction was
analyzed in higher orders, with similar results as the string-independence of S-matrices in SQFT. See
Sect. 5.

4.1 QED

Read more in [Mund et al. (2020),Mund et al. (2022)].
At first sight, the easiest application of SQFT is QED with the 𝐿-𝑄-pair Eq. (10), where 𝑗 𝜇 is the
Dirac current. Namely, all obstructions of the S-matrix, computed according to the schemes of Sect. 3,
vanish by virtue of the standard Ward identity for the electromagnetic current. So, there is no need
for higher-order interactions, and 𝐿 (𝑐) = 𝑔 𝐴𝜇 (𝑐) 𝑗 𝜇 gives a string-independent S-matrix. However, in
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order to compare it with the S-matrix of QED in the standard approach, one must embed 𝐿 (𝑐) into the
Krein space, and consider the 𝐿-𝑉-pair 𝐴𝜇 (𝑐) 𝑗 𝜇 = 𝐴𝜇 𝑗

𝜇 + 𝜕𝜇 (𝜙(𝑐) 𝑗 𝜇).1 One can then establish the
equivalence of the S-matrices in the vacuum sector.
The interesting part is the “dressed Dirac field”. It turns out to be, order by order in perturbation
theory,

𝜓[𝑔] (𝑥, 𝑐) = 𝑒𝑖𝑔𝜙(𝑥,𝑐)𝜓(𝑥), (20)

where, according to Eq. (4), 𝜙(𝑥, 𝑐) is
∫
𝐶𝑥,𝑒

𝐴𝜇 (𝑦) 𝑑𝑦𝜇, smeared with 𝑐(𝑒). This expression looks
identical with the classical field Eq. (7), that was considered by [Jordan (1935),Dirac (1955),Mandel-
stam (1962)] in their attempts to define the quantization of QED in terms of gauge-invariant quantities.
But Eq. (20) appears in string-localized QED as a quantum field from the start, with the exponential
field as a quantum operator. [Steinmann (1984)] has used it in the same way.
At this point, however, the infrared singularity of QED [E2] strikes. The massless escort field 𝜙(𝑐) is
actually logarithmically divergent. But its exponential can be defined as a Weyl operator with an IR
renormalization. As a relic of the IR divergence of the linear escort field, charged states created by
dressed Dirac fields with different string smearing functions 𝑐 must belong to different superselection
sectors. Indeed, 𝑐(𝑒) can be identified with the directional profile of the asymptotic electric flux density
(“photon cloud”) evaluated in such states. Moreover, the energy spectrum of the charged states has a
sharp lower bound at the electron mass, but it does not contain a sharp mass-shell: charged particles
are infra-particles. These features of QED were anticipated by axiomatic arguments a long time
ago [Ferrari et al. (1974), Fröhlich et al. (1979), Buchholz (1982), Buchholz (1986)]. SQFT confirms
this insight by an actual Hilbert space construction.
The dressing factor also contributes a complex phase to the commutation relations of the Dirac field
Eq. (20). These are more general than “anyonic” commutation relations, because the phase factor is a
continuous function both of the strings and of the distance 𝑥 − 𝑥′.
According to Eq. (18), the actual interacting Dirac field is the dressed Dirac field Eq. (20) subjected to
the point-local interaction of QED. The well-known IR divergences of the standard QED amplitudes
interfere with the IR structure of the exponential escort field to give a “dynamically deformed super-
selection structure”, where the photon clouds depend on the momenta of other charged particles in a
scattering process.
The string-localization of the interacting Dirac field is a most welcome feature. Namely, an anti-local
field would have to commute with the asymptotic electric flux density, and hence with the total flux at
infinity which – by Gauss’ Law – should be the total charge operator. SQFT neatly solves this conflict.
It has been stressed that for similar reasons, related to the local Gauss Law, “longitudinal photon degrees
of freedom” must be present in QED. In SQFT, they are present in the form of the exponentiated escort
field, turning the electron into an infra-particle.
An instructive variant is scalar QED. The 𝐿-𝑄-pair is again Eq. (10), but with the scalar current
𝑗 𝜇 = −𝑖(𝜑∗𝜕𝜇𝜑 − 𝜕𝜇𝜑∗𝜑). Here, there is a freedom to renormalize the propagator of the derivative
fields 〈

0|𝑇𝜕𝜇𝜑(𝑥)𝜕′𝜈𝜑(𝑥′) |0
〉
= 𝜕𝜇𝜕

′
𝜈

〈
0|𝑇𝜑(𝑥)𝜑(𝑥′) |0

〉
− 𝑖𝑐𝑟𝜂𝜇𝜈𝛿(𝑥 − 𝑥′).

The obstructions depend on the choice of the real renormalization parameter 𝑐𝑟 . It turns out that one
needs a second-order Lagrangian 1

2𝐿2(𝑐) = (1 − 𝑐𝑟) · 𝐴𝜇 (𝑐)𝐴𝜇 (𝑐)𝜑∗𝜑, where gauge theory would
have expected the coefficient 1. (This feature is also known from local approaches.) Although the

1To be precise, one must also take care to eliminate the “null field” 𝜕𝜇𝐴
𝜇, which has vanishing correlations with all

observable fields but not with the escort field, see [Mund et al. (2022)].
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interaction Lagrangian depends on 𝑐𝑟 , the S-matrix does not [Tippner (2019)]. Gauge invariance plays
no role.

4.2 Yang-Mills

Read more in [Gass et al. (2021)].
Yang-Mills theory starts in SQFT with the identification of an 𝐿-𝑄-pair for the self-interaction. It
turns out that the most general cubic self-interaction of any number of free massless vector fields, of
the form

𝐿1(𝑐) = −
∑︁𝑁

𝑎,𝑏,𝑐=1
𝑓𝑎𝑏𝑐𝜕

𝜇𝐴𝜈
𝑎 (𝑐)𝐴𝑏,𝜇 (𝑐)𝐴𝑐,𝜈 (𝑐), (21)

must necessarily have totally anti-symmetric coefficients 𝑓𝑎𝑏𝑐 in order to yield an 𝐿-𝑄-pair:

𝛿𝑐
(
− 1

2

∑︁𝑁

𝑎,𝑏,𝑐=1
𝑓𝑎𝑏𝑐𝐹

𝜇𝜈
𝑎 𝐴𝑏,𝜇 (𝑐)𝐴𝑐,𝜈 (𝑐)

)
= 𝜕𝜇

(∑︁𝑁

𝑎,𝑏,𝑐=1
𝐹
𝜇𝜈
𝑎 𝐴𝑏,𝜈𝑤𝑐 (𝛿𝑐)

)
. (22)

Computing the resulting obstructions against string-independence of the S-matrix at second order, one
finds that these obstructions can only be cancelled if 𝑓𝑎𝑏𝑐 satisfy the Jacobi identity, i.e., they are the
structure constants of some 𝑁-dimensional reductive Lie algebra. In this case,

𝐿2(𝑐) = −1
2

∑︁𝑁

𝑎,𝑏,𝑐,𝑑,𝑒=1
𝑓𝑎𝑏𝑒 𝑓𝑐𝑑𝑒𝐴

𝜇
𝑎 (𝑐)𝐴𝜈

𝑏 (𝑐)𝐴𝑐,𝜇 (𝑐)𝐴𝑑,𝜈 (𝑐), (23)

and 𝐿𝑛 (𝑐) = 0 for 𝑛 > 2. Thus, 𝐿 (𝑐) = 𝑔𝐿1(𝑐) + 𝑔2

2 𝐿2(𝑐) is exactly the interaction part of the standard
Yang-Mills Lagrangian, with the gauge potentials replaced by the string-localized potentials. The
Lie algebra structure and the quartic Yang-Mills coupling are thus deduced from SQFT, rather than
manifestations of an a priori assumed gauge invariance.

4.3 QCD

We report here some unpublished work in progress. For QCD in SQFT, one may add to Eq. (22) the
obvious 𝐿-𝑄-pair of minimal interactions

𝛿𝑐
(
𝐴𝑎,𝜇 (𝑐) 𝑗 𝜇𝑎

)
= 𝜕𝜇

(
𝑤𝑎 (𝛿𝑐) 𝑗 𝜇𝑎

)
. (24)

It turns out that there are no new obstructions, and 𝐿2(𝑐) in Eq. (23) unchanged. Again, this reproduces
the QCD interaction of gauge theory, with 𝐴𝑎

𝜇 replaced by 𝐴𝑎
𝜇 (𝑐).

An interesting feature is called “lock-key scenario”: One might consider the 𝐿-𝑄-pair Eq. (24) sep-
arately, without the self-interaction. It then turns out that the violation of the Ward identity for
non-abelian currents 𝑗

𝜇
𝑎 = 𝜓𝛾𝜇𝜏𝑎𝜓 leads to an obstruction at second order, that cannot be cancelled

by a quartic interaction 𝐿2(𝑐). This is the “lock”. On the other hand, including the self-interaction,
the mixed contributions at second order precisely cancel this obstruction. This is the “key”. Thus,
minimal interactions of non-abelian quark currents require the Yang-Mills self-interaction.
The dressed quark field seems (at low orders) to be a non-abelian version of Eq. (20) with a path-
ordered exponential. This would comply with the idea that the dressed field formally corresponds to a
classically gauge-invariant quantity.
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4.4 Chirality of weak interactions

The chirality of weak interactions is a prediction from SQFT, that goes beyond predictions from gauge
invariance. Here is a brief account. Read more in [Gracia-Bondia et al. (2018)].
One first fixes the physical field content: 𝑊- and 𝑍-bosons with masses 𝑀𝑍 > 𝑀𝑊 > 0, and the
leptons (electrons and neutrinos) with 𝑚𝑒 > 0 and 𝑚𝜈 arbitrary. One makes a most general ansatz
for an 𝐿-𝑄-pair of minimal couplings of massive and massless vector bosons to chiral lepton fields.
As in Sect. 4.3, Eq. (25) has to be supplemented by self-interactions among the boson fields, see also
Sect. 4.5. The leptonic 𝐿-𝑄-pair has the form

𝐿1(𝑐) =
∑︁4

𝑎=1

(
𝐴𝑎,𝜇 (𝑐) (𝐽𝜇𝑎 + 𝐽

𝜇5
𝑎 ) + 𝜙𝑎 (𝑐) (𝑆𝑎 + 𝑆5

𝑎)
)
. (25)

The indices 𝑎 = 1, 2 refer to the 𝑊-bosons, 𝑎 = 3 to the 𝑍-boson, and 𝑎 = 4 to the photon. 𝜙𝑎 (𝑐)
(𝑎 = 1, 2, 3) are the escort fields of the three massive vector bosons, and 𝜙4 = 𝐻 is the (string-
independent) scalar Higgs field. 𝐽

𝜇
𝑎 and 𝐽

𝜇5
𝑎 are charged and neutral (axial) vector currents, and 𝑆𝑎

and 𝑆5
𝑎 are (pseudo)scalars. They involve arbitrary combinations of 𝜓 . . . 𝜓 with 𝜓 ∈ {𝜓𝑒, 𝜓𝜈} with

a priori undetermined coefficients. There is only one coupling constant, because the condition of
string-independence confirms the standard formula for the electric coupling constant as a function of
the Weinberg angle cos 𝜃 := 𝑀𝑊/𝑀𝑍 . But the direction of the deduction is reversed: in the Glashow-
Salam-Weinberg (GSW) model, the Weinberg angle and the mass ratio are determined as functions of
the two coupling constants.
Already the 𝐿-𝑄-pair condition (string-independence in first order) fixes the coefficients within the
scalars 𝑆𝑎 resp. pseudoscalars 𝑆5

𝑎 as mass multiples of the coefficients within the vector resp. axial
currents. In particular the terms involving 𝑆4 and 𝑆5

4 can be identified with the Yukawa couplings of
the GSW model. All other coefficients are then separately determined by the string-independence in
second order.
The surprise is: One finds that the axial and vector couplings to the 𝑊-bosons can only differ by
a factor 𝜀 with 𝜀2 = 1. The charged weak coupling therefore necessarily exhibits maximal parity
violation. With the choice 𝜀 = −1, this is the famous empirically known “𝑉 − 𝐴-structure” – but now as
a prediction from SQFT. (The choice 𝜀 = +1 is equally possible – it is unitarily equivalent by the parity
operator.) The coupling to the photon comes out non-chiral, and the non-maximal parity violation of
the 𝑍-couplings comes out as in the GSW model.
Along the way, it is deduced that the total currents 𝐽𝜇𝑎 + 𝐽

𝜇5
𝑎 can be written in the form

𝐽
𝜇
𝑎 + 𝐽

𝜇5
𝑎 = 𝜓𝛾𝜇𝜋(𝜏𝑎)𝜓 (26)

with the well-known chiral representation 𝜋 of 𝑈 (1) × 𝑆𝑈 (2) of the GSW model.
Another result of the SQFT treatment of massive vector bosons is that the 𝐿-𝑄-pair requires a coupling
to (at least) one scalar field of arbitrary mass: the Higgs field, as will be discussed next.

4.5 The Higgs potential

We present explicitly a simplified model with a single massive vector boson. Read more in [Mund et
al. (2023),Gracia-Bondía et al. (2024)].
The coupling of a single massive vector boson to a scalar field admits an 𝐿-𝑉-pair

𝑚
(
𝐴𝜇𝐵𝜇𝐻 + 𝐴𝜇𝜙𝜕𝜇𝐻 −

𝑚2
𝐻

2
𝜙2𝐻

)
= 𝑚 𝐵𝜇𝐵𝜇𝐻 + 𝑚𝜕𝜇

(
𝐵𝜇𝜙𝐻 + 1

2
𝜙2𝜕𝜇𝐻

)
(27)
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Here, 𝐵𝜇 (𝑥) is the local Proca field of mass 𝑚, 𝐴𝜇 ≡ 𝐴𝜇 (𝑐) is the string-localized potential computed
by Eq. (1) from the Proca field tensor 𝐹𝜇𝜈 (𝑥), and 𝜙 ≡ 𝜙(𝑐) is the escort field, Eq. (4). 𝐻 is the scalar
field of mass 𝑚𝐻 . It will retrospectively deserve the name “Higgs field”.
Eq. (27) is essentially unique, up to the addition of a salient term 𝑎𝐻3 on both sides, and more terms
that have to vanish because they would produce obstructions that cannot be cancelled at second order.
The (positive) masses 𝑚, 𝑚𝐻 , and the coefficient 𝑎 of the scalar self-coupling are free parameters at
first order.
Recall from Sect. 3 that the 𝐿-𝑉-pair formalism allows the detailed identification of the string-
independent S-matrix with interaction 𝐿 (𝑥, 𝑐) with the S-matrix with a local interaction 𝐿loc(𝑥). The
latter may be power-counting non-renormalizable (the original problem with massive vector bosons),
but the model is expected to be renormalized by the identification of its perturbative series with the
renormalizable string-localized series.
The main result is, that the cancellation of obstructions at second order requires unique higher couplings
between the vector boson and the Higgs field – up to a quartic Higgs self-coupling 𝑏𝐻4 with an arbitrary
coefficient 𝑏, and at third order uniquely fixes 𝑎 and 𝑏. In particular, 𝑔𝑎𝐻3 + 𝑔2

2 𝑏𝐻
4 is exactly the

interaction part of the Higgs potential
1
2
𝑚2

𝐻𝐻
2(1 + 𝑔

2𝑚
𝐻)2, (28)

familiar from the Higgs model of “spontaneously broken gauge symmetry”. This turns out to be a
universal result, valid with any number of massive and massless vector bosons, see [Gracia-Bondía et
al. (2024)].
But there is neither an “unbroken phase” (the positive mass of the vector boson was set from the start),
nor a “mechanism” of breaking a “symmetry” that does not exist in a physical sense, see the quote in
Sect. 1. Only the Higgs field and its potential are confirmed by SQFT.
The non-renormalizable local counterpart interaction 𝐿loc(𝑥) can also be computed in the model. It
coincides, up to a renormalization, with the classical interaction Lagrangian that one would expect
from the “Higgs mechanism”.

4.6 Gravity

Read more in [Gass et al. (2023)].
The construction Eq. (1) of a string-localized potential for the Maxwell field can be generalized to
a string-localized tensor potential ℎ𝜇𝜈 (𝑥, 𝑐) for the local field 𝑅[𝜇𝜅] [𝜈𝜆] (𝑥) of helicity ℎ = ±2 on its
Wigner Hilbert space. The latter can be interpreted as the (linearized) Riemann tensor of perturbative
Quantum Gravity, and the potential is the string-localized counterpart of the metric deviation from
the flat metric 𝜂𝜇𝜈, which in canonical approaches is treated as a gauge potential. Unlike the latter,
ℎ𝜇𝜈 (𝑥, 𝑐) is traceless and satisfies the Hilbert constraint identically, as a manifestation of the absence
of unphysically degrees of freedom.
An ansatz for a cubic 𝐿-𝑄-pair with only first derivatives of ℎ𝜇𝜈 (𝑥, 𝑐) yields a unique solution 𝐿1(𝑐)
(up to a total derivative). Its obstructions at second order are uniquely cancelled by a quartic interaction
𝐿2(𝑐). Then 𝐿 (𝑐) = 𝑔𝐿1(𝑐) + 𝑔2

2 𝐿2(𝑐) + . . . is found to coincide with the beginning of the power
series expansion of the Einstein Lagrangian (the Einstein-Hilbert Lagrangian with a quadratic total
divergence subtracted), with the classical ℎ𝜇𝜈 (𝑥) replaced by the quantum field ℎ𝜇𝜈 (𝑥, 𝑐). Just like
the expansion of the Einstein Lagrangian, the series is not expected to terminate with 𝐿2 because
power-counting non-renormalizability of quantum gravity cannot be avoided in SQFT.
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This finding is considered as the signal (confirmed up to second order) of “diffeomorphism invariant
interactions dictated by quantum principles”.
What is more: there is another “lock-key” situation, as in QCD. The coupling of matter to helicity 2
through its conserved stress-energy tensor is a unique 𝐿-𝑄-pair for each type of matter (scalar, matter,
Dirac) that admits a local stress-energy tensor. These interactions taken alone exhibit a second-order
obstruction that cannot be cancelled. But when the self-interaction of the helicity-2 field is added, the
interference terms at second order together with a second-order matter interaction exactly cancel the
obstruction.
This is remarkable, for several reasons. First, the same self-interaction cancels the obstructions of each
type of matter, separately or in combination. Second, each of the second-order matter interactions (the
spin 1

2 case waiting for confirmation) coincides with the expansion of the classical generally covariant
free matter Lagrangians. On the other hand, the obstructions, “calling” for a cancellation by the helicity
2 self-interaction, are due to the violation of Ward identities for the stress-energy tensors. These are
intrinsic properties of the matter field in Minkowski spacetime, and do not “know” about its coupling
to helicity 2. So, there is a conspicuous “pre-disposition” for generally covariant gravity couplings
already present in the flat spacetime QFT of matter fields.
These various findings are assembled under the name “quantum general covariance”.
SQFT may be of interest for matter couplings also in another way. It is know from [Weinberg and
Witten (1980)] that matter fields of spin or helicity > 1 do not admit local conserved stress-energy
tensors on their Wigner Hilbert space. This is usually taken as an argument that higher-spin matter
cannot couple gravitationally. Yet, it is possible to construct string-localized stress-energy tensors
for matter of any spin and helicity [Mund et al. (2017)] (the half-integer case is not worked out). If
these can be used in an 𝐿-𝑄-pair coupling to the equally string-localized gravity potential ℎ𝜇𝜈 (𝑐), one
would have a new grip on gravitational couplings of higher-spin matter, without artifices like infinite
hierarchies of all spins on Krein spaces. One may again speculate about “Dark Matter”.

5 SQFT versus BRST

It was mentioned that the BRST method in causal perturbation theory yields very similar constraints
on the structure of interactions. There seems to be a deeper reason.
Namely, the BRST variation of all cubic Lagrangians of the Standard Model is a derivative:

𝛿BRST(𝐿BRST
1 ) = 𝜕𝜇𝑇

𝜇

1 , (29)

where both 𝐿BRST
1 and 𝑇 𝜇

1 are cubic Wick polynomials (including gauge potentials and ghost fields) on
their indefinite state space. These derivative terms cause obstructions against BRST invariance of the
S-matrix, in the same way as 𝐿-𝑄-pairs in SQFT cause obstructions against string-independence of the
S-matrix. They can also be cancelled in a similar way by higher-order interactions [Scharf (2001)].
One may now add a string-localized derivative term to 𝐿BRST

1 to the effect that the resulting string-
localized cubic interaction 𝐿1(𝑐) is manifestly BRST-invariant. In particular, the ghost terms are
removed. Then, the resulting S-matrix is readily defined on the BRST quotient Hilbert space [Kugo
and Ojima (1979)], and the BRST method is redundant. The price is the possible string-dependence.
But because 𝐿1(𝑐) − 𝐿BRST

1 is a derivative, the two interactions form an 𝐿-𝑉-pair, from which one can
deduce the equivalence of the S-matrices, as in Sect. 3.
The difference lies, again, in the conceptual setting: in SQFT one works on the physical Hilbert space
with physical degrees of freedom from the start. The second distinction is the fact that SQFT allows

14



to define interacting quantum fields on the same Hilbert space (some of which are string-localized),
where BRST would construct a theory without charged fields.
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