
A Game Theoretic Approach to Strategy Determination for
Dynamic Platform Defenses∗

Kevin M. Carter, James F. Riordan, and Hamed Okhravi
MIT Lincoln Laboratory, 244 Wood St., Lexington, MA 0242

kevin.carter, james.riordan, hamed.okhravi}@ll.mit.edu

ABSTRACT
Moving target defenses based on dynamic platforms have
been proposed as a way to make systems more resistant
to attacks by changing the properties of the deployed plat-
forms. Unfortunately, little work has been done on discern-
ing effective strategies for the utilization of these systems,
instead relying on two generally false premises: simple ran-
domization leads to diversity and platforms are independent.
In this paper, we study the strategic considerations of de-
ploying a dynamic platform system by specifying a relevant
threat model and applying game theory and statistical anal-
ysis to discover optimal usage strategies. We show that pref-
erential selection of platforms based on optimizing platform
diversity approaches the statistically optimal solution and
significantly outperforms simple randomization strategies.
Counter to popular belief, this deterministic strategy lever-
ages fewer platforms than may be generally available, which
increases system security.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Moving target; game theory; system diversity

1. INTRODUCTION
Developing secure systems is difficult and costly. The

high cost of effectively mitigating all vulnerabilities and the
far lesser cost of exploiting a single one creates an envi-
ronment which advantages cyber attackers. New cyber de-
fense paradigms have been proposed to re-balance the land-
scape and create uncertainty for the attackers [10]. One

∗This work is sponsored by the Department of Defense under
Air Force Contract FA8721-05-C-0002. Opinions, interpre-
tations, conclusions and recommendations are those of the
author and are not necessarily endorsed by the United States
Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MTD’14, November 03 2014, Scottsdale, AZ, USA
Copyright 2014 ACM 978-1-4503-3150-0/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663474.2663478.

such paradigm is moving target (MT) defense based on dy-
namic platform techniques, which dynamically change the
properties of a computing platform in order to complicate
attacks [12]. These properties that are dynamically adjusted
focus around: the instructions being executed [20, 19, 9, 7]
and their architecture [4], system and application memory
[17, 16, 6, 15], operating system (OS) distribution [11], and
machine instance [14].

While there has been significant work in developing these
techniques from a systems engineering perspective, little work
has been done on defining effective strategies for an optimal
system deployment. When utilizing a dynamic platform de-
fense, the defender’s strategic considerations are two-fold:
the duration of time to keep a platform active before migrat-
ing to another, and the destination platform1. The duration
of time on each platform before migration is often scenario
dependent, which we will generally define as an input vari-
able d. The question of which platforms to deploy, however,
is of critical importance. In many scenarios, the defender
utilizes a platform migration system specifically because she
lacks knowledge of the vulnerability states of the available
platforms. In order to gain security through diversity, it is
important to strategically deploy a diverse pool of platforms.

In this paper, we present a game theoretic approach to-
wards the determination of optimal strategies for using a
dynamic platform defense. We present the interactions be-
tween attacker and defender as a two-player, incomplete,
leader-follower game in which the defender has imperfect
information while the attacker has perfect information [8].
We discuss two threat models for which a dynamic platform
defense is appropriate, focused around preventing adversary
persistence for some extended duration on a protected sys-
tem. We also consider the cases of both static and adaptive
adversaries, with respect to the development of new exploits
against the observed platforms. We will show that a deter-
ministic scheduling strategy that optimizes for selecting the
most locally – in a temporal sense – diverse platform ap-
proaches the statistically optimal solution.

This paper proceeds as follows: In Section 2, we discuss
some threat models that are relevant for a dynamic platform
defense. We leverage these threat models to define statisti-
cally optimal strategies in Section 3, and present simulation
results comparing several potential strategies in Section 4.
We discuss the insights developed throughout this work in
Section 5, and summarize in Section 6.

1These considerations do not apply to all systems, as some
run all platforms at all times.

21

1.1 Related Work
Colbaugh and Glass [3] use game theory to analyze strate-

gies for deploying MT defenses against adaptive adversaries,
concluding with the result that uniform randomization is op-
timal. Their threat model differed from ours in that it did
not require adversary persistence and the defensive strategy
was designed to minimize predictability. Most importantly,
they operated under the assumption that defensive systems
are independent, such that any developed countermeasure
works against a single system. We argue that this is not the
case in many scenarios, such as exploits against operating
system vulnerabilities, and will demonstrate that uniform
randomization is highly suboptimal in these cases.

Self-cleansing techniques, such as SCIT [2, 5, 1], offer
security by continuously rotating across many virtual ma-
chines and re-imaging the inactive ones. This impacts at-
tack persistence by bringing a single platform to its pristine
state, but offers no protection against the same adversary
re-infecting the system with the same exploits.

Talent [11] is a framework for live-migrating critical ap-
plications across diverse platforms that has several design
goals: i) diversity at the instruction set architecture level,
ii) diversity at the operating system level, iii) preservation
of the state of the application, including the execution state,
open files and sockets, and iv) working with a general-purpose,
system language such as C. While the analysis we present in
this paper is applicable across a broad range of technologies,
we notionally use Talent as our target system as it provides
both temporal changes (periodic migrations) and diversity
(multiple operating systems).

Our recent work has explored Talent and other dynamic
platform technologies to quantitatively evaluate their effec-
tiveness [13] and explore attacker strategies against their
utilization [21, 22]. The work presented here builds upon
the insights developed under our prior work.

2. THREAT MODEL
In our model, the defender has a number of different plat-

forms to run a critical application. The attacker has a set of
exploits (attacks) that are applicable against some of these
platforms, but not the others. We call the platforms for
which the attacker has an exploit “vulnerable” and the oth-
ers “invulnerable.” In a strict systems security terminol-
ogy, vulnerable does not imply exploitable; without loss of
generality, we only consider exploitable vulnerabilities. An
alternative interpretation of this threat model is that the
vulnerabilities are exploitable on some platforms, but not
on the other ones.

The defender does not know which platforms are vulnera-
ble and which are invulnerable, nor does she have detection
capabilities for the deployed exploits. This scenario, for ex-
ample, describes the use of zero-day exploits by attackers,
for which no detection mechanism exists by definition.

Since there is little attempt to isolate the inactive plat-
forms in dynamic platform systems, we assume that all plat-
forms are accessible by the attacker, and the attacker at-
tempts to exploit each one. Moreover, we assume that the
defender does not have a recovery or re-imaging capabil-
ity to restore a compromised platform. The reason for this
assumption is that typical recovery methods (e.g. clean in-
stallation of the operating system) can take a long time to
complete and unless the defender has many spare platforms,

it is hard to accomplish it effectively. A large number of
spare platforms also implies large hardware cost for these
systems (e.g. SCIT [2]).

The attacker’s goal is what creates the variations in our
threat model. For example, one success criteria may be for
the adversary to compromise the system for a given period
of time to cause irreversible damage (e.g. crash a satellite),
while a different success criteria gives the attacker gradual
gain the longer the system is compromised (e.g. exfiltration
of information). These variations and their impact on the
effectiveness of dynamic platforms are discussed in the sub-
sequent sections.

Much of the analysis of one system using dynamic plat-
forms as a security strategy applies to any such system. In
this section we will specify an abstraction that generically
describes dynamic platforms, which is useful as a security
strategy in protecting against attacks that have a tempo-
ral requirement. We analyze a number of cases where this
holds. To better convey the meanings, we use simple phrases
which are examples of these cases to refer to them: crash the
satellite and exfiltration over a difficult channel.

1. Crash the Satellite - once the attacker has controlled
the system continuously for a specified time period,
the game is over and the attacker has won.

2. Exfiltration Over a Difficult Channel - the attacker
needs control for a specified time period for an attack
to succeed. Once the attacker has control for the pe-
riod, the attackers payoff function starts to increase
from a positive value.

We will define the abstract model of a dynamic platform
system P as a system that migrates through a finite fixed
collection of platforms {pi} (all of the notations used in this
paper are summarized in Table 1). Each platform either
has or does not have a property exploitable by the attacker
which we call vulnerable, specified by the Boolean function
v(p), which is generally unknown.

Given the presented threat scenarios, the goal of the de-
fender is not to globally minimize system vulnerability, but
to prevent persistent vulnerability for a duration of some
specified length T . Specifically, an attack is not successful
unless the attacker has maintained such persistence, and a
proper defender strategy takes advantage of this. Without
loss of generality, we discretize time such that an adversary
needs to be present for K = T/d intervals. For simplicity of
analysis, we assume that the time required to migrate plat-
forms is negligible. This time is indeed unimportant for our
analysis, however it would be if one were to optimize d.

2.1 Defining the Game
One can view the interactions between the attacker and

defender as an iterative leader-follower game, for which each
turn the leader plays a move first, and the follower plays
subsequently. In the case of the presented scenarios, the
defender always acts as leader, where moves are defined as
selecting an active platform during turn k, pk. The attacker
always acts as the follower, where moves are defined as play-
ing an exploit iff the active platform is vulnerable, v(pk). We
frame this game as an incomplete and imperfect information
game, as the defender does not know the moves available to
the attacker (e.g. which platforms are vulnerable), nor does
she know the moves that have been played by the attacker

22

pi ∈ P The space of all platforms available
pk Platform at migration step k
d The duration of a platform
T Attacker’s goal for disrupting the mission
v
(
pk
)

Platform at migration step k is vulnerable
¬v
(
pk
)

Platform at migration step k is not vulnerable
Pr(x) Probability of x

Table 1: Notation describing dynamic platform system

(e.g. no sensing capability). Meanwhile, while the attacker
has perfect information (e.g. observes defender moves), it is
incomplete since she does not know the full slate of available
moves and must observe them.

Given that we are considering only threat models that re-
quire adversary persistence, system compromise is only pos-
sible iff there has been a succession of vulnerable platforms
played by the defender. That is, compromise at time k is
defined as a Boolean:

C(k) =

{
1 v(pk), v(pk−1), . . . , v(pk−K+1)

0 otherwise
.

In Table 2, we relate the different threat scenarios pre-
sented in Section 2 to different objective games, where 1{·}
is the standard indicator function. The objectives in each
scenario are optimized by the same strategies due to the in-
complete and imperfect nature of the game; maximizing the
time of first compromise generally minimizes the collective
sum of compromise and vice versa. We will demonstrate this
empirically in later sections.

2.2 Simplifying Assumptions
While optimal implementation of a dynamic platform de-

fense is specific to a given threat model and set of available
platforms, the goal of this work is to demonstrate a frame-
work and general insights for developing these strategies. As
such, we have made simplifying assumptions to make our
model broadly applicable.

In many real exfiltration scenarios, an adversary gains par-
tial success even when disrupted, such as reaching an inter-
mediate attack state. While we simplify our metrics such
that partial success is not granted, this assumption can be
adjusted as necessary by changing the cost function.

A key tenant to our model is defining the similarity be-
tween platforms. This can be defined in a variety of ways,
such as code, application, or protocol diversity. Addition-
ally, the similarity between platforms can be defined based
on commonly vulnerable portions, or the entire system. For
the purposes of this paper, we focus on code vulnerabilities
and define platform similarity based on similarity across the
entire codebase (see Section 4.1).

Finally, while we model the correlation of exploit success
between platforms by code similarity, we model exploit de-
velopment as independent processes across platforms. The
development lifecycle is modeled with a fixed distribution
and is not dependent on previous exploit development. Es-
sentially, our model does not account for increased efficiency
with experience.

3. STRATEGY DETERMINATION
Recall that the goal of the defender is not to globally min-

imize system vulnerability, but to prevent persistent vulner-
ability for a duration of length K. This is best accomplished
by, at each migration time, assuming the most recent K − 1
platforms were vulnerable and migrating to a platform that
is most likely to break the chain of adversary persistence. In-
tuitively, if the defender knows an adversary has been able
to exploit some unknown vulnerability on the recent plat-
forms, the proper course of action is to migrate to the least
similar platform2.

We consider two different operating modes for adversary
capabilities, and it is important to differentiate them. In the
static mode, all potential adversary capabilities are available
from the beginning of time. The adversary gains nothing by
observing the system; either she can exploit it or she cannot.
Hence, a defender need not be concerned with overexposing
a system. In the adaptive mode, an adversary is able to de-
velop system countermeasures as time progresses, and this
development is wholly dependent on the number of observa-
tions of the system. Consider a spam filter as an example,
for which an adversary learns something about the features
with each email that is sent (e.g. whether or not it was fil-
tered) and can craft their messages in response. In this
scenario, it is important for the defender to understand the
information being leaked to the adversary and adjust their
own strategy accordingly.

3.1 Static Adversary
The static setup corresponds to a short-term game, where

the development of additional countermeasures is not feasi-
ble during the game. For example, one could consider the
scenario in which a critical system needs to be available for
a 24-hour window. It is generally not feasible for an adver-
sary to develop a zero-day exploit for this system in such
a short duration, so any exploits must already be available.
As such, a defender’s sole goal is to minimize the probability
that an adversary can effect compromise at each given time
step, which we can define as

Pr(C(k)) = Pr(v(pk), v(pk−1), . . . , v(pk−K+1)). (1)

Recall, however, that the defender cannot see the moves
played by the adversary. Given this constraint, let us rede-
fine Eq. (1) using conditional probability as

Pr(C(k)) = Pr

v(pk)|
k−1⋂

j=k−K+1

v(pj)

Pr

 k−1⋂
j=k−K+1

v(pj)


(2)

where
⋂

is the standard intersection operator. Since the de-

fender’s goal is to minimize Eq. (2), and Pr
(⋂k−1

j=k−K+1 v(pj)
)

is a constant at time k, the optimal move by the defender is
to select pk by solving

pk = arg min
i
Pr

v(pi)|
k−1⋂

j=k−K+1

v(pj)

 . (3)

2In some circumstances this may lead to a locally opti-
mal decision that is globally suboptimal as time progresses.
While these conditions are not well defined, our emperical
experience suggests they are not common.

23

Scenario Defender Attacker

Exfiltration Over Difficult Channel min
∑
k C(k) max

∑
k C(k)

Crash the Satellite max [arg mink 1{C(k) = 1}] arg mink 1{C(k) = 1}

Table 2: Threat Scenarios Mapped to Game Objectives

As detailed in [13], this forms a Markov chain of order
K − 1. Effectively, the optimal strategy is to assume the
adversary has been successful for the entirety of the recent
history, such that a success at the current move leads to a
reward for the adversary. One should select the platform
statistically most diverse from the recent history, which can
be defined in a variety of methods, such as common lines of
code or shared modules. While defining this jointly across a
collection of platforms is often infeasible, one may approxi-
mate by assuming conditional independence such that

Pr
(
v(pi)|VK

)
≈

K−1∏
j=1

Pr(v(pi)|v(pk−j)) (4)

= 1 −
∏

pj∈PK
[1− Pr (v(pi)|v(pj))] , (5)

where PK = {pk−1, . . . , pk−K+1} is the set of K−1 previous
platforms. For ease of future notation, let us now define
v(PK) =

⋂k−1
j=k−K+1 v(pj), meaning that each of the prior

K − 1 platforms was vulnerable.

3.2 Adaptive Adversary
We now explore the case for which adversary adaptation

is feasible. In longer-term games, an adversary is able to
observe the strategy of the defender and develop targeted
countermeasures. In these scenarios, systems that are played
more frequently are more likely to become vulnerable. As
such, the defender has two considerations: prevent the ad-
versary from compromising the system and minimize the
probability that the adversary will develop a new exploit for
the presented platform, Pr(E(k)).

The new consideration provides interesting aspects to game
strategies, as it often makes sense for the defender to present
a known vulnerable system in order to prevent the adver-
sary from developing new capabilities. This is due to the
persistence requirement on the adversary; the defender can
maintain the upper hand in the next iteration by invoking
the diversity strategy. Hence, we now define the optimal
strategy as one that solves the following:

pk = arg min
pj

λPr(C(k)) + (1− λ)Pr(E(k)), (6)

where λ is a parameter which trades off the strategic em-
phasis between current (λ→ 1) and future (λ→ 0) success.

Adaptation Model
Let us also define the probability that an exploit has been
developed for p, based on t(p) observations, as

Fp(t(p)) =

∫ t(p)

0

fp (τ) dτ, (7)

the cumulative distribution function evaluated at t(p), where
fp is the probability density function governing exploit de-
velopment. Without loss of generality, we assume that the
adversary begins with no available countermeasures and the

development of a new countermeasure is only possible dur-
ing the turn in which it is presented by the defender. This
assumption can be viewed in the sense that each time a
move is played, additional information is leaked to the ad-
versary which gives additional opportunity for development
of an effective countermeasure. This assumption was relaxed
in Winterrose et. al. [22] when exploring evolving attackers
against static defenders.

Defining Pr(C(k))

Pr(C(k)) is defined similarly to how it was in Eq. (2), al-
though now we must incorporate the probability that an
exploit has already been developed. We are able to define
the probability that a platform pk is vulnerable as

Pr(v(pk)) = Fpi(t(p
k)) + (1− Fpk (t(pk)))×1−

∏
pj∈P\pk

[
1− Fpj (t(pj))Pr(v(pk)|v(pj))

]
= 1−

∏
pj∈P

[
1− Fpj (t(pj))Pr(v(pk)|v(pj))

]
. (8)

Intuitively, this can be viewed as the probability that a coun-
termeasure has been developed specifically for pk added to
the probability that a countermeasure has been developed
for a separate platform pj and works on pk (e.g. a cross-
platform exploit), conditioned on a pk exploit not being de-
veloped. These are the two ways that an exploit for pk could
come into existence3.

Defining Pr(C(k)) in the same way as in Eq. (2), and
therefore conditioning (8), we yield

Pr
(
v(pi)|v(PK)

)
= 1−

∏
pj∈P

[
1− Fpj

(
t(pj)|v(PK)

)
×

Pr
(
v(pi)|v(pj), v(PK)

)]
(9)

≈ 1−
∏

pj∈PK
[1− Pr(v(pi)|v(pj))]×

∏
pj /∈PK

[
1− Fpj (t(pj))Pr(v(pi)|v(pj))

]
, (10)

where the (10) follows (9) from partitioning P into two sets,
noting that Fp(t(p)|v(p)) = 1, and approximating the condi-
tional independence in the same manner as (4). One should
note the similarity to (5), where (10) differs by incorporat-
ing exploits developed for platforms not in the recent history
that may still work on pi.

Defining Pr(E(k))

Of critical importance to an adaptive adversary is consid-
ering not only the short term gains, but also the long term
impact of moves played. Each move leaks information that

3Note that the adversary will not develop an exploit for a
platform she already has available to her.

24

the opponent may use to develop countermeasures, and this
must be factored into the defender’s decision making pro-
cess. Recalling that an adversary can only access a platform
for which she has developed an exploit, one would like to
minimize the probability of developing a new exploit dur-
ing move k, Pr(E(k)). Note that this is strictly with new
exploits; any information leaked about a platform for which
the adversary already has exploited provides no benefit.

We define Pr(E(k)) as the probability that an exploit will
be developed during move k, multiplied by the probability
that the platform is not already vulnerable:

Pr(E(k)) = fpk (t(pk))(1− Pr(v(pk))), (11)

where Pr(v(pk)) is defined as in (8).

Defining λ

When selecting the next move, it is important for the de-
fender to appropriately weight the objectives with respect
to the threat model. Consider, for example, the ‘crash the
satellite’ scenario; the defender’s first priority is to prevent
the crash, then only after that is assured should she con-
sider future impact. Hence, the defender truly wants to
minimize Pr

(
E(k), qv(PK)

)
, which is the probability that

a new exploit will be developed and the entirety of the re-
cent history was not vulnerable – that is, the system cannot
be compromised on this turn. This results in the following
approximation:

Pr
(
E(k), qv(PK)

)
≈ fpk (t(p

k))
(
1− Pr

(
v(pk)

))
Pr

(
qv(PK)

)
.

(12)

Given that the defender’s goal is to jointly minimize Pr(C(k))
and Pr(E(k)), both appropriately conditioned as discussed,
we can minimize the sum of (10) and (12), choosing the
optimal move as

pk = arg min
k
λPr(C(k)) + (1− λ)Pr(E(k)), (13)

where λ = Pr
(
v(PK)

)
. Note that this equation is the orig-

inal goal expressed in Eq. (6) with an optimized value for
λ. This value could easily be adjusted depending on the
goals of the defender, although gains in short term success
(λ→ 1) will lead to increased failure later in the game, while
increased success late (λ→ 0) will lead to earlier short term
failures. Adaptively defining λ each turn will optimally bal-
ance both these criteria.

The derivations for both Eq. (12) and (13) can be found
in Appendix A.

3.3 Deterministic Strategies
For the static adversary, Eq. (3) results in a periodic

scheduling strategy, which oscillates between the K most
diverse platforms. For the adaptive adversary, there is not
necessarily any periodicity derived from Eq. (6), but the
complete sequence of moves can be computed given the ini-
tial move. We note that this determinism is acceptable un-
der the adversary model, as the adversary acts as a follower
and hence observes the defender’s move each turn.

This relation is important to note, as the typical thought
process has been that platform diversity is achieved through
randomization. In fact, the opposite is true; randomization
and diversity are two different criterion that are often or-
thogonal to one another. A strategy that optimizes for ran-
domization would uniformly select from the available plat-
forms, and would almost surely – as k → ∞ – select con-

CentOS Fedora Debian Gentoo FreeBSD

CentOS 1.0 0.6645 0.8067 0.6973 0.0368
Fedora 0.6645 1.0 0.5928 0.8658 0.0324
Debian 0.8067 0.5928 1.0 0.6202 0.0385
Gentoo 0.6973 0.8658 0.6202 1.0 0.0330

FreeBSD 0.0368 0.0324 0.0385 0.0330 1.0

Table 3: Code Similarity Scores, S(i, j), including device
drivers

secutive platforms that are highly similar and vulnerable to
the same exploits. Contrarily, a strategy that optimizes for
diversity returns a deterministic schedule which minimizes
the probability of consecutive platforms with similar vulner-
abilities, according to some measure of similarity.

4. SIMULATIONS

4.1 Set-up
We now demonstrate the optimality of our presented con-

trol strategies through a Monte Carlo simulation, leveraging
a pool of five different platforms: CentOS, Fedora, Debian,
Gentoo, and FreeBSD. We use the Measures of Software
Similarity (MOSS)4 [18] tool to compute a similarity score
between each pair of operating systems. The results are
presented in Table 3, where each similarity is on a scale of
(0-1) where 1.0 implies identical code and 0.0 implies en-
tirely distinct code. The input for each operating system
was the kernel code and a set of standard device drivers. As
discussed earlier, one should notice that FreeBSD is highly
dissimilar to the 4 Linux distributions presented.

During the following simulations, we set K = 3, such that
the adversary must be present for 3 consecutive moves. This
could be viewed, for example, as T = 90 seconds with d =
30 seconds. During each of 500 Monte Carlo (MC) trials
lasting M = 100 moves each, we evaluate five different game
strategies for the defender selection process:

• Uniform: Uniform random selection at each interval
from the fully available set without immediate repeat

• Random 3 : Uniform random selection of K = 3 plat-
forms prior to the trial, then periodic rotation between
them

• Diversity : Optimizing diversity through Eq. (3)

• Evolution: Optimize against the development of new
capabilities with Eq. (11) (only for adaptive adver-
saries)

• Optimal : Optimizing for both diversity and adapta-
tion through Eq. (6) (only for adaptive adversaries)

Throughout the simulations, we compute Eqs. (3) and (6)
by setting Pr(v(pi)|v(pj)) = S(i, j), where S(i, j) is the sim-
ilarity score between pi and pj given in Table 3.

Finally, let us define our metrics, relating back to Ta-
ble 2. The first, related to the ‘crash the satellite’ sce-
nario, is the Time to First Compromise, and is computed
as arg mink 1{C(k) = 1}. This is the time it takes before
the system is fully compromised, that is the minimum value

4http://theory.stanford.edu/∼aiken/moss/

25

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to First Compromise (k)

V
a
lu

e
 o

f
C

D
F

Diversity

Uniform

Random 3

(a) Time to first compromise

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Time Compromised

V
a

lu
e

 o
f

C
D

F

Diversity

Uniform

Random 3

(b) Fraction of time compromised

Figure 1: Evaluation metrics on different migration strategies against a static adversary

of k for which C(k) = 1. The other metric, Fraction of Time
Compromised, is related to the ‘exfiltration over a difficult
channel’ scenario, and is computed as 1

M

∑
k C(k).

4.2 Static Adversary Results
We begin our analysis with the static adversary; one which

has all available moves defined at the start of the game.
Rather than require an extensive set of vulnerability ex-
ploits, we define the moves (e.g. exploits) available to the
adversary by randomly selecting one of the five available
platforms as vulnerable, v(p′). Next, we determine the vul-
nerability status of each other platform i by performing a
Bernoulli trial with a probability of success equal to the
similarity score between p′ and pi. The intuition behind
this setup is that the greater the similarity between plat-
form code, the more likely they share a vulnerability. While
this is not a direct mapping, the intuition enables a robust
analysis, and different measures of similarity could be used.

In Fig. 1a, we plot the cumulative distribution function
(CDF) for the time it takes before the system is fully com-
promised, (e.g. ‘Crash the Satellite’ scenario). Optimizing
for diversity results in system compromise only 2% of the
time, while uniform selection eventually results in system
compromise in 79% of the trials. We note that because the
diversity optimization strategy results in periodic schedul-
ing, if system compromise is going to happen, it does so
nearly instantaneously – either at k = K or shortly there-
after (once the period solution is reached). This is due to the
fact that the system can only be compromised if all of the
platforms in the resultant solution are vulnerable. The same
can be said about the Random 3 strategy, but we note that
performance is significantly reduced due to the increased
probability of drawing 3 platforms that are highly similar.
Contrarily, the Uniform strategy will almost surely result in
system compromise as k → ∞, if there exists K vulnerable
platforms in the fully available set.

To study the ‘Exfiltration over a Difficult Channel’ threat
scenario, we plot the CDF for the fraction of time that the
system is in a compromised state in Fig. 1b. Once again,
optimizing diversity yields far superior performance to other
methods. In 98% of the trials, the system was never com-
promised (note this matches Fig. 1a), while in that other

0 50 100 150
0

0.005

0.01

0.015

Number of observations

f p
(t

)

Figure 2: Adversary evolution model

2% it was compromised for the entire duration. Meanwhile,
uniform migration results in system compromise on average
26% of the time, and only in less than 2% of the trials did it
result in less compromise than diversity optimization (13%
of trials when comparing to Random 3).

The significant difference in performance emphasizes the
need to develop a deployment strategy that is optimal to-
wards the specific threat model of interest. Given the threat
model requiring adversary persistence, deterministically op-
timizing for diversity shows superior performance to attempt-
ing to achieve security through randomization.

4.3 Adaptive Adversary Results
Prior work [3] has stated that uniform strategies are opti-

mal because any defensive strategy that is biased towards
certain moves leaks information to the adversary. More
specifically, an adversary can expend resources developing
countermeasures toward that work best against the defender’s
strategy. Let us now compare different defender strategies
against an adaptive adversary.

Recall from our adaptation model that we assume that
the adversary begins with no available countermeasures and
the development of a new countermeasure is only possible

26

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to First Compromise (k)

V
a
lu

e
 o

f
C

D
F

Diversity

Uniform

Evolution

Optimal

(a) Time to first compromise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Time Compromised

V
a
lu

e
 o

f
C

D
F

Diversity

Uniform

Evolution

Optimal

(b) Fraction of time compromised

Figure 3: Evaluation metrics on different migration strategies against an adaptive adversary

during the turn in which it is presented by the defender. For
these simulations, we leverage a Gamma distribution as our
adaptation model, such that

fp(t) =
1

Γ(φ)θφ
tφ−1e−

t
θ ,

where θ > 0 is the scale parameter, φ > 0 is the shape
parameter, and Γ(·) is the gamma function. The Gamma
distribution can be parametrized to equivalency with many
distributions, including the Gaussian distribution, but we
set the parameters θ = 25, φ = 2 for our simulations. This
distribution is illustrated in Fig. 2, where intuitively the at-
tacker quickly gains knowledge from observation, but even-
tually the information gained diminishes after a number of
observations. We make no claim that this is the proper
distribution for countermeasure development, but note that
the equations computed in Section 3.2 are independent of
the chosen distribution. Hence, any PDF could be swapped
in, and we will analyze this further in Section 4.3.2. In our
current parametrization, E[fp(t)] = 50, meaning that on
average, only 1 usable exploit will be developed5, but there
will be many runs where several exploits will be developed.
We note, once again, that each exploit has a probability of
working on other platforms drawn from a binomial distribu-
tion parametrized by platform similarity; this draw occurs
on the turn the exploit is created and remains constant for
the duration of the MC trial.

We now demonstrate the efficacy of different strategies
against an adaptive adversary. In Fig. 3a, we illustrate the
‘Crash the Satellite’ scenario, and see that the statistically
optimal strategy is indeed optimal empirically. One should
note as well, that the diversity strategy is near optimal. The
strategy which optimizes against adversary evolution is near
optimal for some fraction of MC trials, but diverges in 36%
of trials. This is due to the circumstances for which the ad-
versary was able to develop multiple exploits within the trial.
Meanwhile, the uniform strategy performs the worst by far.
This is once again due to the threat model, as the strat-
egy does not account for adversary persistence. Although
there will not be an immediate repeat in moves played, the

5The 2nd would be developed on the last turn

Diversity Uniform Evolution Optimal

0.213 0.180 0.161 0.165

Table 4: Mean vulnerability rate against adaptive adversary
not requiring persistence

uniform strategy often results in move sequences such as
(pi, pj , pi), which reduces the attack surface by a third.

We present the results for the ‘Exfiltration over a Diffi-
cult Channel’ in Fig. 3b, where similar results are observed.
The diversity strategy is near optimal, as is the evolution
strategy except for 3% of the cases. Once again, the uni-
form strategy is highly sub-optimal due to the threat model
not being considered. In addition to not optimizing against
persistence, the uniform strategy does not consider cross-
platform exploits and will play randomly selected sequences
of similar platforms, leading to increased adversary gain.

We note that in 94% of the trials, the diversity strategy
saw no compromise at all, while the same can be said for
only 49% of the trials with a uniform strategy, and 73% for
the evolution strategy. Contrast this with mean vulnerabil-
ity rate, 1

M

∑
k v(pk), presented in Table 4, which is relevant

only for threat scenarios that do not require adversary per-
sistence, such as exfiltration over an easy channel. That the
diversity strategy is by far the worst stresses that different
strategies are required under different threat models.

4.3.1 Performance vs. Adaptability
Let us now briefly study the impact on adversary adapt-

ability to the strategic performance of the defender. Specif-
ically, we look to explore the impact of different strategies
as a function of how quickly the adversary adapts; this is
governed by µ = E[fp(t(p))] = θ/φ. In Fig. 4, we present
the results over varying values of µ, each plot presenting the
mean value of our defined metrics on a log-scale. While the
diversity strategy is near optimal in most cases, it signifi-
cantly outperforms the statistically optimal strategy for the
rapidly evolving adversary. While the verbiage here seems
counter-intuitive, recall that the optimal strategy considers
the prevention of exploit development; when µ = 1 it results
in a strategy that actually prefers playing a previously used

27

10
0

10
1

10
2

0

20

40

60

80

100

120

µ

M
e
a
n
 T

im
e
 t
o
 F

ir
s
t
C

o
m

p
ro

m
is

e

Diversity

Uniform

Evolution

Optimal

(a) Mean time to first compromise

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

µ

M
e

a
n

 F
ra

c
ti
o

n
 o

f
T

im
e

 S
y
s
te

m
 C

o
m

p
ro

m
is

e
d

Diversity

Uniform

Evolution

Optimal

(b) Mean fraction of time compromised

Figure 4: Evaluation metrics vs. Adversary adaptability (µ)

µ’

µ

10
0

10
1

10
2

10
0

10
1

10
2

20

30

40

50

60

70

80

90

100

(a) Mean time to first compromise

µ’

µ

10
0

10
1

10
2

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Mean fraction of time compromised

Figure 5: Evaluation metrics as a function of model uncertainty

platform over an unused one, as fp(2) < fp(1). This leads
to more certain exploit development (and cross-platform ex-
ploits), while the diversity strategy minimizes the impact
of cross-platform development. It should be noted, how-
ever, that an adversary that if an adversary can adapt that
quickly, the defender is almost certain to lose regardless of
the strategy she deploys.

We also see, once again, that the uniform strategy is highly
sub-optimal, in both threat scenarios. As the adversary evo-
lution becomes slower, the strategy approaches the optimal
solution, but one should note that this regime effectively
leaves the adversary with no moves, such that any strategy
played by the defender is a winning strategy.

4.3.2 Adversary Uncertainty
Throughout the simulations, we have computed the sta-

tistically optimal solution under the assumption that the
defender has perfect knowledge of the adversary adaptation
model. Note that the defender never knows the realizations
of the distribution, but did know the parameterization. We
now analyze the performance against an unknown adversary.
Specifically, we parametrize the adversary with µ, yet com-

pute the statistically optimal strategy with µ′. In Fig. 5, we
plot the contour map of our evaluation metrics over varying
values of (µ, µ′), noting once again the log-log scaling.

The results show that the defender suffers little from mis-
paramterizing the opponent. In fact, the defender suffers
most when she assumes the adversary is rapidly evolving,
even if that is true. As discussed earlier, this leads to an
ineffective sequence of moves that adversely effects the suc-
cess of the adversary. Contrarily, if the defender assumes a
very slowly evolving adversary (e.g. µ′ = 256) at all times,
the performance is roughly equivalent to setting µ′ = µ.
Given that a slowly evolving adversary is essentially static,
the statistically optimal solution is indeed converging to the
diversity strategy, regardless of the opponent being faced.

5. DISCUSSION
It is important to understand that the analyses presented

in this paper are with respect to a very specific threat model:
adversary requires persistence, adversary can observe the
defender’s moves and a single adversary move may be vi-
able against multiple defender moves. We have demon-

28

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Vulnerability Rate

V
a

lu
e

 o
f

C
D

F

Diversity

Uniform

Evolution

Optimal

(a) Mean vulnerability rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Time Compromised

V
a

lu
e

 o
f

C
D

F

Diversity

Uniform

Evolution

Optimal

(b) Fraction of time compromised

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to First Compromise

V
a

lu
e

 o
f

C
D

F

Diversity

Uniform

Evolution

Optimal

(c) Time to first compromise

Figure 6: Uniform strategies perform better in the absence of cross-platform exploits

strated that under these circumstances, a defender strat-
egy that optimizes for diversity approaches the statistically
optimal solution given perfect knowledge of the adversary’s
parametrization. These results proved consistent for both
static and evolving adversaries.

As discussed in the introduction, prior studies [3] have
demonstrated that a uniform deployment strategy is near
optimal for the defender. These results may appear contra-
dictory to our own, but they arise due to a different threat
model. We have demonstrated that if the adversary does
not require persistence – exfiltration over an easy channel –
then a diversity strategy is suboptimal and these scenarios
the strategy of broadening your attack surface is ideal. If the
attacker cannot allocate resources towards adaptation in any
biased and strategic fashion, her gains will be minimized.
Additionally, and more critically, the scenarios for which
uniform defender strategies are optimal do not account for
cross-platform exploits. We illustrate this is Fig. 6, where we
run the simulations in the absence of cross-platform exploits,
such that each attacker move is only viable against one de-
fender move6. One can see that the uniform strategies lead
to much lower rates of vulnerability and compromise than
the diversity strategy, and approach the optimal solution,
which is equivalent to the evolution strategy. On the other
hand, the uniform solution still results in the fastest com-
promise, and this is due to the preponderance of (pi, pj , pi)
sequences as discussed earlier.

While uniform strategies are near optimal against evolving
adversaries on independent systems, we believe that these
scenarios are very rare in reality. While not all adversaries
attacks require persistence, exploits do work against mul-
tiple operating systems, applications, and hardware config-
urations. Defensive systems are not independent from one
another, and this needs to be accounted for when developing
defender strategies.

Predictability
One area for which a uniform strategy shows improvement is
when the attacker and the defender play simultaneously. In
this circumstance, the attacker is unable to first observe the
defender’s move, and must make his choice predicated on
what she thinks the defender will play. For example, when
dynamically allocating spam filters, the defender picks a fil-

6In these simulations we used µ = 30 as to ensure enough
exploits are created.

ter to use against an unseen email, and the attacker sends
an spam message against an unknown filter [3]. In these
game scenarios, being predictable is to the detriment of the
defender, so a deterministic strategy becomes suboptimal.
However, in many scenarios, such as those presented in this
paper, the attacker is able to wholly observe the defender’s
move before determining his own, making a stochastic strat-
egy on the part of the defender yield no benefit.

6. CONCLUSION
In this paper, we have proposed a game theoretic frame-

work for studying moving target strategies using dynamic
platforms. We were able to evaluate different threat scenar-
ios and deployment strategies for both a static and adaptive
adversary, discovering that a preferential platform selection
strategy that optimizes the diversity of moves played con-
verges to the statistically optimal solution. We also demon-
strated that uniformly random selection strategies are highly
suboptimal under the considered threat scenarios.

The key factor in the analysis provided in this paper is
that optimal moving target strategies are highly dependent
on the threat model under consideration. Employing defen-
sive strategies that have not considered the threat model
may result in the illusion of security, when one may actually
be increasing their attack surface. While coupling a platform
diversity system with a control mechanism may significantly
improve its effectiveness, we have demonstrated that this is
unnecessary under some circumstances, as the diversity so-
lution is convergent with the statistically optimal one.

In future work we aim to study the efficacy of strategies
under different conditions. Specifically, we are interested in
changing the game from a leader-follower game to one in
which both players play simultaneously, and studying the
trade-offs between randomization and diversity.

7. REFERENCES
[1] D. Arsenault, A. Sood, and Y. Huang. Secure, resilient

computing clusters: Self-cleansing intrusion tolerance
with hardware enforced security (scit/hes). In
Proceedings of the The Second International
Conference on Availability, Reliability and Security,
ARES ’07, pages 343–350, Washington, DC, USA,
2007. IEEE Computer Society.

[2] A. Bangalore and A. Sood. Securing web servers using
self cleansing intrusion tolerance (scit). In

29

Dependability, 2009. DEPEND ’09. Second
International Conference on, pages 60 –65, june 2009.

[3] R. Colbaugh and K. Glass. Predictability-oriented
defense against adaptive adversaries. In Proceedings of
the IEEE Intl. Conference on Systems, Man, and
Cybernetics, COEX, pages 2721–2727, 2012.

[4] D. A. Holland, A. T. Lim, and M. I. Seltzer. An
architecture a day keeps the hacker away. SIGARCH
Comput. Archit. News, 33(1):34–41, Mar. 2005.

[5] Y. Huang, D. Arsenault, and A. Sood. Incorruptible
system self-cleansing for intrusion tolerance. In
Performance, Computing, and Communications
Conference, 2006. IPCCC 2006. 25th IEEE
International, pages 4 pp. –496, april 2006.

[6] T. Jackson, B. Salamat, G. Wagner, C. Wimmer, and
M. Franz. On the effectiveness of multi-variant
program execution for vulnerability detection and
prevention. In Proceedings of the 6th International
Workshop on Security Measurements and Metrics,
MetriSec ’10, pages 7:1–7:8, New York, NY, USA,
2010. ACM.

[7] P. Larsen, S. Brunthaler, and M. Franz. Security
through diversity: Are we there yet? In Proceedings of
IEEE Security & Privacy, Oct. 2013.

[8] R. B. Myerson. Game Theory: Analysis of Conflict.
Harvard University Press, 1997.

[9] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’07, pages 89–100, New York,
NY, USA, 2007.

[10] F. Networking, I. T. Research, and D. (NITRD).
Federal Cybersecurity Game-change R&D Themes,
2012. http://cybersecurity.nitrd.gov/page/federal-
cybersecurity-1.

[11] H. Okhravi, A. Comella, E. Robinson, and J. Haines.
Creating a cyber moving target for critical
infrastructure applications using platform diversity.
International Journal of Critical Infrastructure
Protection, 5(1):30 – 39, 2012.

[12] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein.
Finding focus in the blur of moving-target techniques.
IEEE Security & Privacy, 12(2):16–26, Mar 2014.

[13] H. Okhravi, J. Riordan, and K. Carter. Quantitative
evaluation of dynamic platform techniques as a
defensive mechanism. In Proceedings of 17th
International Symposium on Recent Advances in
Intrusion Detection (RAID), Sept. 2014.

[14] A. Saidane, V. Nicomette, and Y. Deswarte. The
design of a generic intrusion-tolerant architecture for
web servers. Dependable and Secure Computing, IEEE
Transactions on, 6(1):45 –58, jan.-march 2009.

[15] B. Salamat, A. Gal, and M. Franz. Reverse stack
execution in a multi-variant execution environment. In
Workshop on Compiler and Architectural Techniques
for Application Reliability and Security, 2008.

[16] B. Salamat, A. Gal, T. Jackson, K. Manivannan,
G. Wagner, and M. Franz. Multi-variant program
execution: Using multi-core systems to defuse
buffer-overflow vulnerabilities. In Complex, Intelligent

and Software Intensive Systems, 2008. International
Conference on, pages 843 –848, march 2008.

[17] B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and
M. Franz. Runtime defense against code injection
attacks using replicated execution. Dependable and
Secure Computing, IEEE Transactions on, 8(4):588
–601, july-aug. 2011.

[18] S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, SIGMOD ’03, pages 76–85, New York, NY,
USA, 2003. ACM.

[19] K. Scott and J. Davidson. Strata: A Software
Dynamic Translation Infrastructure. Technical Report
CS-2001-17, 2001.

[20] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser,
J. C. Knight, and A. Nguyen-Tuong. Security through
diversity: Leveraging virtual machine technology.
IEEE Security and Privacy, 7(1):26–33, Jan. 2009.

[21] M. Winterrose and K. Carter. Strategic evolution of
adversaries against temporal platform diversity active
cyber defenses. In Proceedings of Agent-Directed
Simulation Symposium, pages 68–76, April 2014.

[22] M. Winterrose, K. Carter, N. Wagner, and
W. Streilein. Adaptive attacker strategy development
against moving target cyber defenses. In Proceedings
of MODSIM World 2014, April 2014.

APPENDIX
A. DERIVING λ

In this appendix we show the derivations of Eqs. (12) and
(13), which are used to approximate λ, the optimal weight
between objectives in defending the threat model. Recall
the defender aims to minimize Pr

(
E(k), qv(PK)

)
, which is

the probability that a new exploit will be developed and
the entirety of the recent history was not vulnerable. Using
conditional probability, we may condition this as follows:

Pr
(
E(k), qv(PK)

)
= Pr

(
E(k)|qv(PK)

)
Pr

(
qv(PK)

)
= fpk (t(p

k))
(
1− Pr

(
v(pk)|qv(PK)

))
Pr

(
qv(PK)

)
≈ fpk (t(p

k))
(
1− Pr

(
v(pk)

))
Pr

(
qv(PK)

)
,

where the final approximation is derived from the lack of
knowledge of which (or how many) of the recent history was
not vulnerable.

To jointly minimize Pr(C(k)) and Pr(E(k)), we choose
the optimal move as

pk = arg min
k
Pr
(
v(pi), v(PK)

)
+ Pr

(
E(k), qv(PK)

)
≈ arg min

k
Pr
(
v(pi)|v(PK)

)
Pr
(
v(PK)

)
+

Pr
(
E(k)|qv(PK)

)
Pr
(
qv(PK)

)
= arg min

k
λPr(C(k)) + (1− λ)Pr(E(k)),

where λ = Pr
(
v(PK)

)
.

30

