Deepak Diwakar

Deepak Diwakar

San Francisco, California, United States
2K followers 500+ connections

Articles by Deepak

Activity

Join now to see all activity

Experience

Education

  • Indian Institute of Technology, Bombay Graphic

    Indian Institute of Technology, Bombay

    -

    Activities and Societies: Cultural Team, Editor of Hindi Magazine "AAWAAZ"

    My Bachelor project was in continuous time auction based on natural auction mechanism.

    A part of work have been published into a journal under Elsevier publication under "Optical Switching and Networking" in 2008.

Publications

  • Light-mesh — A pragmatic optical access network architecture for IP-centric service oriented communication

    Elsevier - Optical Switching and Networking

    Contemporary deployments of optical access networks are based on the principles of Passive Optical Networks (PONs). PONs deploy a star topology and dual wavelength for communication between the center and ends of a star. The star topology requires that each end-user be connected to the star splitter (usually a passive coupler). We argue in this paper that while adhering to the requirements of access networks, we are able to provide a better topological solution in terms of the cost-factor and…

    Contemporary deployments of optical access networks are based on the principles of Passive Optical Networks (PONs). PONs deploy a star topology and dual wavelength for communication between the center and ends of a star. The star topology requires that each end-user be connected to the star splitter (usually a passive coupler). We argue in this paper that while adhering to the requirements of access networks, we are able to provide a better topological solution in terms of the cost-factor and the ability to upgrade to a greater bandwidth. This solution, called a light-mesh, is based on the concept of pragmatic optical packet transport or light-frames results in a unique node architecture, interconnection matrix, and communication protocols. We begin by investigating into the node architecture that is required for a mesh network in the access area. The proposed node architecture has unique benefits in terms of being able to support the intermittent communication in the access area — nodes are not always powered ON, despite which, it is important to maintain mesh connectivity. Hence we propose the use of largely passive components in node architecture design. Passive components in a mesh lead to collisions of packets in the access area, for which we propose a unique collision detection and recovery scheme based on a logical time-overlap method. Collisions make the end-to-end delay uncertain. Analysis of the associated delay is performed. We then propose algorithms to build such a light-mesh network. These algorithms are investigated in terms of network built-out costs and these costs are compared to a PON topology. Cost differences and a performance comparison with PON are presented as part of the numerical analysis.

    See publication
  • Relative Fairness and Optimized throughput for Mobile Ad Hoc Networks

    IEEE, Communications( ICC '08)

    Although IEEE 802.11 provides several transmission rates, a suitable rate adaptation taking into account the relative fairness among all competitive stations, according to the underlying channel quality remains a challenge in Mobile Ad hoc Networks (MANETs). The absence of any fixed infrastructure and any centralized control makes the existing solutions for WLANs like CARA (collision-aware rate adaptation) [4] not appropriate for MANETs. In this paper, we propose a new analytical model with a…

    Although IEEE 802.11 provides several transmission rates, a suitable rate adaptation taking into account the relative fairness among all competitive stations, according to the underlying channel quality remains a challenge in Mobile Ad hoc Networks (MANETs). The absence of any fixed infrastructure and any centralized control makes the existing solutions for WLANs like CARA (collision-aware rate adaptation) [4] not appropriate for MANETs. In this paper, we propose a new analytical model with a suitable approach to ensure a relative fairness among all competitive nodes of a particular channel. Our model deals with the channel quality while respecting the nodes, based on transmission successes and failures in a mobility context. Finally, each node calculates its own probability to access the channel in a distributed manner. We evaluate the performance of our scheme with others in the context of MANET via extensive and detailed simulations. The performance differentials are analysed using varying network load and transmission range. The simulation results illustrate that our proposed approach ensures a better tradeoff between fairness and throughput.

    See publication

Recommendations received

2 people have recommended Deepak

Join now to view

More activity by Deepak

View Deepak’s full profile

  • See who you know in common
  • Get introduced
  • Contact Deepak directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Deepak Diwakar

Add new skills with these courses