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ABSTRACT

The automatic discovery from data of Functional Dependencies (FDs), and their extensions Relaxed
Functional Dependencies (RFDs), represents one of the main tasks in the data profiling research area.
Several algorithms that deal with the “complex” problem of discovering RFDs have been recognized as
a fundamental tool to automatically collect them starting from data. Moreover, the characteristics of
scenarios involving “big” data require also profiling tasks to evolve towards continuous ones, which
must be capable to dynamically collect and update the set of holding RFDs on the analyzed data.
In this context, one of the most critical scenarios is represented by the possibility to discover RFDs
over data streams. Nevertheless, although the main goal of discovery algorithms is allowing for fast
execution processes, to enable the analysis of the resulting RFDs, it is necessary to also devise methods
to continuously monitor discovery results. Thus, one of the main goals is to reduce the users’ effort
in moving in and out the possible huge quantity of holding RFDs. To this end, in this paper, we
present DEVICE, a tool for continuously monitoring resulting RFDs during the execution of discovery
processes. In particular, it permits to analyze the evolution of results by using a lattice representation
of the search space. Moreover, zooming and filtering functionalities enable the user to focus the
analysis on a specific portion of the search space. The effectiveness of the proposed tool has been
evaluated in a scenario studying the application of different discovery strategies over a well-known
and real-world dataset.

© 2020 KSI Research

1. Introduction

and [15, 25, 4, 7] for RFD discovery. Moreover, recent pro-
posals dealt with incremental or continuous data profiling

Collecting metadata from big datasets is the goal of the
data profiling research area, in which the discovery of func-
tional dependencies (FDs), and their extensions relaxed func-
tional dependencies (RFDs) represents one of its fundamental
tasks. This kind of semantic property describes relationships
among database attributes, which might be exploited in sev-
eral advanced database operations, such as query optimiza-
tion, data cleaning, and so forth. In particular, RFDs relax
some constraints of canonical FDs by admitting the possi-
bility for a dependency to hold on a subset of data (also re-
ferred to as RFDs relaxing on the extent), and/or by relying
on approximate paradigms to compare pairs of tuples (also
referred to as RFDs relaxing on the attribute comparison) [7].

Although the problem of discovering FDs and RFDs from
data is extremely complex, the recent definition of efficient

algorithms enabled their discovery from “big” datasets. Among

these, it is worth to mention [20, 26, 22] for FD discovery,
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scenarios [23, 3, 2]. The latter are particularly useful in cur-
rent application scenarios, such as big data analytic tasks, in
which the possibility to learn predictive models from data
requires to dynamically profile data streams and learn mod-
els from them. To this end, it is necessary to devise methods
and tools capable of visualizing the dynamic evolution of the
discovery results characterizing the profile of a data stream,
and/or of the predictive models of interest. Indeed, a proper
analysis of how RFDs change over time cannot be accom-
plished by looking at such a huge number of holding RFDs
that change very rapidly.

We particularly focus on such kind of scenarios, where
the goal is to get holding RFDs even when the input data
dynamically change over time, permitting the discovery of
REDs also from data streams. The latter scenario imposes
different emerging research challenges, such as the neces-
sity of enabling user i) to continuously monitor and rapidly
visualize discovery results, ii) to analyze how a discovery
process browses the search space according to data are get-
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ting in, and iii) to easily interact with specific portions of
the search space, entailing the focus on a specific portion of
results.

To this end, in this paper, we present DEVICE (DEpen-
dencies VIsualizer on lattiCE), which permits to monitor the
set of RFDs extracted from data streams through a lattice rep-
resentation. Moreover, DEVICE enables the user to interact
with the discovery results by zooming on the search space
and/or filtering results according to specific attributes. Fi-
nally, results can be also filtered according to RFD thresh-
old settings. From an architectural point-of-view, DEVICE
is scalable towards all possible (incremental) RFD discovery
algorithms, also thanks to an input driver connector module
devoted to the parsing of input data, so enabling the stan-
dardization of discovery results.

The paper is organized as follows. Section 2 describes
related visualization approaches and tools. Section 3 presents
the theoretical foundations of RFDs and the representation
used to model the search space of the discovery problem.
Section 4 presents DEVICE, whereas Section 5 reports an ex-
perimental case study on the application of different discov-
ery strategies over a real-world dataset. Finally, summary
and future directions are included in Section 6.

2. Related Work

Big data visualization is an important research area in
which the main goal is to provide effective visualization tech-
niques capable to describe data into their “big”” and challeng-
ing contexts [21, 13]. In fact, not only the dynamic nature
of data increases the complexity of design choices, but also
the necessity to provide insights to users in real-time and to
enable effective interactions with graphical components.

More specifically, there are several contexts in which it is
important to improve the understanding of algorithm/model
results and characteristics, such as the data mining [12, 11],
data privacy [10, 17], and the deep learning [8]. To this
end, in the literature, many approaches and tools have been
proposed. Among these, it is worth to mention Association
Rules (ARs) visualization approaches, since the concept of
AR is somehow related to that of RFD. Effective examples
are i) the tool in [24], which provides multiple views to vi-
sually inspect the overall set of ARs, and ii) the hierarchical
matrix-based visualization technique presented in [9].

Concerning the discovery of RFDs, the availability of ef-
ficient RFD discovery algorithms yields the necessity to man-
age big result sets of RFDs, most of which differ only for
some values of relaxation parameters. However, recently
such algorithms are becoming capable to scale over big data
sources, but there are no many solutions in the literature
for handling the complexity related to the visualization of
a possible huge number of discovered RFDs. Among these,
one of the most effective platforms for data profiling is the
Metanome project [ 18], which embeds several algorithms to
automatically discover complex metadata, including func-
tional and inclusion dependencies. Moreover, it embeds var-
ious result management techniques, such as list-based rank-
ing techniques, and interactive diagrams of discovery results.

Another representative scalable platform for analyzing data
profiles is Metacrate [14], which permits the storage of dif-
ferent meta-data and their integrations, enabling users to per-
form several ad-hoc analysis. In this context, the first pro-
posal for visualizing large sets of RFDs is described in [6]. It
presents several metaphors for representing RFDs at different
levels of detail. Starting from a high-level visualization of
attribute correlations, details are interactively revealed, also
including details on the relaxation criteria.

Although all of the above approaches represent effective
tools to visualize and explore properties and metadata after
the execution of mining/discovery algorithms, a recent pro-
posal goes beyond the only result visualization problem [1],
since it allows users to explore how RFDs change over time,
and to perform result comparisons among different time-slots.
The latter approach shares similar goals to our proposal. Nev-
ertheless, it is mainly focused on the analysis of temporal
trends related to the number of discovered REDs. Instead,
DEVICE is able to represent how discovery results change
into the search space. This characteristic makes it also use-
ful for the analysis of how different algorithms browse the
search space.

3. Background

Before describing the proposed tool we will review some
background definitions on the concept of RFD and the graph
lattice representation.

A relational database schema R is defined as a collection
of relation schemas (R;,..., R,), where each R; is defined
over a set attr(R;) of attributes (Aj,..., A,,). Each attribute
Ay, has associated a domain dom(A;,), which can be finite or
infinite. A relation instance (or simply a relation) r; of R;
is a set of tuples such that for each attribute A, € attr(R;),
t[A;] € dom(Ay), V t € r;, where t[A;] denotes the projec-
tion of 7 onto A;. A database instance r of R is a collection
of relations (ry,...,r,), where r; is a relation instance of R;,
fori € [1,n].

Aiming to improve the quality of database schemas and
to reduce manipulation anomalies, in the context of rela-
tional databases, functional dependencies (FDs) have been
used as means to guide data normalization processes. In par-
ticular, an FD over database schema R is a statement X — Y
(X implies Y') defined between two sets of attributes X,Y C
attr(R), such that, given an instance r of R, X — Y is sat-
isfied in r if and only if for every pair of tuples (¢, 7,) in
r, whenever ;[ X] = 1,[X], then #;[Y] = 1,[Y]. X and Y
represent the Left-Hand-Side (LHS) and Right-Hand-Side
(RHS) of the FD, respectively.

Starting from the canonical definition of FD over 35 ex-
tended definitions have been provided in the literature, which
have been generalized under the concept of relaxed func-
tional dependency (RFD) [7]. In particular, RFDs enable the
consideration of some relaxation criteria, which can lead to
i) the consideration of similarity/difference constraints as at-
tribute comparison method, and/or ii) the possibility that the
dependency might hold for a subset rather than all the tuples.
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RFD definition. Consider a relational database schema
R, and a relation schema R = (A, ..., A,,) of R. An RFD
@ applied on D, C dom(R) is denoted by

Y<e
Xo,— Yo, (H

where

e D, = {t € dom(R) | 7\ c;(t[A;])}
i=1

with ¢ = (¢, ... ,cm)j and each c; is a predicate on
dom(A;);
e X =By,...,Byand Y = Cy,...,C,, with X, Y C

attr(R)and X N Y = @;

e @ = A ¢[B](@ = A ¢[C;], resp.), where
Biex CjeY

¢; (¢, resp.) is a conjunction of predicates on C; (C;,
resp.) withi = 1,...,h (j = 1,...,k, resp.). For
any pair of tuples (t;, t,) € dom(R), the constraint
D, (D,, resp.) is true if #{[B;] and #,[ B;] (tl[Cj] and
12[Cj], resp.) satisfy the constraint ¢; (d)j, resp.) V
ie[l,h] (j €[l,k], resp.).

e V¥ is a coverage measure defined on dom(R), quanti-
fying the amount of tuples violating or satisfying ¢. It
can be defined as a function ¥ : dom(X)Xdom(Y) —
R*, where dom(X) is the cartesian product of the do-
mains of attributes composing X.

e ¢ is a threshold indicating the upper bound (or lower
bound in case the comparison operator is >) for the
result of the coverage measure.

Given r C D, a relation instance on R, r satisfies the
RFD ¢, denoted by r F ¢, if and only if: V ¢[,1, € r, if @,
indicates true, then almost always @, indicates true. Here,
almost always is expressed by the constraint ¥ < €.

As an example, in a database of publications, it is likely
to have a similar Affiliation for authors with the same Email
address and similar Name. In particular, the functional de-
termination should tolerate possible exceptions since authors
might change affiliation over the years. This can be modeled

by means of the following RFD:

w(Name, Email, Affiliation)<0.03

Name 4, Email Affiliation 5
where the comparison constraints (¢, ¢,, and ¢5) use the
edit distance as function, the < as comparison operator, and
4,0, 5 as thresholds for Name, Email, and Affiliation, respec-
tively. In general, the search space of the dependency dis-
covery strategy can be modeled as a graph representation of
a lattice, which is partitioned into levels where level L; con-
tains all attribute combinations of size i. Each node in the
lattice represents a unique set of attributes, and it is linked
to nodes that contain a direct superset or subset of attributes.
In other words, each edge refers to the inclusion relation be-
tween two attribute sets. Thus, a lattice permits to consider

candidate RFDs at each level in terms of lattice’s edges, al-
lowing to represent the LHS and the RHS of an RFD [19].
It is worth to notice that this representation is complete for
FDs and RFDs relaxing on the extent. In fact, to discover RFDs
relaxing on the attribute comparison it is necessary to also
consider all possible dispositions of similarity/distance con-
straints among attributes included in a combination. Never-
theless, for this kind of RFDs we simplified the representa-
tion by visualizing the presence of an RFD as an edge in the
lattice when there exists at least one valid RFD involving the
same attribute combinations.

More formally, let R = Ay, ..., A,, be a relation schema
with m attributes. The corresponding graph representation
of lattice will contain a collection of attribute sets, where
Level 0 contains the empty set, Level I singleton sets, one
for each attribute, Level 2 the pair sets, one for each possible
combination of two attributes, and so forth. Finally, the last
level, namely Level M, will contain a single set of all the
attributes from R. A lattice edge links two attribute sets on
two adjacent lattice levels. For instance, let AB and ABC be
attribute sets on Level 2 and Level 3, respectively, then the
edge e(AB, ABC) represents the candidate AB — C.

The number of RFDs holding on a given set of data can
be very huge, especially when relaxation criteria settings in-
crease. Thus, aiming to provide compact representation on
where the holding RFDs converge in the search space, we
propose DEVICE, which is described in the next section.

4. A tool for analyzing RFDs during discovery
processes

In this section, we describe DEVICE. It enables monitor-
ing of RFDs validated during the execution of a discovery
algorithm. In particular, we first present the system archi-
tecture (Section 4.1), and then provide details on the visual
interface (Section 4.2), and the interactions that a user can
perform (Section 4.3).

4.1. System architecture

Monitoring the RFD discovery results during the execu-
tion of discovery algorithms is a complex problem. In fact, it
is necessary to deal with several issues that affect the choices
of the system architecture: i) the existing discovery algo-
rithms are based on different technologies and frameworks,
so requiring the integration of at least one module to adapt
the system to the different algorithms; ii) the presence of
multiple visualization components expects frequent updates
in a short time, and iii) the number of dependencies pro-
cessed can be large at any instant of time. For these rea-
sons, we proposed a modular client-server architecture for
enabling users to monitor discovery algorithms during their
executions, and interact with the results through a responsive
visual interface. The architecture of the DEVICE is shown
in Figure 1. In detail, the architecture is composed of sev-
eral standalone modules, which share information with other
ones by exploiting the JSON standard. This type of solution
allows DEVICE to ensure high component modularity and
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Figure 1: The system architecture of DEVICE.

Figure 2: An example of lattice visualization.

maintainability, with the aim of updating or replacing any
back-end module by simply adapting its output according to
the JSON standard defined for the interaction.

The interface module on the client-side communicates
with two different back-end subsystems. The first one allows
DEVICE to automatically generate a lattice representation in
JSON format by only considering the number of attributes.
The set of nodes contains all the possible combinations of
attributes on the lattice, while the set of edges contains all
the existing links between two nodes of successive levels.
The Lattice Generator Server receives a request containing
the number of attributes for the lattice, creates the JSON, and
returns its representation to DEVICE.

The second subsystem allows DEVICE to communicate
with the discovery algorithms by exploiting a set of distributed
message brokers. In particular, DEVICE is a web application
distributed on multiple Node.JS server instances, which ex-
ploits the scalability of this technology combined with the

speed of the RethinkDB' real-time database, to create a low
latency and high-performance application. Although the ar-
chitecture ensures flexibility, to make DEVICE compatible
with most FD and RFD discovery algorithms, it has been nec-
essary to integrate several communication modules to adapt
the syntax of the dependencies of each algorithm, and to con-
tinuously monitor the results of each execution. To this end,
the Input Driver Connector receives the dependencies from
the algorithm, manipulates their syntax, and extracts a JSON
version so as to store it in RethinkDB. The latter provides
an internal set of message brokers that continuously store
and send messages to the instance of Node.JS servers. The
Real-Time Visualization Manager listens for messages from
brokers, and decides which visual component manipulates
in the interface.

As said before, the proposed tool is also able to han-
dle continuous discovery algorithms [16] and therefore it re-
quires to maximize fluidity and to minimize processing times

Thttps://rethinkdb.com
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Figure 3: The visual interface of DEVICE during the execution of a discovery process.

within the visual interface. Thus, all selected technologies
for both client- and server-side support real-time updating of
data.

4.2. RFD Visualization

Due to the possible huge number of holding RFDs on a
given set of processed data, systems for RFD visualization
should enable users to analyze results in a compact way, by
also giving the possibility to interact with them. For this
reason, a static representation of discovery results after the
execution of algorithms limits the analysis of how depen-
dencies evolve over time, which is particularly interesting in
dynamic contexts, like in the case of data streams.

The dynamic representation of a large portion of data re-
quires the application of interactive graphs, capable of high-
lighting how information change over time. Hence, a dy-
namic visual representation of the search space has been im-
plemented through a lattice graph representation. It enables
a compact visualization on how holding RFDs converge into
the search space (see Figure 8). As said before, the lattice
permits to show candidate RFDs through the lattice edges,
which connect attribute combinations differing by an attribute,
o to represent in a compact way the LHS (common attributes)
and the RHS (different attribute) of a candidate RFD. The lat-
tice graph is responsible for displaying information about the
candidate RFDs that have been validated during a discovery
process. As shown in Figure 3, the lattice graph can show
different colors during the execution of a discovery process.
In particular, an edge is green when the corresponding can-
didate RFD has been evaluated and validated by the discovery
algorithm. Instead, it assumes a red color when the RFD has
been evaluated, but it is not valid. Finally, yellow edges rep-
resent candidate RFDs that are being analyzed. Aiming to
emphasize the current validation results, DEVICE also uses
colors for lattice nodes. In fact, a node assumes the same

color as the last analyzed candidate RFD involving it.

It is worth to notice that, although we expect that differ-
ent algorithms produce the same resulting set of discovered
RFDs, when they analyze the same data, it is not obvious
how they move in the search space. Thus, DEVICE enables
the comparison among different discovery algorithms and
the analysis of possible bottlenecks during their execution
on a given set of data.

The visual interface of DEVICE also provides different
gadgets enabling users to interact with the lattice graph. More-
over, the vectorial representation of the graph also permits
to zoom on or move each lattice component without losing
the quality of the representation. Details on how users can
interact with the lattice graph are provided in the following.

4.3. Interaction in depth

As mentioned above, aiming to emphasize the discovery
results to a specific part of the search space, users can inter-
act with the lattice graph by simply zooming on a specific
part of the search space, or by moving its components into
the visual interface. To this end, the user places the mouse
pointer in correspondence with a lattice node and drags it
in another place. Consequently, also edges linked to it are
deformed by following the movement. Moreover, it is pos-
sible to filter out some nodes, so reducing the representation
of the search space, by using the button list on the top-right
of the visual interface (also shown in Figure 4(a)). In par-
ticular, each button represents an attribute of the analyzed
data, and the user can select/deselect each of them to be in-
cluded/excluded during the monitoring process. By default,
all attributes appear in the search space. As an example, Fig-
ure 5 shows how the lattice is changed after the exclusion of
the node A.

Concerning the RFD settings, DEVICE permits to visu-
alize discovered RFDs by filtering results according to spe-
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Figure 4: DEVICE gadgets to interact with the lattice graph.

cific relaxation parameters. Figure 4(b) highlights a slider
that enables the user in the definition of a specific range for
the coverage measure threshold. In this way, lattice com-
ponents’ colors appear in accordance with the validation of
RFDs having a satisfiability degree that meets the specified
range bounds. Similarly, it is possible to filter out validation
results in accordance with a range of thresholds composing
difference constraints for the relaxation of the attribute com-
parison method (see Figure 4(c)). In particular, the bounds
defined through the slider represent the range of possible
thresholds that must appear on each attribute involved in can-
didate RFDs. However, as mentioned above, for sake of sim-
plicity, a lattice edge is colored when at least one candidate
RFD satisfies difference thresholds bounded by the range.
Sliders are particularly useful for the analysis of RFD dis-
covery results. In fact, with simple interactions, the user can
evaluate how the set of holding RFDs can change as the relax-
ation settings are modified. Moreover, it is worth to notice
that the interaction with sliders is enabled on the basis of the
monitored algorithm. For instance, when a FD discovery al-
gorithm is monitored, then sliders are set to [0, 0] and cannot
be modified. In this way, no errors and an exact comparison
method (difference equal to 0) are admitted as RFD relax-
ation settings to represent FDs. In general, the same ranges
are also used by default on both sliders, and it is possible
to interact with them in accordance with the RFD category a
discovery algorithm is devoted.

0O0006E

Figure 5: The visual interface of DEVICE after filtering out the
attribute A.

Finally, the icons in Figure 4(d) enable the interaction
with the monitored execution and the downloading of the
lattice graph in several formats. In particular, the first two
icons permit to upload or download the discovery results in a
JSON file, respectively. The third and fourth icons enable the
user to interact with the monitoring process. More specifi-
cally, the third icon permits to refresh the monitoring, by
cleaning the lattice representation, and the fourth one gives
the possibility to reload the lattice representation of the last
execution of a discovery algorithm. Moreover, the colored
lattice representation can be downloaded as an image in the
.png or .svg format by using the second-last and the last icon,
respectively.

5. Monitoring discovery algorithms

In this section, we show the effectiveness of DEVICE on
different algorithms, by considering two different case stud-
ies on real-world datasets and on real sensor-based streams,
with the aim of analyzing how metadata evolves over time.
Moreover, a demonstration video of DEVICE? allows us to
show how the users can interact with the tool during moni-
toring processes.

5.1. Case study on a real-world dataset

In order to verify the effectiveness of DEVICE on a real
scenario, we analyzed discovery results on a real-world dataset.
We selected two different discovery algorithms to analyze
how their discovery strategy browses the search space, aim-
ing to extract the holding RFDs.

The first algorithm involved in our evaluation is the ge-
netic algorithm proposed in [5]. This type of algorithm has
the potential to effectively tackle the problems arising in RFDs
discovery, since they are particularly efficient for global searches
in large search spaces by exploiting operations inspired to
natural species evolutions, such as natural selection, crossover,
and mutation. The discovery process starts with a population
of RFD candidates which is randomly generated during the
initialization phase and evolves by stochastically selecting

2https://youtu.be/QC2FFS0A60
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Figure 6: Monitoring the incremental discovery algorithm during its executions.

multiple candidates from the current population. The algo-
rithm exploits a fitness function to quickly validate each RFD
and select the ones to involve during the evolution phases.

The second algorithm exploits incremental discovery strate-

gies to extract functional dependencies from static and/or dy-
namic datasets [3]. Unlike the genetic algorithm, the incre-
mental approach takes in input a set of candidates valid at
a given instant of time, and returns the dependencies valid
after updating at least one tuple. However, during the initial
execution, the algorithm starts by considering the set of FDs
candidates at the lower level of lattice, i.e. all the FDs with a
single attribute on the LHS, and performs an upward search
strategy of the lattice.

According to the characteristics of the considered algo-
rithms, and to make processes comparable, we set parame-
ters of genetic algorithm to discover canonical FDs. In par-
ticular, we choose the above-mentioned types of algorithms
since they both use several iterations to get results. Never-
theless, their nature is quite different since the genetic algo-
rithm analyzes new RFD candidates at each iteration by al-
ways considering the complete set of tuples; instead, the in-
cremental algorithm analyzes new tuples at each iteration by
considering the RFDs holding at the previous iteration (time-
instant). Our aim is to show the usefulness of DEVICE in
helping users to get insights on how algorithms can explore
the search space.

Although these algorithms have been created with two
different technologies, the Input Driver Connector allowed
us to quickly adapt their output modules to DEVICE. In fact,
this enabled us to monitor their executions on the same dataset,

and compare how they browse the search space. To perform
our evaluation, we ran each algorithm on the Iris dataset by
automatically storing the screen of the lattice approximately
every 1 second. Each screen represents the status of the lat-
tice at any instant of execution time. For the sake of clarity,
we only report the screens at 25%, 50%, 75%, and 100% of
their executions (Figures 6 and 7).

More specifically, figures 6(a) and 7(a) show the evolu-
tion of the discovery process for the incremental and genetic
algorithms, respectively, at the 25% of their executions. We
can notice the difference between the two discovery strate-
gies. In fact, the genetic algorithm starts to consider candi-
dates in the middle of the lattice, and next perform a random
upward search. However, the incremental algorithm first se-
lects candidates from the lowest level, then goes up by per-
forming a targeted search.

Another relevant difference between the two search strate-
gies concerns the validation strategy of the candidates. In
fact, the genetic algorithm exploits an a posteriori valida-
tion strategy of the RFD candidates, which allows to define
the first valid and invalid dependencies only after 50% of the
execution (Figures 7(b), 7(c), and 7(d)). On the contrary,
the incremental algorithm updates the RFDs validated at the
earliest executions according to the dynamic change of the
dataset, and exploits this information to move on the search
space (Figures 6(b), 6(c), and 6(d)). However, as expected
when algorithms end the executions (Figures 6(d) and 7(d))
they obtain the same set of resulting RFDs.

DEVICE provides a concrete representation of the discov-
ery algorithms, allowing users and domain experts to easily
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Figure 7: Monitoring the genetic discovery algorithm during its executions.

monitor each execution phase, and to concretely compare the
different search strategies.

5.2. Case study on a real-world data stream

In our last experiment, we show the usefulness of DE-
VICE on a real-world data stream. In particular, we executed
the algorithm in [3] on data from 1, 000 real sensors spread
throughout Italy, made available by the Openweathermap
portal®. These types of sensors share information about the
weather forecast during the day. The data are frequently up-
dated based on global and local weather models, satellites,
radars, and a vast network of weather stations. In particular,
we selected the following 8 attributes from the data stream:

e Temperature represents the temperature value in the
Kelvin scale (K);

e Feels_like represents the human perception of weather
in Kelvin scale (K);

e Sea_level represents the atmospheric pressure on the
sea level (hPa);

e Grnd_level represents the atmospheric pressure on the
ground level (hPa);

e Humidity represents the rate of humidity;
o Date represents the date of the weather forecast;

e Weather represents the weather condition (e.g. Rain,
Snow, Extreme, etc.);

3https://openweathermap.org/

e Clouds_percentage represents the rate of cloud cover.

We considered a single execution of the algorithm on
weather data streams lasting 4 days. The execution involved
over 40,000 tuples shared by over 1,000 sensors. During
the test, DEVICE continuously monitored the progress of the
discovery algorithm, also storing the results and its status for
different time intervals. Figure 8 shows the resulting FDs for
each time interval. We can notice that the number of result-
ing FDs has a negative trend since the continuous insertion of
new tuples has lead to many invalidations. Moreover, the al-
gorithm in [3] incrementally discovers FDs, which require to
be validated on the entire stream. This means that the initial
number of FDs, i.e. dependencies involving few attributes,
will probably evolve as the algorithm considers new tuples.
To get some insights on the FD validation trend, DEVICE al-
lows us to interact with its interface and explore the search
space to concretely analyze how FDs evolved in this process.

Figure 9 shows the details of the discovery process by
considering three different time intervals, 3, 48, and 96 hours,
respectively. As expected, DEVICE shows that the algorithm
has a large variation in the number of FDs after 3 hours and a
small number of invalid FDs (Figure 9(a)). Moreover, as we
can see, a relevant part of the search space has not been ana-
lyzed. This is due to the fact that the discovery strategy has
already validated some minimal FDs, avoiding the analysis
of candidates that can be directly inferred. Figure 9(b) and
9(c) show that many of the FDs validated after 3 hours, have
been invalidated. Moreover, Figure 9(c) shows that the algo-
rithm also analyzed many of the candidate FDs in the search
space not analyzed before. This is due to the invalidation of
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Figure 8: Resulting RFDs from the executions on real streams.

many dependencies on the right side of the search space. In
fact, after 96 hours, only 14 FDs have been validated.

The evaluation performed on these real-world streams
permits to understand how this kind of tool is able to sup-
port users and domain experts in the analysis of correlations
holding on data streams. In fact, at each instant, an expert
can concretely visualize and evaluate discovery results, and
s/he can also monitor the evolution of holding RFDs over
time. Moreover, the different gadgets embedded in DEVICE
support users to interact with results during the monitoring
process. For instance, the zoom feature (see Figure 9(d))
permits to focus the monitoring only on a specific part of
the search space; instead, the filter feature (see Figure 9(e))
permits to isolate a specific set of RFD candidates. These
two features enable to perform detailed analysis in order to
consider the possibility to re-execute discovery processes on
the same stream configurations, but with a reduced set of
attributes. In general, these kinds of interactions could al-
low users to reduce the complexity of the analysis especially
when they have to monitor big datasets and/or data streams.

6. Conclusion and Future Directions

Information visualization techniques aim, among others,
to facilitate analytical processes and to reduce their interpre-
tation complexity by exploiting, possibly specific or novel,
visual representations. Nevertheless, the current big data
contexts entail several challenging scenarios, where data are
dynamically produced. In particular, in the context of de-
pendency discovery from data streams (i.e., continuous pro-
filing), dynamic data might produce the evolution of many
FDs and/or RFDs. Thus, it is necessary not only to adequate
discovery algorithms to fast execution processes, but also to
allow users to analyze holding RFDs, and how they change
over time. To this end, we have proposed the tool DEVICE,
which relies on a lattice graph representation of the search
space to let users actively visualize holding RFDs in a com-
pact way during the execution of (incremental) RFD discov-
ery algorithms. DEVICE also represents a useful means to
compare different discovery algorithms, and to analyze how
they browse the search space.

In the future, we would like to test the usability of DE-

VICE, by involving domain experts and scientists in the inter-
pretation of discovery results on both incremental scenarios
and algorithm comparison tasks. Thus, based on these re-
sults, we would like to extend DEVICE to better support its
usefulness in the analysis tasks. Moreover, we would like to
lighten the representation of the search space, when it has to
represent big datasets. To this end, we are working on differ-
ent grouping functionalities, which would enable the lattice
graph with the possibility to dynamically change its shape
according to the RFDs validated over time.
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