
© Copyright Khronos Group 2016 - Page 1

Vulkan, OpenGL, OpenGL ES

SIGGRAPH 2016

© Copyright Khronos Group 2016 - Page 2

Agenda
Khronos 3D Graphics BoF Speakers

2:30 Vulkan and OpenGL Status Updates Neil Trevett, NVIDIA
Tobias Hector, Imagination Tech
Tom Olson, ARM

3:00 ISV Experience: Porting Unreal Engine 4 to Vulkan Rolando Caloca Olivares, Epic Games

3:30 ISV Experience: Porting DOOM to Vulkan Axel Gneiting, id Software

4:00 Panel: Best practices for Programming to the Vulkan
API

Chris Hebert, NVIDIA
Tobias Hector, Imagination Tech
Dan Archard, Qualcomm
Rolando Caloca Olivares, Epic Games
Axel Gneiting, id Software

5:00 Panel: Tools for the Vulkan Ecosystem Bill Hollings, The Brenwill Workshop
Kyle Spagnoli, NVIDIA
Karl Schultz, LunarG
Andrew Woloszyn, Google

6:00 Party Time!

© Copyright Khronos Group 2016 - Page 3

SIGGRAPH 2016
Neil Trevett

Khronos President

© Copyright Khronos Group 2016 - Page 4

NEW ARB_gl_spirv OpenGL Extension

• Enables OpenGL driver to ingest compiled SPIR-V code

- Specification released here at SIGGRAPH

- Available today in developer release drivers from NVIDIA

• Accepts SPIR-V output from open source Glslang Khronos Reference compiler

- https://github.com/KhronosGroup/glslang

+
Enables OpenGL to participate in SPIR-V-based toolchain innovations

https://github.com/KhronosGroup/glslang

© Copyright Khronos Group 2016 - Page 5

SPIR-V Ecosystem

LLVM

Third party kernel and

shader Languages

SPIR-V
• Khronos defined and controlled

cross-API intermediate language

• Native support for graphics

and parallel constructs

• 32-bit Word Stream

• Extensible and easily parsed

• Retains data object and control

flow information for effective

code generation and translation

OpenCL C++OpenCL C

GLSL
Khronos has open sourced

these tools and translators

IHV Driver

Runtimes

Other

Intermediate

Forms

SPIR-V Validator

SPIR-V (Dis)Assembler LLVM to SPIR-V

Bi-directional

Translator

Khronos plans to open

source these tools soon

HLSL

https://github.com/KhronosGroup/SPIRV-Tools

New with

ARB_gl_spirv

New with

OpenCL 2.2

And SPIR-V 1.1

© Copyright Khronos Group 2016 - Page 6

OpenGL Driver Support Update
• ARB extension support increased across the board

• Mesa 12.1 released yesterday reaches OpenGL 4.5!

• GLEW 2.0 released today!

- Forward-compatible contexts, adds new extensions, OSMesa and EGL support
- https://github.com/nigels-com/glew.git

http://www.g-truc.net/doc/OpenGL%204%20Hardware%20Matrix.pdf

Khronos significantly

improving OpenGL 4.5

conformance tests
- Release in April

- Working to release as many

tests in open source as possible

https://github.com/nigels-com/glew.git
http://www.g-truc.net/doc/OpenGL 4 Hardware Matrix.pdf

© Copyright Khronos Group 2016 - Page 7

More OpenGL News

9th Edition of the OpenGL Programming

Guide released – includes OpenGL 4.5

with SPIR-V support

Doom4 primary

API is OpenGL

© Copyright Khronos Group 2016 - Page 8

Safety Critical 3D

New Generation APIs for

safety certifiable vision,

graphics and compute
e.g. ISO 26262 and DO-178B/C

OpenGL ES 1.0 - 2003
Fixed function graphics

OpenGL ES 2.0 - 2007
Shader programmable pipeline

OpenGL SC 1.0 - 2005
Fixed function graphics subset

OpenGL SC 2.0 - April 2016
Shader programmable pipeline subset

Experience and Guidelines

Small driver size

Advanced functionality

Graphics and compute

Safety Critical Advisory Panel

Announced Today!
Generating API design guidelines to

enable system certifications

https://www.khronos.org/openglsc/

https://www.khronos.org/openglsc/

© Copyright Khronos Group 2016 - Page 9

OpenGL ES Update

Tobias Hector | OpenGL ES Chair
Lead Software Design Engineer, Imagination

© Copyright Khronos Group 2016 - Page 10

Introduction

• You might have noticed…

- I’m not Tom!

- Really, I’m not just Tom wearing a beard.

• I took the helm in May

- Have been steering this ship ever since

© Copyright Khronos Group 2016 - Page 11

Introduction

• You might have noticed…

- I’m not Tom!

- Really, I’m not just Tom wearing a beard.

• I took the helm in May

- Have been steering this ship ever since

• Tom was an excellent chair for nearly 10 years

- Comfortable

- Sturdy

- Easy to clean

- And saw through 4 OpenGL ES releases!

© Copyright Khronos Group 2016 - Page 12

OpenGL ES Status

• Little demand for a new OpenGL ES at present

- So not announcing one this year

- Keeping an eye on the market for changes

• High demand for making OpenGL ES more robust

- Particularly with regards to WebGL

• Focus on fixes and enhancements

- 3.2 API spec updated last month

- More fixes on the way (including for 3.0 and 3.1 specifications, and ESSL)

© Copyright Khronos Group 2016 - Page 13

ES 3.2 Conformance

• OpenGL ES 3.2 CTS Released!

- Integration of ES tests from AOSP

- Many ES 3.2 tests

• New OpenGL ES CTS Lead

- Alexander Galazin (ARM)

- Elected in May – doing a great job!

• Many companies now conformant

- Nvidia

- ARM

- Verisilicon

- Other submissions pending

© Copyright Khronos Group 2016 - Page 14

Vulkan Update
SIGGRAPH 2016

Tom Olson, ARM | Vulkan Working Group chair

© Copyright Khronos Group 2016 - Page 15

Status

• Vulkan 1.0 launched in February

- Only two months late…

• A complete package

- Specs (API, SPIR-V, Data Formats, extensions)

- GLSL to SPIR-V compiler (glslang)

- Standard loader and validation layers

- Conformance test suite

- Drivers and SDKs

• All Khronos resources in open source

- Software under Apache 2.0

- Specification license on the way

- https://github.com/KhronosGroup/

© Copyright Khronos Group 2016 - Page 16

Adoption and Availability - Hardware

• Conformant GPUs

• Desktop hardware

- AMD GCN (production)

- Intel Skylake and Broadwell (beta, production coming soon)

- NVIDIA Kepler, Maxwell, Pascal (production)

• Mobile hardware

- Samsung Galaxy S7

- NVIDIA Shield / Shield TV

- Google Nexus 5X, 6P, Player, Pixel C (Android N Developer Preview)

- Lots more on the way!

http://www.amd.com/

© Copyright Khronos Group 2016 - Page 17

Adoption - Platforms

• Windows

• Linux

• iOS / MacOS

© Copyright Khronos Group 2016 - Page 18

Adoption – Games and Engines

‘ProtoStar’ demo on Vulkan port of Unreal Engine 4

DOOM on Vulkan port of id Tech 6

DotA 2 on Vulkan port of Source 2

Talos Principle on Vulkan port of Serious Engine

© Copyright Khronos Group 2016 - Page 19

Ports

Community and Ecosystem

A huge amount of activity

on GitHub!

Tools

Tutorials

© Copyright Khronos Group 2016 - Page 20

Community and Ecosystem: What’s New
• Vulkan Conformance Test 1.0.1 nearing release

- 107k total test cases (34% increase vs 1.0.0)

- Substantial coverage improvement

- Thanks Samsung, Intel, Google!

• SDK and Validation Layers progress

- 8 SDK releases over last six months

- All areas of spec have some coverage – growing every day

- 1450+ commits; 222+ GitHub and 180+ LunarXchange issues resolved since launch

• Glslang compiler has partial HLSL support

- See GitHub glslang issue #362 Complete basic HLSL parser

• New tools

- SPIRV-Cross cross-compiler / reflection tool (Hans-Kristian Arntzen, ARM)

- Vulkan-hpp (Markus Tavenrath / Andreas Süßenbach, NVIDIA)

© Copyright Khronos Group 2016 - Page 21

What we’re working on: Vulkan 1.0

• Vulkan 1.0 spec maintenance

- Bug fixes

- Clarifications

- Reference page extraction

- Extensions to fill gaps

• BTW: Putting specs on GitHub was a GREAT idea!

- Fantastic input from community

- Typo and error reports

- Requests for clarification

- Notes on undefined corner cases

• Spending 50% of meeting time on GitHub issues

- Weekly spec update (most weeks)

© Copyright Khronos Group 2016 - Page 22

What else we’re working on: Vulkan Next

• Vulkan Next is in active development

- Core spec in definition

- Some features may come out as extensions

- Schedule TBD

• Top priorities

- Better multi-GPU support

- VR support (e.g. efficient multi-view rendering, direct screen access)

- Cross-API and cross-process sharing

- Subgroup instructions (e.g. shader ballot)

- Generalized renderpass / subpass dependencies

- Rigorous memory model

© Copyright Khronos Group 2016 - Page 23

We need your help!

• Use Vulkan

- At least experimentally

- …and give us feedback

• Contribute to the ecosystem

- All Khronos Vulkan code projects are Apache 2.0

- We need examples, tutorials, demos, tools…

- Note - watch for RFQs forthcoming at www.khronos.org

• Help us promote the API

- Got a cool Vulkan-generated video? Let us host and promote it!

- Send mail to ‘marketing' at khronos.org

Porting UE4 to Vulkan

Lessons learned during Protostar demo

(and beyond!)

Rolando Caloca O.

Epic Games

Intro

• UE4 RHI Architecture in a hurry

• Protostar & Initial RHI

• Optimizations for Protostar

• How the RHI works

• Future plans & challenges

UE4 RHI Architecture in a hurry

• RHI = Render Hardware Interface

– aka our cross-platform way to talk to each Gfx API

Vulkan

UE4 RHI Architecture in a hurry

• Original architecture

– Game Thread enqueues rendering commands

– Rendering Thread generates Vulkan Cmd Buffers

Game Renderer

UE4 RHI Architecture in a hurry

• Improved architecture

– Game Thread enqueues rendering commands

– Rendering Thread generates RHI command list

– RHI Thread translates into Vulkan Cmd Buffers

Game RHIRenderer Vulkan

UE4 RHI Architecture in a hurry

• Finally, multithreaded: N Render threads with M RHI threads

Game

Renderer

Vulkan

Renderer

Renderer

RHI

Renderer

RHI

RHI

RHI

RHI

UE4 RHI Architecture in a hurry

• Why use the RHI command list/thread and not directly

generate Vulkan commands?

– Easier to bring up new RHIs!

– Allows us to decouple frontend/backend which makes multithreading

easier

– We got a CPU improvement ~5 - 10% due to cache locality (both

instruction & data)

Vulkan

• Why?

– Cross-platform, high-performance API

– Predictability

• eg Driver doesn’t mysteriously take different time during the same draw

calls on different runs

– Control over memory allocations, aliasing

– Control over GPU performance

• Flushing caches, etc

– Very similar to D3D12 and Metal

Protostar

• Collaboration between Epic, Samsung, Qualcomm and

Confetti

• Tech Demo showcasing the Samsung S7 phone and the

Vulkan API on mobile

– Help push the industry adoption of Vulkan!

Protostar

Video!

Vulkan RHI 0.1

• One big pool for DescriptorSets

– 32k entries

– Would run out after a while, plus had some sync issues

• All updates to buffers/textures doing in-place map/unmap

– Didn’t work on some drivers as they don’t allow linear textures on

host visible memory

• Immediately after every unmap, submit CmdBuffer and wait

– GPU stalling the CPU during load!

Vulkan RHI 0.1

• Crazy hitching during PSO creation

– We’ll talk about that more later…

• No RHI thread

– Rendering Thread directly generating Vulkan commands

• Barely hitting 20 fps on CPU

Vulkan RHI 0.2

• Optimization time!

– Profile CPU using hierarchical counter and address each bottleneck

• eg DescriptorSet writes were generated every update, so cache them!

• eg Split DescriptorSets into one for Vertex and one for Pixel

• eg Remove tons of dynamic object allocations

– Rinse & repeat!

• After a couple of weeks doing optimization work, got to 30

fps on both CPU & GPU

Vulkan RHI 0.2

• However lots of validation issues…

Vulkan RHI 0.2

• However lots of validation issues…

Vulkan RHI 0.2

• However lots of validation issues…

• Ship it!

Vulkan RHI 1.0

• Demo out of the door!

• Now figure out what is needed to make this usable for full

titles!

– Just come up with a list…

Vulkan RHI 1.0

• Demo out of the door!

• Now figure out what is needed to make this usable for full

titles!

– Just come up with a list…

Vulkan RHI 1.0 Task List

• Cleanup

– Remove all TODOs & hacks

Vulkan RHI 1.0 Task List

• Cleanup

– Remove all TODOs & hacks

Vulkan RHI 1.0 Task List

• Robust & fault tolerant

• Support separate RHI thread

– Then support parallel RHI threads!

• Pass all validation layer warnings!

– Some perf warnings *might* be acceptable…

• eg Pixel shader outputs to disabled attachment

Vulkan RHI 1.0 Task List

• Feature parity with D3D12 & Metal

Vulkan RHI Task list

• Run Kite!

Vulkan RHI Task list

• Run Paragon!

– Same or better than

D3D11!

And Beyond!

• Get the full Editor

running…

Today’s Vulkan RHI

• Today’s state:

– Separate RHI Thread translating commands

– Mobile renderer working

– Decent perf

• Missing optimized Descriptor Set Layouts

– Passing most validation

• Mostly missing image layouts

– Starting to get SM4/Deferred up & running

Today’s Vulkan RHI

• Command Buffers

• Resource Management

• Back Buffer/Swapchains

• Rendering

• Render Passes

• Shaders

• PSOs

• Tools

Vulkan RHI: Command Buffers

• Every RHI thread/Context has a CmdBuffer Manager

• CmdBuffer Manager has a list of persistent CmdBuffers

– Also has an Active and Upload CmdBuffer

• Upload needed as you can’t copy data in the middle of a RenderPass

• Every CmdBuffer:

– Has a Fence and a Counter

• Tracks how many times the Fence has been signaled (Periodically queried,
then reset to unsignaled)

– Knows its state (ReadyForBegin, Inside/OutsideRenderPass, Ended,
Submitted)

Vulkan RHI: Command Buffers

• State Flow

Ready
For Begin

Inside
Begin

Inside
Render

Pass

Ended Submitted

Begin

Begin
Render
Pass

End

Submit

Fence Signaled

End
Render
Pass

Vulkan RHI: Resources

• Buffers, Images, Fences and Semaphores

• Allocating a Resource means acquiring one from its pool

– Could be a reused one

– Could be a brand new one

• Releasing a Resource means not used by the application

• Destroying a Resource means calling vkDestroy*()

Vulkan RHI: Resource Managers

• General Pattern for Managers:

– Has a UsedList, PendingFreeList and FreeList

– Alloc resource

• Is there a matching one in the FreeList? If so return one from there and
move to the UsedList, otherwise make a new one and put in UsedList

– Release resource

• Move from UsedList to PendingFreeList, and store Fence Count

– Periodically (eg once per frame, every CmdBuffer submit)

• Go through FreeList and anything not used for N frames, Destroy

• Go through PendingFreeList, and if the Cmd Buffer’s Fence counter >
Released Fence counter, move to FreeList

Vulkan RHI: Other Managers/Utils

• Buffer SubAllocations

– Manages sub-ranges so we don’t constantly have to create VkBuffers

• Fence Manager

• TempFrameAllocator

– Tape/linear buffer sub allocations, resets every frame (after Fence
signaled)

• Deferred Deletion Queue

– High level releases a ref count ptr of a texture or buffer, which gets
added to this Queue

– This checks Fences and directs it to its appropriate Resource Manager

Vulkan RHI: BackBuffer/Swapchain

• RHI::GetBackBuffer()

– That would be ideal place for calling vkAcquireNextImageKHR()

– But that’s called both inside and outside RHI::BeginViewport() and

potentially multiple times, both on Render and RHI threads

– RHI Thread would have to sync back with Rendering Thread

– One solution would be to have 2 BackBuffers:

• One for Rendering Thread

• One for RHI Thread

– Makes sync with Queues & Presentation hard!

Vulkan RHI: BackBuffer/Swapchain

• Instead: Dummy BackBuffer texture

– Rendering Thread creates new dummy texture if it doesn’t have one

• And Inserts a command for the RHI thread to call vkAcquireNextImage()

– Now Renderer can sets the Dummy BB to nullptr when needed

Render Thread:

RHI Thread:

GetBackbuffer()
if (!BB)
BB=new Dummy
InsertRHICmd()

return BB

AdvanceBackBuffer()
BB=nullptr

ExecCmd: vkAcquireNextImage() Use Acquired Image Index

Vulkan RHI: Rendering (State)

• High-level Renderer:

– SetBoundShaderState(VS, PS)

– SetDepthStencilState(…)

– Draw(A)

– Draw(B)

– SetRasterizerState(…)

– Draw(C)

Vulkan RHI: Rendering (State)

• High-level Renderer:

– SetBoundShaderState(VS, PS)

• Reset BSS state for this thread, mark all state flags dirty

– SetDepthStencilState(…)

• Set DepthStencil state flags dirty

– Draw(A)

• PrepareDraw

– Find PSO with all state flags in cache, or create if needed

– State flags marked as no longer dirty

• vkCmdDraw()

Vulkan RHI: Rendering (State)

• […]
– Draw(B)

• PrepareDraw

– NoOp (no dirty flags), use current PSO

• vkCmdDraw()

– SetRasterizerState(…)

• Mark Rasterizer state flags as dirty

– Draw(C)

• PrepareDraw

– Find PSO with all state flags in cache, or create if needed

– State flags marked as no longer dirty

• vkCmdDraw()

Vulkan RHI: Rendering (Resources)

• High-level Renderer:

– SetBoundShaderState(VS, PS)

– Draw(A)

– Draw(B)

– SetTexture()

– Draw(C)

Vulkan RHI: Rendering (Resources)

• High-level Renderer:
– SetBoundShaderState(VS, PS)

• Mark dirty DescriptorSet Write list

– Draw(A)

• PrepareDraw()

– If dirty Write list

» Get new DescriptorSets from Pool, update and bind

» Set Write list to not dirty

• vkCmdDraw(…)

– Draw(B)

• PrepareDraw()

– NoOp as no dirty write list

• vkCmdDraw(…)

Vulkan RHI: Rendering (Resources)

• […]

– SetTexture()

• Update Write list and set to dirty

– Draw(C)

• PrepareDraw()

– If dirty Write list

» Get new DescriptorSets from Pool, update and bind

» Set Write list to not dirty

• vkCmdDraw(…) and set not dirty Write list

Vulkan RHI: Render Passes

• UE4 has no concept of Render Passes

– SetRenderTargets(…)

– Draw(…)

– CopyToResolveTarget(…)

– SetRenderTargets(…)

– Draw(…)

– Dispatch() [Compute]

– Draw(…)

– SetRenderTargets(…)

– Draw(…)

Vulkan RHI: Render Passes

• No good way (yet) for tracking transitions

– The Renderer can also be multithreaded!

– Renderer can switch to compute workloads w/o knowledge of

previous state

• Tied also to resource/layout transitions/barriers

– Started exposing resource transitions in the RHI but not enough info

• Still active area of research

– Might need to expose it at the higher level

Vulkan RHI: Shaders

• Shaders are written in hlsl (usf files)

• Use hlslcc to convert from hlsl->glsl

– Then converted to SPIR-V using glslang lib from the VulkanSDK linked

into the Engine

• Might have a direct SPIR-V backend for hlslcc

– Will depend on extensions/features

Vulkan RHI: PSOs

• UE4 compiles shaders conservatively

– Runtime matching of vertex/pixel shaders

• Any combination can be done at runtime

– eg Blueprint dynamically adds a point light

• Might have N vertex shaders, M pixel shaders

– Unfeasible to pre-compile all combinations!

– Have to create at runtime, causing hitches

Vulkan RHI: Shader Pipelines

• We already had added support for ShaderPipelines

– Declare Vertex+Pixel stages at compile time

• But not all passes support it yet (only Depth and Velocity currently)

– Used to remove unused interpolators between Pixel & Vertex

shaders as some architectures benefit from it

– Original plan was to migrate this into PSOs

• But still need all the rest of the state specified to be useful!

Vulkan RHI: Protostar

• We needed something so the demo wouldn’t hitch

– First run-through experience not awesome due to so many PSOs

being created

– Couldn’t use ShaderPipelines as many passes not yet converted

– Solution: Pipeline Cache!

Vulkan RHI: PSO Cache

• Cache:

– Add every new unique PSO to a runtime cache off a hash from the
render states and shader microcode’s CRC

– Trigger a save command from console and serialize to disk

– At load time if the file is there, pre-create the PSOs

– Two levels: Local cache inside BoundShaderState, and global one

• Is PSO key inside local BSS? Yes -> return local BSS copy

• Is PSO key inside global BSS? Yes->copy to local BSS and return

• Otherwise, create new PSO and add to both global and local caches

– Virtually hitch-free in the final demo!

Vulkan RHI: PSO Cache

• Issues:

– Shader code changes all the time

– Out of sync whenever materials get tweaked

– Doesn’t catch all cases… gotta catch ‘em all!

– Some studios don’t have the resources to have QA running through

the full game

– Cache can be YUGE

• Really need a better solution…

Vulkan RHI: PSO Plans

• Plan A: Started prototyping real PSO support

– Still researching API and impact to codebase

• Plan B: Doing research for specifying a ‘general’ PSO with

some common/default state

– Use derived pipelines [VK_PIPELINE_CREATE_DERIVATIVE_BIT] to

get faster compiles

– We do know *some* PSOs that might be needed at load time

• Just not all of them

Vulkan RHI: PSO Plans

• Plan C: On the RenderThread, when creating a PSO we can
start compiling an unoptimized version
[VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT] in
another thread

– Hopefully it compiles faster!

– With enough latency between RenderThread and RHI Thread, might
be enough time to hide the hitch!

• Meanwhile on another thread compile the optimized version and swap
once its done

• Plans orthogonal and final solution probably a mix of all

Vulkan RHI: Tools

• You’re only as good as your tools ;)

• Use Vulkan’s Validation Layers!

– BOLO for yesterday’s BoF on Vulkan Tools Loader and Validation

session from Khronos

Vulkan RHI: Tools

• Use RenderDoc!

– https://renderdoc.org/builds

– Vital on UE4 for tracking/diagnosing issues

• Not just for Vulkan! (D3D11, OpenGL)

– Use Debug Markers and Object Names

• http://www.saschawillems.de/?page_id=2017

https://renderdoc.org/builds
http://www.saschawillems.de/?page_id=2017

Vulkan RHI: Closing…

• But wait, there’s more!

– Plans on investigating:

• Render Subpasses

• Push Constants

• Reworking Descriptor Set Layouts

• Drivers are greatly improved, but you’ll still run into BSODs

– Report bugs to IHVs with repro steps

– At least get one card from each major vendor

• Helps you determine if it’s a driver issue or a bug in your code

Thanks!

Q?

@rcalocao

Rendering,

Core Rendering,

Mobile Rendering

&

Platform Teams

Samsung,

Qualcomm &

Confetti

Porting DOOM
to Vulkan

SIGGRAPH 2016

Axel Gneiting

id Software

Agenda

• Demo & short idTech 6 overview

• Porting to Vulkan
• Shaders, pipelines & states

• Descriptor Sets

• Multithreading

• Image layouts & barriers

• Memory & synchronization

• Asynchronous compute

• Results & Future Work

DOOM

Video

idTech 6

• PC OpenGL & Vulkan, PS4, Xbox One

• DOOM and future id Software titles

• 60+ Hz on all Platforms

• Shader syntax similar to HLSL
• Translated to PSSL/HLSL/GLSL at build time

CPU

• Parallel command buffer generation
• Split up into several “contexts” per frame

• Each contexts owns command buffer

• For each context we run multiple jobs to fill CB

• Last job in frame submits command buffers to GPU

• OpenGL runs sequential on one thread
• Some scene preparation work is still in jobs

GPU

• Clustered forward shading with some deferred

• Same shader for most of the geometry
• Same set of textures too (virtual texturing)

• Very few state changes

• Extensive post process
• DoF, Temporal AA, SSDO, motion blur, etc.

• Lots of asynchronous compute
• DXT encode, particles & post processing

Porting to Vulkan

• Started 2015 with an early version
• Wrote most of the Vulkan backend code

• Got first triangle rendering

• Picked it up in late March 2016 again

• Was mostly running at game launch
• RenderDoc helps, even better now!

• Small issues delaying release 
• Driver issues

• Swap chain surprisingly hard to get right

Porting to Vulkan

• Validation layers were unreliable back then

• Lots of false errors

• Had to write some validation code ourselves

• Validation layers much better now

• Still good to have own validation for debugging

Shaders

• Already had GLSL translator
• But OpenGL was binding by name

• Vulkan uses binding IDs at pipeline creation

• Using AMD extensions if available
• Variant for all shaders

• AMD_shader_ballot & AMD_gcn_shader

Shaders

• Normalized clip space is upside down
• Shader generator adds gl_Position.y = -gl_Position.y at end of

every vertex program

• Can we please have an extension that fixes this?

• Platform differences are a waste of time

• Z range is good: [0,1] 

Pipelines & States

• Abstraction layer still old style API like

• Need to emulate stateful API & track states

• Hash table for pipelines, render passes & frame buffer states
• Way smaller perf overhead than thought

• Dynamic state for scissor/viewport/stencil and depth bias

• Only ~350 total graphics pipelines for entire game

Pipelines & States

• Pipeline creation expensive
• Lookup misses unacceptable at runtime

• Some pipelines take 100+ ms to compile

• Solution
• Play game and serialize states to disk

• On startup launch jobs to compile pipelines

• Fairly robust, missed pipelines would just cause stalls for player

Descriptor Sets

• No deletion of Vulkan objects while playing
• Geometry statically loaded

• Textures virtualized

• Got away with a descriptor hash table

• One big descriptor set for each combination

• Complete table flush if a Vulkan handle gets deleted
• Level load & unload, etc.

• About 3-4k descriptor sets usually

Descriptor Sets

• Dynamic uniforms written to ring buffer

• Thread safe allocation from ring with atomics
• 256 byte align allocations for simplicity

• Bound with UNIFORM_BUFFER_DYNAMIC
• Offset set as vkCmdBindDescriptorSets parameter

• Also used UNIFORM_BUFFER_DYNAMIC for skinning data
• Baked range problematic

• Got away with 64kB range for everything

• Alternative would have been way more descriptor sets

Multithreading

• Mostly straight forward port from consoles

• Image layouts problematic (more soon)

• Double buffered CBs per context

• Read/write locks for state hash tables
• Never blocks if no state misses

Image layouts & barriers

• Image layouts were a big headache
• 25+ barriers per frame

• Hundreds of layout changes

• Combining as many barriers as possible

• Knowing last image state difficult
• We only specify the new state in code

• But parallelism makes complete automatic tracking impossible

Image layouts & barriers

• Automatic tracking inside each context / CB

• Not many images used across CBs

• Start of frame: Set state for start of CB to fix up missing tracking

• End of frame:
• Go over transitions & determine initial next frame state

• Validate image transitions

• No vkCmdSetEvent/vkCmdWaitEvents right now

Image layouts & barriers

t

ATTACHMENT_WRITE

SHADER_READ

CPU

ATTACHMENT_WRITE
Barrier

SHADER_READ
Barrier

Context 1

Context 2

Memory

• Simple block allocator
• Split into max 128 MB pieces

• Try smaller allocation until allocation succeedes

• Or falls back to system memory if allocations fail in VRAM

• Resizable images allocated individually

• NVIDIA problematic under pressure (2GB)
• Lots of fixes in driver by now

• Use NV_dedicated_allocation if possible

Memory

• All uploads through common manager

• Double buffered host staging memory

• Each staging buffer associated with
• Command buffer

• Fence

• If buffer is full, write fence at end of CB and submit

• Wait on fence before reuse

• Flush host visible ranges before graphics submits

Synchronization

• Double buffering everywhere
• Wait for command buffer fence on CPU

• Minimizes latency

• GPUView is your friend!
• Much more useful than with OpenGL/DX11

• Swap chains are tricky
• Make sure acquire & present always matching

• Acquire as late as possible (avoids stalls)

Semaphore Wait

Semaphore Signal

Present

Work (Submit)

API Calls

Asynchronous Compute

• Useful for leveraging wasted GPU idle time
• E.g. during shadow & depth pass

• GPU particles & post process

• Post process overlaps with beginning of next frame
• Present from compute queue on AMD

• NVIDIA still working on driver support

• Using SHARING_MODE_CONCURRENT for render targets
• Careful, might be slower

Results

• Very pleased with performance gains

• 60%-70% in some scenes on AMD in GPU limit
• Faster than OpenGL even without async/intrinsics

• NVIDIA GPU time about the same

• Render CPU limit is mostly gone
• People reporting 60+ Hz in power saving mode

• Lots of potential

Future Work

• Prepare image barriers & layouts at beginning of frame

• Remove hashes and make high level code aware of states

• Know exactly what pipelines are used in game

• Better use of render passes (sub passes, layout transitions)

Future Work

• Split barriers (vkCmdSetEvent/vkCmdWaitEvents)

• Command buffer reuse (e.g. deferred passes & post process)

• More asynchronous compute

• Asynchronous transfers

Thanks

• Jean Geffroy, Tiago Sousa, Billy Khan & the whole team at id
Software

• Baldur Karlsson for RenderDoc

• AMD and NVIDIA for help on Vulkan port

• Make sure to play the game!

We are Hiring

• Various openings across
Zenimax Studios !

• Please visit
https://jobs.zenimax.com

© Copyright Khronos Group 2016 - Page 1

Panel: Best Practices for Programming to the Vulkan API

Rolando Caloca
Sr. Rendering Engineer

Vulkan port of Unreal Engine 4

Tobias Hector
Software Design Engineer, PowerVR

API and Extension Development

Dan Archard
Principal Engineer, ACG Team

Getting the most out of Vulkan

on Qualcomm HW

Axel Gneiting
Senior Engine Programmer

Ported Doom to Vulkan

Chris Hebert
Developer of Technology Engineer

Optimizing Cuda, OpenGL, & Vulkan

for ISVs targeting Nvidia HW

© Copyright Khronos Group 2016 - Page 2

Memory Transfers and Pipeline Barriers

Chris Hebert

Developer of Technology

Engineer

Chris Hebert, Dev Tech Software Engineer, Professional Visualization

Moving Forward with Vulkan
Pipelining Memory Operations

4

NVIDIA/KHRONOS CONFIDENTIALNVIDIA/KHRONOS CONFIDENTIAL

Agenda
• CPU -> GPU Transfers

• Pipeline Barriers

5

NVIDIA/KHRONOS CONFIDENTIALNVIDIA/KHRONOS CONFIDENTIAL

CPU->GPU Transfers

6

NVIDIA/KHRONOS CONFIDENTIAL

2 objects of compatible types aliasing
memory

Vulkan exposes several physical memory pools – device memory, host visible, etc.

Application binds buffer and image virtual memory to physical memory

Application is responsible for sub-allocation

Low-level memory control
Console-like access to memory

Physical pages

Bound objects

Meets implementation alignment
requirements

Has GPU virtual address

NOT ALIGNED

7

NVIDIA/KHRONOS CONFIDENTIAL

Resource management
Allocation and Sub allocation

HEAP supporting A,B HEAP supporting B

Allocation Type A Allocation Type B

Image

...

... ... Buffer

Allocate memory type from heap

Query resource about size, alignment & type requirements

Assign memory subregion to a resource (allows aliasing)

BufferView BufferViewCreate resource views on subranges of

a buffer or image (array slices...)

8

NVIDIA/KHRONOS CONFIDENTIAL

Vulkan exposes several heaps of different types

Vulkan heaps support different properties

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT Fastest to access from GPU

• VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT Slower but visible from CPU

• VK_MEMORY_PROPERTY_HOST_COHERENT_BIT No need to flush/invalidate

• VK_MEMORY_PROPERTY_HOST_CACHED_BIT Faster, may need to flush/invalidate

• VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT Device only, but allocated at a later time

Resources
Give Vulkan something to work with

NVIDIA/KHRONOS CONFIDENTIAL

9

NVIDIA/KHRONOS CONFIDENTIAL

Resources
PCIe vs SoC(UMA)

NVIDIA/KHRONOS CONFIDENTIAL

HOST_VISIBLE OR DEVICE_LOCAL HOST_VISIBLE AND DEVICE_LOCAL

Type 1 : DEVICE_LOCAL
Type 2 : HOST_VISIBLE | HOST_COHERENT
Type 3 : HOST_COHERENT | LAZYILY_ALLOCATED

Type 1 : DEVICE_LOCAL
Type 2 : DEVICE_LOCAL | HOST_VISIBLE | HOST_COHERENT
Type 3 : DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED

10

NVIDIA/KHRONOS CONFIDENTIAL

Staging memory
Using staging buffers

Host Visible Memory
(slower)

Map Memory & Copy

Device Local Memory
(fast!)

Copy

HOST

NVIDIA/KHRONOS CONFIDENTIAL

Copy using graphics or DMA queue

11

NVIDIA/KHRONOS CONFIDENTIAL

Staging memory
Using staging buffers

Host Visible Memory
(slower)

Map Memory & Copy

Device Local Memory
(fast!)

Copy

Copy using graphics or DMA queue

HOST

NVIDIA/KHRONOS CONFIDENTIAL

Is my memory ready to copy to the device?

Not necessarily…..

12

NVIDIA/KHRONOS CONFIDENTIAL

Staging memory
Using staging buffers

Host Visible Memory
(slower)

Map Memory & Copy

Device Local Memory
(fast!)

Copy

HOST

NVIDIA/KHRONOS CONFIDENTIAL

If VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

Is supported on the heap, then no need to flush.

Otherwise, blocking call to :

VkResult vkFlushMappedMemoryRanges(

VkDevice device,

uint32_t memoryRangeCount,

const VkMappedMemoryRange* pMemoryRanges);

Will flush any memory still to be written.

13

NVIDIA/KHRONOS CONFIDENTIAL

Staging memory
Using staging buffers

Host Visible Memory
(slower)

Map Memory & Copy

Device Local Memory
(fast!)

Copy

Now we know memory is written to host visible mem,
Copy using graphics or DMA queue

HOST

NVIDIA/KHRONOS CONFIDENTIAL

14

NVIDIA/KHRONOS CONFIDENTIAL

Memory synchronisation
Using pipeline barriers

NVIDIA/KHRONOS CONFIDENTIAL

In any application, both reads from and writes to memory take place frequently.

Potential for hazards even in single thread.

Examples (by no means exhaustive):

• Staging large uniform or vertex buffer updates

• Reading from texture rendered to in a previous pass

• Staging large buffer for compute work.

15

NVIDIA/KHRONOS CONFIDENTIAL

Staging memory
Using pipeline barriers

Host Visible Memory

Map Memory & Copy

Device Local Memory
(fast!)

Copy

Copy using graphics or DMA queue
HOST

NVIDIA/KHRONOS CONFIDENTIAL

But is our memory actually here yet?

Read from
device memory
In some pipeline stage

Command Buffer(s)

16

NVIDIA/KHRONOS CONFIDENTIAL

Staging memory
Using pipeline barriers

Host Visible Memory

Map Memory & Copy

Device Local Memory
(fast!)

Copy

HOST

NVIDIA/KHRONOS CONFIDENTIAL

Read from
device memory
In some pipeline stage

Insert a vkCmdPipelineBarrier

into the command buffer

17

NVIDIA/KHRONOS CONFIDENTIAL

Staging memory
Using pipeline barriers

NVIDIA/KHRONOS CONFIDENTIAL

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers);

All of these must be complete…..

… before any of these execute.

(e.g.
VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT
VK_PIPELINE_STAGE_TRANSFER_BIT)

18

NVIDIA/KHRONOS CONFIDENTIAL

Staging memory
Using pipeline barriers

NVIDIA/KHRONOS CONFIDENTIAL

Can take arrays of :

VkMemoryBarrier - Global barrier for all memory types

VkBufferMemoryBarrier - Scoped to a range defined by the buffer

VkImageMemoryBarrier - Can also perform layout transitions (where applicable)

typedef struct VkMemoryBarrier {
VkStructureType sType;
const void* pNext;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;

} VkMemoryBarrier;

All of these must complete
with the srcStageMask of
the pipeline barrier

All of these must complete
with the dstStageMask of
the pipeline barrier

e.g.
VK_ACCESS_SHADER_READ_BIT
VK_ACCESS_SHADER_WRITE_BIT
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT

19

NVIDIA/KHRONOS CONFIDENTIAL

Updating Buffers
vkCmdUpdateBuffer

NVIDIA/KHRONOS CONFIDENTIAL

Great for UBO’s or small VBO’s

No need to stage

Better for the performance path

Limited to 64k transfers

Still treated as transfer operation; use a memory barrier

Must take place outside of a render pass

void vkCmdUpdateBuffer(
VkCommandBuffer commandBuffer,
VkBuffer dstBuffer,
VkDeviceSize dstOffset,
VkDeviceSize dataSize,
const uint32_t* pData);

20

NVIDIA/KHRONOS CONFIDENTIAL

Optimal Transfers
A few tips.

NVIDIA/KHRONOS CONFIDENTIAL

Keep transfers to a minimum

Batch if possible

Keep data on the GPU if possible

Use compute for updates, pass parameters as push constants

Try to keep transfers off the performance path

Transfer when you have time.

Use barriers as late as possible

Don’t hold up the queue unnecessarily

Ping Pong/Double Buffer

Use one buffer while the other transfers

21

NVIDIA/KHRONOS CONFIDENTIAL

Conclusion
Takeaways

NVIDIA/KHRONOS CONFIDENTIAL

Vulkan memory is programmable

Sub allocate whenever feasible

Use the right heap for the right job

Stage memory to fastest heap where appropriate

Make sure caches are flushed when you need the memory

Make sure transfers are complete when you need the memory

Keep transfers to a minimum and off the performance path

22

NVIDIA/KHRONOS CONFIDENTIALNVIDIA/KHRONOS CONFIDENTIAL

Thank You Enjoy Vulkan!!

Questions?
Chris Hebert, Dev Tech Software Engineer, Professional Visualization

© Copyright Khronos Group 2016 - Page 24

RenderPass Usage

Tobias Hector

Software Design Engineer

www.imgtec.com

Tobias Hector, Leading Software Design Engineer

27th July, 2016

Best Practices:
Render Passes & Scheduling

© Imagination Technologies Master template Confidential 06sep2015 26

What is a Render Pass?

 Unique feature of Vulkan

 Allows multiple passes to be scheduled efficiently

 Explicitly calls out how tile-based GPUs should operate

 Benefits across all GPUs

 Scheduling benefits on all GPUs

 Bandwidth and memory savings on tile based GPUs

 Huge enabler for portability

 Best way to do e.g. Deferred Shading, for all vendors

 No need for vendor-specific extensions (e.g. Pixel Local Storage)

© Imagination Technologies Master template Confidential 06sep2015 27

Efficient scheduling

 Scheduling work is involved

 See my previous presentation: https://bit.ly/keepyourgpufed

 Need to consider exactly when things need to happen

 Scheduling effectively means having knowledge of the future

 Synchronization primitives describe the present and past

 Requires very careful app management

https://bit.ly/keepyourgpufed

© Imagination Technologies Master template Confidential 06sep2015 28

Render pass dependencies

 Render passes describe future work

 Dependencies between sub passes

 No implicit order between sub passes

 Drivers can compile these structures

 Can construct an optimised dependency graph

 Future work can be scheduled extremely efficiently

 Graham Sellers’ talk: http://bit.ly/renderpasses-amd

 Render pass instances use this graph

 Acts as a framework in which to execute draw commands

http://bit.ly/renderpasses-amd

© Imagination Technologies Master template Confidential 06sep2015 29

Additional benefits

 Tile-based GPUs get an extra boost

 Sub passes can be merged – keeping G-Buffer-like data completely on-chip

 No bandwidth required!

 Some direct renderers may avoid cache flushes

 Savings on the order of GB/s

 If you don’t need to read/write from RAM…

 Then don’t even allocate attachments in the first place

 Can represent significant memory savings for high resolutions

 E.g. One 1080p RGBA8 attachment is ~8MB

As if that wasn’t enough…

© Imagination Technologies Master template Confidential 06sep2015 30

Best Practices

 Put as much possible in as few render passes as possible

 Even passes that don’t depend on each other!

 E.g. Multiple shadow map generation passes

 Most apps should need just 1 or 2!

 Use subpass dependencies

 Instead of barriers or events

 Use initialLayout/finalLayout

 Instead of explicit image transitions

© Imagination Technologies Master template Confidential 06sep2015 31

Best Practices

 Use Load and Store Ops!

 Use DONT_CARE liberally

 Use CLEAR instead of vkCmdClearAttachment/vkCmdClearImage

 Use MSAA resolve attachments

 Instead of vkCmdResolveImage

 Use TRANSIENT_ATTACHMENT_BIT and LAZILY_ALLOCATED_MEMORY

 No need to allocate memory on some architectures!

© Imagination Technologies Master template Confidential 06sep2015 32

Conclusion

 Render passes are awesome

 We’re going to continue to make them even more awesome

 You should definitely use them

 They are not scary or difficult, I promise

 (well, no more than Vulkan already is…)

 If you have any questions, please ask me!

 Either during the panel or afterwards

 I’m very friendly

 Also on twitter: @TobskiHectov

© Copyright Khronos Group 2016 - Page 33

Pipeline State Object Caching

Dan Archard

Principal Engineer

Pipeline State Object Caching

Dan Archard
Principal Engineer, ACG

QCT

July 11, 2016

Qualcomm® Snapdragon™ is a product of Qualcomm Technologies, Inc.

35

• … because it’s one of the easiest optimizations you’ll ever make!

• Perfect PSO creation isn’t always viable

• DX9/DX11 rendering interface, script driven rendering state etc.

• PSOs created on the fly are the reality

• Creating pipelines can be SLOOOOOOOOOOWWWWWW!

• … so it hitches like crazy

• There’s a bunch of redundant work happening during PSO creation

• GLES took care of this for you

• Use case from Epic Games Protostar

Why do we care?

36

Epic Games Protostar*

PSO create time break-down

Linking
56%

Compilation
42%

All other PSO
processing

2%

37

Redundant
Compile

62%

Unique
Compile

38%

Compile

Epic Game Protostar*

Redundancy

Redundant
Link
46%

Unique Link
54%

Link

38

Possible solutions to speed up PSO creation

Shader State

Vertex Input

Input Assembly

Tessellation

Viewport

Rasterization

Multisample

Depth Stencil

Color Blend

Viewport

Scissor

Line Width

Depth Bias

Blend Constants

Depth Bounds

Stencil Cmp Mask

Stencil Write Mask

Stencil Reference

alphaToCoverageEnable=VK_TRUE

Shader State

Vertex Input

Input Assembly

Tessellation

Viewport

Rasterization

Multisample

Depth Stencil

Color Blend

Multisample

Shader State

Vertex Input

Input Assembly

Tessellation

Viewport

Rasterization

Multisample

Depth Stencil

Color Blend

Dynamic Pipeline State
• Limited what state can change

Derived Pipelines
• Vendor specific

• Difficult to plug in to most engines

Pipeline State Cache

39

Creating a pipeline

Pipeline cache

VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
// ...

VkPipeline pipeline;

VkResult vkCreateGraphicsPipelines(
device, // VkDevice device
VK_NULL_HANDLE, // VkPipelineCache pipelineCache
1, // uint32_t createInfoCount
&pipelineCreateInfo, // const VkGraphicsPipelineCreateInfo* pCreateInfos
nullptr, // const VkAllocationCallbacks* pAllocator
pipeline); // VkPipeline* pPipelines

40

Creating a pipeline using a cache

Pipeline Cache

static VkPipelineCache pipelineCache;

VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;

VkResult result = vkCreatePipelineCache(
device, // VkDevice device,
&pipelineCacheCreateInfo, // const VkPipelineCacheCreateInfo* pCreateInfo,
nullptr, // const VkAllocationCallbacks* pAllocator,
&pipelineCache); // VkPipelineCache* pPipelineCache);

//

VkGraphicsPipelineCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
// ...

VkPipeline pipeline;

VkResult result = vkCreateGraphicsPipelines(
device, // VkDevice device
&pipelineCache, // VkPipelineCache pipelineCache
1, // uint32_t createInfoCount
&createInfo, // const VkGraphicsPipelineCreateInfo* pCreateInfos
nullptr, // const VkAllocationCallbacks* pAllocator
pipeline); // VkPipeline* pPipelines

41

0

2000

4000

6000

8000

10000

12000

14000

No Cache Using Cache

Total PSO Create Time – Epic Games Protostar*

Compile Link Driver Overhead Cache Overhead

Creating a pipeline using a cache

Pipeline Cache

42

• Pipeline cache can take initial data on create

• Save & Restore cache across runs:

VkPipelineCache pipelineCache;

VkPipelineCacheCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
createInfo.pInitialData = LoadPipelineCacheFromDisk(&createInfo.initialDataSize);

VkResult result = vkCreatePipelineCache(
device, // VkDevice device,
&createInfo, // const VkPipelineCacheCreateInfo* pCreateInfo,
nullptr, // const VkAllocationCallbacks* pAllocator,
&pipelineCache); // VkPipelineCache* pPipelineCache);

Loading from disk

Pipeline Cache

43

0

2000

4000

6000

8000

10000

12000

14000

No Cache Using Cache Cache With Initial Data

Total PSO Create Time – Epic Games Protostar*

Compile Link Driver Overhead Cache Overhead

Loading from disk

Pipeline Cache

Thank you

Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2016 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may be trademarks or
registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the
Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm’s licensing business, QTL, and the vast majority of its patent portfolio.
Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm’s engineering,
research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT.

© Copyright Khronos Group 2016 - Page 45

Panel: Tools for the Vulkan Ecosystem

Bill Hollings
Architect

MoltenVK: Vulkan on iOS/macOS

Kyle Spagnoli
Engineer

Bringing Vulkan support to

NVIDIA® Nsight™

Andrew Woloszyn
Software Engineer

SPIR-V Tools

Karl Schultz
Principal Engineer

LunarG SDK and Tools

© Copyright Khronos Group 2016 - Page 46

Vulkan on iOS/macOS

Bill Hollings
Architect

© Copyright The Brenwill Workshop Ltd. 2016 - Page 47

Vulkan on iOS & macOS

Bill Hollings, The Brenwill Workshop Ltd.
July 2016

© Copyright The Brenwill Workshop Ltd. 2016 - Page 48

MoltenVK

• MoltenVK is an implementation

of Vulkan on iOS & macOS

- Built on Metal

• Vulkan & Metal are static-

state, command-buffer APIs

- Very little friction

- MoltenVK minimal overhead

• MoltenVK feature set

dependent on Metal

- Metal’s focus is on providing

a convenient API

- MoltenVK helps define

x-platform compatibility

© Copyright The Brenwill Workshop Ltd. 2016 - Page 49

Xcode Profiling Tools – GPU Frame Capture

• Apple’s strong focus on

ecosystem developer tools

- Apple committed to Metal

- MoltenVK leverages this

• GPU Frame Capture

- Vulkan command sequence

- Capture rendering stages

- Cmd buffs & renderpasses

- Pipeline state & shaders

- Resources & render state

- Identifies inefficiencies

• Manual or programmatic

- Trace setup activity

© Copyright The Brenwill Workshop Ltd. 2016 - Page 50

Xcode Profiling Tools – Metal System Trace

• Metal System Trace

- Detailed tracing of CPU & GPU

activity per frame

- Separates per-frame loads

- Identifies utilization shortfalls:
- blocking,

- device starvation

- sync issues

© Copyright The Brenwill Workshop Ltd. 2016 - Page 51

Xcode Profiling Tools – Other

• GPU Driver

- CPU & GPU performance monitoring

• Allocations and Leaks

- CPU memory allocation details

- Identify memory leak details

• These tools available to Vulkan developers

- Apple provides a sophisticated suite of tools for

graphics developers using Apple’s ecosystem.

- MoltenVK makes all of these tools available to

Vulkan developers.

© Copyright Khronos Group 2016 - Page 52

Bringing Vulkan Support to NVIDIA® Nsight™

Kyle Spagnoli
Engineer

Kyle Spagnoli

NSIGHT VSE + VULKAN

54

JetPack

NVTX
NVIDIA Tools eXtension

Compile Debug Profile

Trace

Hardware Support

IDE Integration Standalone and CLI

Getting Started…

54

55

NSIGHT VISUAL STUDIO EDITION 5.2

• Vulkan API support

• New Range Profiler, including DX12

• New Geometry View

• Oculus VR SDK support

• CUDA 8.0 support

Vulkan, VR, and Advanced Graphics Profiling

56

MULTI-THREAD / MULTI-QUEUE
Recording Command Buffers

Scrubber shows all

threads for command

buffer construction

Events view shows

entry for in-frame

command buffer

construction

57

MULTI-THREAD/MULTI-QUEUE
Executing Command Buffers

Scrubber shows

queue as it migrates

from thread to

thread

Scrubber highlights multiple

queues. This application

uses one for compute and

one for graphics

58

CURRENT RENDER TARGET DISPLAY
Dig Into Per Pass Rendering Results

View each

render

target for

any draw

call in flight

Wireframe highlights

rendered geometry

59

BARRIER INFORMATION
Managing Rendering Passes & Resource Transitions

Details for each pipeline

barrier and what

resources/stages are

impacted

60

FENCES, SIGNALS & SEMAPHORES
Synchronization Primitives

Highlight

synchronization

points involving

fences, events, and

semaphores

61

API INSPECTOR
View API State

62

DEVICE MEMORY
Visualize Memory Usage & Layout

Visual resource

layout

All memory at

a glance

Listing of

contained

resources

63

SERIALIZATION
Generate Source Code For A Single Frame

C++ code compiles into…

64

ROADMAP & AVAILABILITY

NSIGHT Visual Studio Edition 5.2 with Vulkan Support

• Available when you return from SIGGRAPH

• C++ Serialization is a beta feature

Additions to come:

Upcoming release

• Performance Info & Range Profiler

• Android Support

• Linux Support

• Shader Editing

• Analysis & Hints

• Shader Reflection Information

• Sparse Texture

• Improved Barrier GUI

• Support Future Extensions

65

Thank you!

Check out our demo during the Khronos
After Party for a hands on Vulkan demo
of Nsight + DOOM

Test Drive Vulkan Support @ Booth #509

© Copyright Khronos Group 2016 - Page 66

LunarG Vulkan SDK and Tools

Karl Schultz
Principal Engineer

LunarG SDK and Tools
Karl Schultz, LunarG, Inc.

SIGGRAPH – Vulkan Tools Roundtable

July 2016

Vulkan SDK

• Current release based on Vulkan spec/header 1.0.21

– Released on July 21

• Cadence is approximately monthly right now

• Derived from public GitHub repos

• Value-add:

– Components tested and verified

– “One-stop shop”

– Easy install

Vulkan SDK Tools

• We’ll be talking about:

– API Dump, Screenshot, vktrace/vkreplay, vktraceviewer, RenderDoc

• Other parts of the SDK, not discussed here:

– Loader and Validation Layers

• Covered in Tuesday BOF

• Check out recordings if you missed it

• “Vulkan Validation Layers Deep Dive” Webinar coming, probably September 27

– Vulkan header files

– Vulkan Spec docs

– Samples / demos

API Dump
$ VK_INSTANCE_LAYERS=VK_LAYER_LUNARG_api_dump ./tri

t{0} vkCreateInstance(pCreateInfo = 0x7ffedd58e9c0, pAllocator = 0x0, *pInstance

= 0x2014710) = VK_SUCCESS

pCreateInfo:

sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO

pNext = 0x7ffedd58e9a0

flags = 0x0

pApplicationInfo = 0x7ffedd58eba0

enabledLayerCount = 0x0

ppEnabledLayerNames = 0x0

enabledExtensionCount = 0x2

ppEnabledExtensionNames = 0x7ffedd58f140

pApplicationInfo:

sType = VK_STRUCTURE_TYPE_APPLICATION_INFO

pNext = 0x0

pApplicationName = tri

applicationVersion = 0

pEngineName = tri

engineVersion = 0

apiVersion = 4194304

pNext:

t{0} vkEnumeratePhysicalDevices(instance = 0x2014710, *pPhysicalDeviceCount =

0x1, pPhysicalDevices = 0x0) = VK_SUCCESS

t{0} vkEnumeratePhysicalDevices(instance = 0x2014710, *pPhysicalDeviceCount =

0x1, *pPhysicalDevices = 0x2216600) = VK_SUCCESS

• Implemented as
a Vulkan layer

• Writes API calls
out as text
output

• Good for
seeing what led
up to a problem

Screenshot
$ export VK_INSTANCE_LAYERS=VK_LAYER_LUNARG_screenshot

$ export _VK_SCREENSHOT=5

$./cube

$ ls *.ppm

5.ppm

• Implemented as a Vulkan layer

• These commands capture the 5th

frame and store it in 5.ppm
• Vktrace (next slide) can also take

screenshots using this layer

vktrace
vkreplay

$ vktrace -p cube -o cube_trace.vktrace

$ ls -l cube_trace.vktrace

-rw-rw-r-- 1 karl karl 32646746 Jul 22 14:46 cube_trace.vktrace

$ vkreplay -t cube_trace.vktrace -l 2

• Vktrace sets environment to load vktrace layer and then launches app as
a child process

• Vktrace layer serializes Vulkan API calls and records them into a file
• Vkreplay plays back the vktrace file
• Work in Progress:

• WSI mapping – allows recording on one window system and playback on another

• OS mapping – handle OS-specific issues like structure packing

• GPU mapping – handle differences in GPU capabilities and physical limits

• Other issues and features – See VulkanTools GitHub

VkTrace Viewer – Interactive vktrace File Explorer

• Developer: Peter Lohrmann

• Pretty cool tool to look at vktrace files

• Coming in future LunarG SDK

• But code is in the LunarG VulkanTools repo

– Windows version currently in better shape than the Linux version

– Needs Qt to build

• Features

– Load existing vktrace files

– Start an app to generate a vktrace file

– Replay a vktrace file

– Single-step through a vktrace file

– Examine vktrace packet detail

– Run to a specific packet

VkTrace Viewer
Generate Trace

• Essentially the same
as running vktrace
from the command line

• Or open an existing
vktrace file from the
File menu

VkTrace Viewer
Examine Trace
Initial Screen

• Comes up right after
you create the trace

• Packets are shown in
the bar graph

• A red packet is taking
a long time

• This one is the first
Present

• Note API call list panel
• “Prev DC” and “Next

DC” are for Draw Calls

VkTrace Viewer
Examine Trace

One Frame

• Zoomed in graph to show about 3 frames
• API call window shows calls for 1 frame
• 12 API calls
• Present through QueueSubmit shown here
• Note Trace Stats panel

VkTrace Viewer
Examine Trace with Hover

• Hover over a call in the API Call frame
• Packet header info displays
• Also some parameter and structure data

VkTrace Viewer
Replay / Step

RenderDoc

• Developer: Baldur Karlsson

• Shipped in LunarG Windows SDK

• https://github.com/baldurk/renderdoc

• Popular for D3D11 and OpenGL

• Vulkan Support has been added

• No Linux GUI yet

• Cannot possibly do justice to it here – check out video tutorials on YouTube, etc

© Copyright Khronos Group 2016 - Page 82

SPIR-V Tools

Andrew Woloszyn
Software Engineer

© Copyright Khronos Group 2016 - Page 83

SPIR-V Tooling
• SPIR-V is the binary intermediate language used for Compute Kernels in OpenCL

and Shaders in Vulkan.

- Easy to parse SSA form.

- Retains high-level information.

- Contains enough information to allow useful reflection of the binary.

GLSL

Engine-specific

represenation

Other Shading

Languages

© Copyright Khronos Group 2016 - Page 84

Compilation
• Glslang https://github.com/khronosgroup/glslang

- Reference Glsl -> SPIR-V compiler.

- Compile a fragment shader: glslangValidator –V foo.frag –o output.spv

- Output generated assembly: glslangValidator –H foo.frag

- Can be used as a library for online compilation.

• Shaderc https://github.com/google/shaderc

- Wrapper around the reference compiler (glslang)

- Provides a gcc/clang-like command-line interface.

- Adds support for both <> and “” includes.

- Adds command-line preprocessor defines.

- Adds –M dependency generation.

- Adds a C and C++ library interface that has all of the functionality of the

command-line tool.

- Compile a fragment shader: glslc –fshader-stage=fragment foo.glsl –o a.spv

https://github.com/khronosgroup/glslang
https://github.com/google/shaderc

© Copyright Khronos Group 2016 - Page 85

© Copyright Khronos Group 2016 - Page 86

SPIRV-Tools
• A collection of command-line tools and libraries for handling SPIR-V.

• spirv-dis

- Takes a SPIR-V module and produces a human-readable format similar to llvm.

• spirv-as

- Takes the human-readable format and turns it back into a SPIR-V module.

• spirv-val (Not Yet Complete)

- Validates that a given SPIR-V module follows all of the rules set out in the spec.

• spirv-opt

- Optimization tool and framework for transforming SPIR-V.

- Currently has a debug info stripping pass.

• Library interfaces to all of these.

© Copyright Khronos Group 2016 - Page 87

© Copyright Khronos Group 2016 - Page 88

SPIRV-Cross
• SPIR-V to higher level language conversion tool

- SPIR-V to GLSL

- SPIR-V to MSL

- SPIR-V to C++

• Library interface to do the same

• Reflection api for determining shader resources

© Copyright Khronos Group 2016 - Page 89

© Copyright Khronos Group 2016 - Page 90

What’s needed for the future?
• Linker

- Turn multiple SPIR-V modules into one larger module

- Size improvements due to merged constants/globals/functions

• Debug Info

- More complete debug information in generated SPIR-V

• Simulation/Debugging tools

- Single-stepping SPIR-V, value examination, ...

• Optimization Passes

- Architecture agnostic optimizations

- Constant folding, Variable eliminiation, etc

- Constant Specialization pass

• More high-level language support

- Work is being done in glslang to support HLSL

	3D-BOF-SIGGRAPH_Jul16.pdf
	Khronos 3D BoF Final part 1 - WG reports
	Khronos 3D BoF Final part 2 - EPIC experience
	Khronos 3D BoF Final part 3 - id experience
	Khronos 3D BoF Final part 4 - panels

	Khronos 3D BoF Final part 4 - panels.pdf

