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Abstract

One of the frequent questions by users of the mixed model function lmer of the lme4
package has been: How can I get p values for the F and t tests for objects returned
by lmer? The lmerTest package extends the ‘lmerMod’ class of the lme4 package, by
overloading the anova and summary functions by providing p values for tests for fixed
effects. We have implemented the Satterthwaite’s method for approximating degrees of
freedom for the t and F tests. We have also implemented the construction of Type I–III
ANOVA tables. Furthermore, one may also obtain the summary as well as the anova

table using the Kenward-Roger approximation for denominator degrees of freedom (based
on the KRmodcomp function from the pbkrtest package). Some other convenient mixed
model analysis tools such as a step method, that performs backward elimination of non-
significant effects – both random and fixed, calculation of population means and multiple
comparison tests together with plot facilities are provided by the package as well.

Keywords: denominator degree of freedom, Satterthwaite’s approximation, ANOVA, R, linear
mixed effects models, lme4.

1. Introduction

Linear mixed effects models are tools for modeling continuous correlated hierarchical/multi-
level data. During the last decades these models have become more and more prominent in a
variety of fields such as the physical, biological and social sciences. Various software packages,
commercial as well as open-source, are capable of fitting these types of models. The focus of
this paper is on the open-source R package lme4 (Bates, Mäechler, Bolker, and Walker 2015).
This package is a well-known and widely used R package designed to fit linear as well as non-
linear mixed effects models. Some of the lme4 package main strengths are the user-friendly
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interface, the ability to handle unbalanced data, multiple crossed effects and being very fast
even for large data sets.

The anova and summary functions are two of the main functions providing inference on the
parameters of a model. In tests for the fixed effects of a linear mixed effect model, the
F -statistics anova and the t-statistics summary functions are given, though p values for the
corresponding F and t tests are not provided by the lme4 package. The reason is connected
with the fact that generally the exact null distributions for the parameter estimates and test
statistics are unknown. So the only way to judge about the significance of the effects is by
some sort of approximation and/or simulation based approach. A common way is to use the
likelihood ratio test (LRT). This test is fast and is available in the lme4 package. The downside
is that it can produce anti-conservative p values in a variety of situations, which we discuss in
Section 3. A simulation based alternative is the bootMer function from the pbkrtest package
(Halekoh and Højsgaard 2014, 2017), which is computationally intensive. The authors of
the pbkrtest package have implemented the Kenward-Roger’s approximation method, which
provides accurate p values, but for some types of models and large data the method could
be computationally intensive. Our aim was to provide a method, that is a nice alternative to
the widely used LRT. We have implemented Satterthwaite’s method (Giesbrecht and Burns
1985; Fai and Cornelius 1996) as implemented in the SAS software package (SAS Institute
Inc. 1978, 2013) and wrapped it into anova and summary functions for an object returned
by lmer. We have also integrated the Kenward-Roger’s approximation method through the
KRmodcomp function of the pbkrtest package. Hence, there are two available alternatives for
the anova and summary methods.

Another contribution of the package is a generation of the three types of ANOVA hypothesis
contrast matrices (SAS Institute Inc. 1978) that result in producing the corresponding types
of ANOVA tables. Type II and III may be also obtained through the Anova function of the
car package (Fox and Weisberg 2011). However, some limitations can be found. For instance,
sum-to-zero restrictions on parameters should be used in order to get the correct Type III
ANOVA table. In our implementation the generation of the three types of the ANOVA tables
is invariant with respect to the restrictions used on the parameters of the linear mixed model.

Some other convenience functions such as the step function, that performs automated elimi-
nation of non-significant effects, the lsmeansLT and difflsmeans functions, that generate the
least squares means and the differences of least squares means tables with confidence intervals
are provided by the lmerTest package. The functions contained in the lmerTest package are
listed in Table 1.

The paper is structured in the following way: in Sections 2 and 3 we describe the approach
taken by Giesbrecht and Burns (1985); Fai and Cornelius (1996) to address the inference
problem and compare the approximation methods to the commonly used LRT. In Section 4
two of the data sets from the lmerTest package are introduced. In Section 5 we discuss
different types of hypothesis for ANOVA and their implementation in the lmerTest package.
In Section 6 we introduce least squares means. In Section 7 we introduce our implementation
of the step-down model building approach. In Section 8 we describe the methods contained
in the package. In Section 9 we discuss the timing issues for approximation methods for a
certain class of linear mixed effects models. Section 10 contains discussion and conclusion.
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Functionalities anova summary rand step lsmeansLT difflsmeans

Output as from lme4 X X

ANOVA-like table for the
random effects (LRT)

X X

Satterthwaite’s approxima-
tion to degrees of freedom

X X X X X

Kenward-Roger’s approxima-
tion to degrees of freedom

X X X

Type I, II, III hypothesis
tests (SAS notations)

X X

Least squares means X X

Differences of least squares
means

X X

Automated elimination of
random and/or fixed effects

X

Table 1: Summary of the functions provided by the lmerTest package.

2. Inference and test statistic

A linear mixed model can be specified in matrix form as:

y = Xβ + Zu+ ε, u ∼ Nq(0, G), ε ∼ Nn(0, R), (1)

with β representing all fixed-effects parameters, u the random effects, X the n × p design
matrix for the fixed-effects parameters, and Z the n× q design matrix for the random effects,
u and ε are independent and R = σ2I.

To test a hypothesis about the fixed effects β, one may use the LRT. Then a smaller model
needs to be constructed with the same error structure as model (1):

y0 = X0β0 + Zu+ ε. (2)

The LRT statistic for the test of the hypothesis

H0 :β ∈ Θβ0 ,

H1 :β ∈ Θβ,

where Θβ0 is a subspace of the parameter space Θβ of the fixed effects β:

T = 2(ll − ll0),
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where ll and ll0 represent the log-likelihoods of models in Equations 1 and 2 accordingly.
Under the null hypothesis, T follows asymptotically a χ2 distribution. Even though LRT is
frequently used, it can produce anti-conservative p values (Pinheiro and Bates 2000).

One may consider an F test of the hypothesis H0 : Lβ = 0, where L is a contrast matrix of
q = rank(L) > 1. A test statistic for this hypothesis is:

F =
(Lβ̂)>(LĈL>)−1(Lβ̂)

q
, (3)

where Ĉ is an estimated variance-covariance matrix of β̂. Even though the statistic is called
F , in general it does not exactly follow an F distribution. A method, known as Satterthwaite
method, was proposed by Fai and Cornelius (1996) for determining denominator degrees of
freedom ν such that: F ∼ Fq,ν approximately. We have implemented their work for the
F test and also for a one-degree of freedom test, which corresponds to the t test with the
method proposed by Giesbrecht and Burns (1985). The details of the algorithm are given
in Appendix A. In Kenward-Roger’s method the estimated variance-covariance matrix Ĉ is
adjusted in order to improve the small sample distributional properties of F and then the
Satterthwaite’s method-of-moment of approximation is applied. The algorithm may be found
in Halekoh and Højsgaard (2014).

3. Comparisons of F tests and LR tests

As previously mentioned, the LRT can produce anti-conservative p values. This may occur
when the data is unbalanced or when the number of parameters is large compared to the
number of observations (Pinheiro and Bates 2000, p. 88). In Halekoh and Højsgaard (2014)
an example where LRT leads to misleading results and where Kenward-Roger’s method is
accurate is given.

Pinheiro and Bates (2000) provide a simulation study for the LRT based on the PBIB data.
The PBIB data comes from the SASmixed package (Littell et al. 2014) and is an example of a
partially balanced incomplete block experiment with i = 1, . . . , 15 treatments, j = 1, . . . , 15
blocks and 60 observations. Not every level of treatment appears with every level of blocking
factor, but every pair of treatments occur together in a block the same number of times.
Pinheiro and Bates (2000) consider the following mixed effects model for this data:

yijk = αi + bj + εijk, bj ∼ N(0, σ2
b ), and εijk ∼ N(0, σ2), (4)

where α stands for a treatment effect, b stands for a random block effect.

In order to compare LRT to the F test with Satterthwaite and Kenward-Roger approximation
methods we performed a simulation study for a test for a presence of the treatment effect. We
performed 1000 simulations from the model with only a random block effect corresponding
to the null hypothesis of no treatment effect. The results of the simulations are presented in
Figure 1. It can be seen that the LRT gives for all nominal values anti-conservative p values.
It is also clear that both Satterthwaite’s and Kenward-Roger’s methods p values are close to
the nominal values.
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Figure 1: Empirical p values versus nominal p values ranging from 0.001 to 1 for the test of
the presence of the treatment fixed effect. The results are based on 1000 simulations from the
model with a random block effect applied to the PBIB data.

4. Data sets

Package lmerTest includes three data sets from sensory and consumer studies. Throughout
the paper we will use two of them: the first one with the name TVbo comes from a sensory
study and consists of tests of TV sets produced by the high-end HIFI company Bang and
Olufsen A/S, Struer, Denmark. The second data set is a combination of a sensory and a
consumer study and has the name carrots.

4.1. The TVbo data

The main purpose in this study was to assess 12 products, specified by two features: Picture,
a factor with 4 levels and TVset, a factor with 3 levels. All in all 12 products in 2 replications
were assessed by 8 trained panelists (Assessor) for 15 different response variables on a scale
from 1 to 14. This type of data is very common in sensory science (Lawless and Heymann
2010).

For illustration, let us select the attribute Sharpnessofmovement as our response variable. We
consider the Assessor effect as random since it is generally regarded as the proper approach in
the sensory field (Lawless and Heymann 2010). In the fixed part of the model we include TVset
and Picture effects and their interaction. In the random part we also include interaction
effects Assessor:TVset and Assessor:Picture. The choice of including these effects will be
later justified in Section 8.4.

A linear mixed effects model for the Sharpnessofmovement attribute is then:

yijkr = αi + βj + γij + ck + acik + bcjk + εijkr, (5)

ck ∼ N(0, σ2
c ), acik ∼ N(0, σ2

ac), bcjk ∼ N(0, σ2
bc) and εijkr ∼ N(0, σ2),

with i = 1, 2, 3; j = 1, 2, 3, 4; k = 1, . . . , 8; r = 1, 2, and where α stands for the TVset

effect, β for the Picture effect, γ stands for the interaction effect TVset:Picture, c stands
for Assessor effect.
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4.2. The carrots data

The carrots data comes from The Royal Veterinary and Agricultural University, Denmark
and is an example of a so-called external preference mapping. 103 consumers scored their
preference of 12 danish carrot types on a scale from 1 to 7. In addition to the consumer
survey, the carrot products were profiled by a trained panel of tasters, the sensory panel,
with respect to a number of sensory properties (taste, odor and texture). The goal was
to relate the sensory properties of the products to the consumer liking. Since there was a
high number of sensory properties (14), a principal component analysis was performed and
the first two principle components were extracted that contained most of the information in
the sensory properties (sens1 and sens2). sens1 mainly measured bitterness versus nutty
taste, whereas sens2 measured mainly sweetness. A common method for preference mapping
is to fit regression models for the preference as a function of the sensory variables for each
individual consumer using the 12 observations across the carrot products. Next, the individual
regression coefficients are investigated in an exploratory manner. Another approach, we will
use in the paper, is to use a mixed effects model, where consumers and products are treated
as random effects. The product effect is also considered as random since we wish to consider
the entire population of carrot products instead of only the 12 specific products investigated
in this experiment. The following linear mixed effects model can then be considered:

yijk = b0j + β0 + (b2j + β2)sens2ij + (b1j + β1)sens1ij + ck + εijk (6)

where β0, β1 and β2 stand for fixed intercept and two slopes, b0, b1 and b2 stand for random
intercept and random slopes, c stands for product effect. We assume the following covariance
structure:

(b0, b1, b2) ∼ N(0,

 σ2
0 σ01 σ02

σ01 σ2
1 σ12

σ02 σ12 σ2
2

), c ∼ N(0, σ2
c ), εijk ∼ N(0, σ2).

5. Types of hypothesis tests

Type I, II and III ANOVA tables as defined in the SAS software SAS Institute Inc. (1978)
are provided by the lmerTest package. The Type I ANOVA table performs the sequential
decomposition of the contributions of the fixed-effects and is the one produced by the anova

method of the lme4 package. The Type I table is order dependent compared to the Type II
and III tables, which do not depend on the order in which the effects are entered in the model.
In terms of the hypothesis tests, the three types are the same in balanced cases, where number
of observations (experimental units) at each factor-level combination are equal.

For illustration, let us consider the TVbo data and the model in Equation 5. Since the TVbo

data is balanced all the types produce the same tests. Following Searle (1987) the hypothesis
test for the interaction effect γ is the following one:

γi′j′ − γij′ − γi′j + γij = 0, ∀i, i′, j, j′. (7)

The hypothesis test for the main α effect is the following one:

αi − αi′ + (1/4)
∑
j

(γij − γi′j) = 0, ∀i, i′, (8)



Journal of Statistical Software 7

which is easy to interpret, namely the test for the effect of the TVset factor averaged over all
levels of the Picture factor is performed. In the unbalanced cases the tests for the higher
order terms are still the same, whereas for the lower-order terms the hypotheses differ between
the types. For example, if for some reason some observations were missing in the TVbo data,
the Types I and II hypotheses for the main α effect would no longer produce the test from
Equation 8. In unbalanced situations the Types I and II hypotheses become dependent on
the number of observations (experimental units) at each factor-level combination, so the
hypotheses for these types become hard to interpret (Searle 1987). On the contrary, the Type
III hypothesis test is the same whether the data is balanced or not, so the test for the α
effect would still be the one from Equation 8. In situations where there are missing cells
(some factors, combinations of factors are missing) the Type III hypotheses may loose their
simple interpretation. A warning is given in the lmerTest package that care must be taken in
interpreting the tests.

There have been many debates regarding which type of ANOVA table is the most appropriate
and when. We do not touch this topic here and refer to Venables (2000); Speed, Hocking, and
Hackney (1978); Senn (2007); Langsrud (2003); Macnaughton (2009) for the discussions. In
the lmerTest package instead we provide a tool for obtaining the three types of ANOVA tables
for the objects returned by lmer, which are implemented via calculation of the appropriate
hypothesis contrast matrix L in Equation 3. The algorithms for constructing the Types I–III
L contrast matrices are given in Appendix B.

6. Least square means and differences of least square means

The least squares means (also called population means) were introduced by Harvey (1960).
The least squares means are estimates of the class or subclass means that would be expected
if there would have been equal subclass numbers.

For illustration let us again consider the TVbo data and the model for response variable
Sharpnessofmovement in Equation 5. The expectation, for instance, for level i of TVset

effect is:

E(yi·) = µ+ αi + 1/4
∑
j

(βj + γij). (9)

The TVbo data is balanced, so the expectation is estimated by the corresponding mean: yi· In
an unbalanced case, like, e.g., if some observations were missing from the data, the expectation
is no longer estimated by the corresponding mean and Equation 9 is no longer valid. The
least square means are then defined in a way that Equation 9 still holds even for unbalanced
data.

Generally one is interested in testing the significance about the differences of least square
means. In a linear mixed effects model specified in the following form: E(Y ) = Xβ the null
hypothesis of equality of difference of least squares means is

H0 : lβ = 0, (10)

where l is a contrast vector. For instance, from Equation 9 the null hypothesis of equality of
levels 1 and 2 for TVset factor is H0 : α1 − α2 + (1/4)

∑
j (γ1j − γ2j) = 0. The t-statistic for
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the hypothesis in Equation 10 is then:

t =
lβ̂√
lĈl>

, (11)

where Ĉ is an estimated variance-covariance matrix of β̂. Generally the t-statistic does not
follow a t distribution. Giesbrecht and Burns (1985) proposed a method for determining
a t-distribution that approximates the distribution of t under the null hypothesis based on
Satterthwaite’s method-of-moment approximation to the degrees of freedom. We have im-
plemented their work, the algorithm is in Appendix A. The confidence intervals are then
computed using the following formula:

CI = lβ̂ ± tα
2
(ν) ·

√
lĈl>,

where ν is calculated using the Satterthwaite’s method of approximation.

The lsmeansLT and difflsmeans functions from the lmerTest package produce least square
means and differences of least square means accordingly with 95% confidence intervals for
all factors, that are part of an object returned by lmer. The construction of l vectors for
the least square means uses the popMatrix function from the doBy package (Højsgaard and
Halekoh 2016). The l vectors for differences of least square means are then constructed as
pairwise differences of ls vectors from the least square means. The l vectors for differences of
least squares means are actually related to Type III contrasts and are equivalent if there are
no missing cells (SAS Institute Inc. 1978). There is no multiplicity correction for the multiple
comparison tests in the lmerTest package, one can use the p.adjust function from the stats
package in order to correct the p values. The l vectors are checked for estimability (Searle
1997) using the package estimability (Lenth 2016b).

7. Step-down model-building approach

A practical data-driven approach suggested in Zuur, Ieno, Walker, Saveliev, and Smith (2009)
and Diggle (2002) is a step-down strategy. The strategy is based on construction of a maximal
possible model followed by deletion of effects with high p values obeying the principle of
marginality. In the lmerTest package we have implemented a step function that automates
the step-down approach. An outline of the algorithm is given here:

Step 1: Simplification of the random effects structure.

1. Let M be the linear mixed effects model specified by a user.

2. If there are random effects in M then go to 3, otherwise stop.

3. For each random effect ri in M do:

(a) Create a reduced model Mi by eliminating ri from M .

(b) Calculate pi, the p value from the likelihood ratio test of comparing M to Mi.

(c) Save pi and Mi.

4. Find pmax; the maximum of all pi and let Mmax denote the corresponding model.

5. Set M to Mmax. If pmax is higher than α level then go back to 3, otherwise stop.
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If the initial model is a random-coefficient model, then the principle of simplification
of the random effects is similar – the effect that contains slopes and intercept and
correlation between them is incrementally reduced by removing first non-significant
slopes and then non-significant intercepts. So when the effect is eliminated then the
relevant correlations are eliminated as well. In Appendix C an example illustrating the
process of the simplification of an error structure in random coefficient models is given.

Step 2: Simplification of the fixed-effects structure.

1. Consider M , the output model from Step 1.

2. Construct an ANOVA table for M , calculate F statistics and p values for each
fixed-effects term.

3. Consider the highest order interaction effects in M . The effect with the highest
p value (peff) is identified and a model without this effect Meff is constructed.

4. Set Meff to M . If peff is less than α level or if there are no more fixed-effects then
stop, otherwise go to 2.

Model M from Step 2 is the final model selected by the algorithm.

The llply function of the plyr package (Wickham 2011) is used for calling the functions for
testing random effects in Step 1 and fixed effects in Step 2. The use of the llply function
has a computational advantage compared to the lapply function from the base package (R
Core Team 2017).

The step method of the lmerTest package contains arguments that make the step-down
approach flexible. For instance, by setting the argument reduce.random to FALSE Step 1
can be omitted. Similarly, by setting the argument reduce.fixed to FALSE Step 2 can be
omitted. One may specify which effects should be part of the model anyways by specifying
the names of the terms in the keep.effs argument. For example, in the TVbo data it may
be natural to retain the Assessor effect in the model even if the effect is not significant. By
default the α level in tests for the fixed effects is 0.05 and the α level in tests for the random
effects is 0.1. However, both α levels can be easily changed.

8. Application of the methods

8.1. The ‘merModLmerTest’ class

In the lmerTest package we specify a new class with the name ‘merModLmerTest’, which
contains the ‘lmerMod’ class from the lme4 package:

R> merModLmerTest <- setClass("merModLmerTest",

+ contains = c("merMod", "lmerMod"))

So if the lmerTest package is loaded, then the models specified with the lmer function are
coming from the ‘merModLmerTest’ class and not ‘lmerMod’. Then we define the summary and
anova methods for the ‘merModLmerTest’ class, which are the extensions of the summary and
anova methods of the ‘lmerMod’ class. The nice feature about the ‘merModLmerTest’ class is
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that all the methods provided by the lme4 package for the objects returned by lmer are also
available for the ‘merModLmerTest’ class. This means that by loading the lmerTest package
and by specifying the model with the lmer function the users of the lme4 package get all the
methods, provided by the lme4 package plus extensions to the summary and anova methods
and additional ones such as calcSatterth, step, lsmeansLT and difflsmeans.

8.2. The anova method for objects returned by lmer

Let us now consider the TVbo data. The lmer call to fit the model in Equation 5 is:

R> tv <- lmer(Sharpnessofmovement ~ TVset * Picture + (1 | Assessor) +

+ (1 | Assessor:TVset) + (1 | Assessor:Picture), data = TVbo)

With the following call we obtain an ANOVA table that comes from the lme4 package:

R> anova(tv)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

TVset 2 1.765 0.8825 0.2437

Picture 3 51.857 17.2857 4.7735

TVset:Picture 6 90.767 15.1279 4.1777

Now let us attach the lmerTest package and run again model tv and then apply the anova

method again:

R> library("lmerTest")

R> tv <- lmer(Sharpnessofmovement ~ TVset * Picture + (1 | Assessor) +

+ (1 | Assessor:TVset) + (1 | Assessor:Picture), data = TVbo)

R> anova(tv)

Analysis of Variance Table of type III with Satterthwaite

approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)

TVset 1.765 0.8825 2 14 0.2437 0.7869818

Picture 51.857 17.2857 3 21 4.7735 0.0108785 *

TVset:Picture 90.767 15.1279 6 138 4.1777 0.0006845 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We may notice that two additional columns are added with the names DenDF and Pr(>F)

referring to denominator degrees of freedom and p values, which are calculated using the
Satterthwaite’s method of approximation. According to the p values the interaction effect
is highly significant, which means that the products differ for the Sharpnessofmovement

attribute. More than that the products differ mostly due to the Picture feature. We may
also notice that by default the lmerTest package provides the Type III ANOVA table, lme4
provides the sequential (Type I) ANOVA table. One can require another type of ANOVA by
changing the type argument, as well as require Kenward-Roger’s method for calculating the
F test. For instance, the Type II ANOVA table with Kenward-Roger’s approximation can be
obtained by calling:
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R> anova(tv, type = 2, ddf = "Kenward-Roger")

Analysis of Variance Table of type II with Kenward-Roger

approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)

TVset 1.765 0.8825 2 14 0.2437 0.7869818

Picture 51.857 17.2857 3 21 4.7735 0.0108785 *

TVset:Picture 90.767 15.1279 6 138 4.1777 0.0006845 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case all types of hypotheses are identical since the TVbo data is balanced.

8.3. The summary method for objects returned by lmer

The summary method for objects returned by lmer in the lmerTest package produces an
extended output of the summary method from the lme4 package. The extension of the output
consists of degrees of freedom using the Satterthwaite’s (Kenward-Roger’s) approximations
for the t test and corresponding p values. To illustrate the summary method we consider the
carrots data. We specify the model in Equation 6 using the lme4 syntax:

R> m.carrots <- lmer(Preference ~ sens1 + sens2 +

+ (1 + sens1 + sens2 | Consumer) + (1 | product), data = carrots)

Now let us look at the summary of the model:

R> summary(m.carrots)

Linear mixed model fit by REML t-tests use Satterthwaite

approximations to degrees of freedom [lmerMod]

Formula:

Preference ~ sens1 + sens2 + (1 + sens1 + sens2 | Consumer) +

(1 | product)

Data: carrots

REML criterion at convergence: 3739.5

Scaled residuals:

Min 1Q Median 3Q Max

-3.6194 -0.5306 0.0190 0.6103 2.9309

Random effects:

Groups Name Variance Std.Dev. Corr

Consumer (Intercept) 0.2095136 0.45773

sens1 0.0002517 0.01586 -0.16

sens2 0.0030473 0.05520 0.12 0.96

product (Intercept) 0.0335564 0.18318
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Residual 1.0335816 1.01665

Number of obs: 1233, groups: Consumer, 103; product, 12

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 4.79911 0.07529 20.72200 63.740 < 2e-16 ***

sens1 0.01083 0.01503 9.16800 0.721 0.48913

sens2 0.07065 0.01728 10.94400 4.089 0.00181 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) sens1

sens1 -0.010

sens2 0.023 0.032

The output is exactly the same as from the lme4 package but with additional columns added
to the fixed effects: df and Pr(>|t|). df refers to degrees of freedom based on the Sat-
terthwaite’s approximation and Pr(>|t|) is the p value for the t test with df as degrees
of freedom. We may conclude that the intercept and the slope for sens2 are highly signifi-
cant, so consumers prefer more sweet carrots. sens1 has no significant impact on consumer
preferences.

By setting argument ddf in the summary method to "Kenward-Roger" one may obtain the
Kenward-Roger’s approximation.

The calculation using the Satterthwaite approximation took around one second compared to
the Kenward-Roger’s which took around 16 seconds. The p values were identical up to the
fourth digit for both approximations.

8.4. The step method for objects returned by lmer

Let us consider again the TVbo data with the same response variable Sharpnessofmovement,
but here we choose a different initial model than in Equation 5. Here we also include the
Repeat effect as a random effect and consider a full model, where both random and fixed
structures contain all possible main and interaction effects.

yijklm = αi + βj + αβij + ck + acik + bcjk + abcijk + dl + adil + bdjl + abdijl + εijklm,

ck ∼ N(0, σ2
c ) , bcjk ∼ N(0, σ2

bc), acik ∼ N(0, σ2
ac) , abcijk ∼ N(0, σ2

abc),

dl ∼ N(0, σ2
d) , bdjl ∼ N(0, σ2

bd), adil ∼ N(0, σ2
ad) , abdijl ∼ N(0, σ2

abd) and εijklm ∼ N(0, σ2),

where α stands for the TVset effect, β for the Picture effect, c stands for the Assessor effect,
d stands for the Repeat effect. The corresponding model using lmer is:

R> tv <- lmer(Sharpnessofmovement ~ TVset * Picture +

+ (1 | Assessor:TVset) + (1 | Assessor:Picture) +

+ (1 | Assessor:Picture:TVset) + (1 | Repeat) + (1 | Repeat:Picture) +

+ (1 | Repeat:TVset) + (1 | Repeat:TVset:Picture) + (1 | Assessor),

+ data = TVbo)
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χ2 χ2 df Elim. num. p value

Assessor:Picture:TVset 0.00 1 1 1.00000
Repeat:TVset:Picture 0.00 1 2 1.00000
Repeat 0.00 1 3 1.00000
Repeat:Picture 0.00 1 4 1.00000
Repeat:TVset 0.00 1 5 1.00000
Assessor:TVset 2.79 1 kept 0.09491
Assessor:Picture 12.35 1 kept < 0.001
Assessor 7.47 1 kept 0.00627

Table 2: Likelihood ratio tests for the random effects and their order of elimination represent-
ing Step 1 of the automated analysis for the TVbo data for attribute Sharpnessofmovement.

Sum Sq Mean Sq Num. df Den. df F value Elim. num. Pr(>F)

TVset 1.76 0.88 2 14.00 0.24 kept 0.7870
Picture 51.86 17.29 3 21.00 4.77 kept 0.0109
TVset:Picture 90.77 15.13 6 138.00 4.18 kept < 0.001

Table 3: F tests for the fixed-effects and their order of elimination representing Step 3 of the
automated analysis for the TVbo data for attribute Sharpnessofmovement.

Then we apply the step and save the results in a variable st:

R> st <- step(tv)

One may apply the print method on the st variable to view the results. Here instead we
wrap the output into an ‘xtable’ object of the xtable package (Dahl 2016) in order to nicely
represent the results in the paper.

Tables 2 and 3 represent the Step 1 and Step 2 of the step-down model building approach
in Section 7. The effects that have been kept according to the elimination column denoted
by “elim. num.” are the ones that form the final reduced model given by the default type I
levels (α = 0.1 for the random effects and α = 0.05 for the fixed effects).

From Table 2 it is seen that five random effects were eliminated. The Repeat effect is not part
of the final reduced model. From Table 3 it is seen that the interaction effect TVset:Picture is
significant, so the main effects are kept in the model according to the principle of marginality.
We observe that indeed the simplified model is the one from Equation 5.

Least squares means and differences of least squares means tables are also part of the output
from the step function. Here we visualize the tables in barplots by applying the plot function
on the st object. Since there are too many levels in the TVset:Picture effect, the plot is
hard to understand and thus we ask to plot the barplots only for the Picture and TVset

effects in the following way (see Figure 2):

R> plot(st, effs = c("Picture", "TVset"))

The resulting plot is shown in Figure 2. The plot for the Picture effect shows that the most
different product with respect to the Picture feature for the attribute Sharpnessofmovement
is the one with level 4. Since the TVset effect is non-significant according to Table 3, there
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Figure 2: Barplots for differences of least square means for TVset and Picture effects together
with 95% confidence intervals for the TVbo data.

are no significant differences between the levels of this effect. The ggplot2 package (Wickham
2009) is used in the lmerTest package for generating the barplots for the least square means
and differences of least square means. The Hmisc package (Harrell Jr 2017) is used for
manipulating the strings in the construction of the least square means and difference of least
square means tables.

There are 15 attributes in the TVbo data, so 14 more models should be constructed and
analyzed similarly to the model for the Sharpnessofmovement attribute considered in this
example. Constructing models and applying the step function in a loop is therefore a useful
and fast tool for getting insight into the data. More examples where the usefulness of the step
function is illustrated are given in Kuznetsova, Christensen, Bavay, and Brockhoff (2015).

8.5. Miscellaneous functions

We have also included a function called calcSatterth to perform F tests with the Sat-
terthwaite’s approximation to degrees of freedom for a user specified contrast matrix L. For
example, the test for the TVset:Picture interaction effect for model in Equation 5 could be
obtained as follows:

R> L <- matrix(0, ncol = 12, nrow = 6)

R> L[1, 7] <- L[2, 8] <- L[3, 9] <- L[4, 10] <- L[5, 11] <- L[6, 12] <- 1

R> calcSatterth(tv, L)

$denom

[1] 138

$Fstat

[,1]
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[1,] 4.177655

$pvalue

[,1]

[1,] 0.000684479

$ndf

[1] 6

It can be seen that the results agree with the results from the anova method in Section 8.2.

9. Computational timing issues

Halekoh and Højsgaard (2014) mention that the calculation of Kenward-Roger’s approxima-
tion for some models might be computationally intensive. From our practice calculation of
the Satterthwaite’s approximation as implemented in the lmerTest package requires less time
than the Kenward-Roger’s as implemented in the pbkrtest package. The difference in timings
depends on the size of the data and the type of the model. We have observed that for random
coefficient models, the difference can be quite significant. Here we compare the computational
time for the two methods (Kenward-Roger’s and Satterthwaite’s) using the carrots data and
the same model set-up as in Equation 6. In order to compare the methods for different sizes
of the data, we construct 5 data sets, that are extended versions of the carrots data. The
extensions consist of replicating randomly selected rows from the carrots data. For instance,
in the first data set we randomly select 1000 rows from the carrots data (with replacement)
and then add these rows to the carrots data, so the size of the data becomes the size of the
carrots data (1236 observations) plus 1000. In the following the code for constructing the
data sets, fitting the models as in Equation 6 and calculating the time for the anova method
applied to these models for two approximation methods is given:

R> size <- seq(0, 4000, by = 1000)

R> ind.size <- lapply(size, function(x)

+ sample(seq_len(nrow(carrots)), size = x, replace = TRUE))

R> dd <- lapply(ind.size, function(x) carrots[c(1:nrow(carrots), x), ])

R> fit.mcarrots <- function(d) {

+ lmer(Preference ~ sens1 + sens2 +

+ (1 + sens1 + sens2 | Consumer) + (1 | product), data = d)

+ }

R> m.carrots.list <- lapply(dd, fit.mcarrots)

R> time.sat <- lapply(m.carrots.list, function(x) system.time(anova(x))[1])

R> time.kr <- lapply(m.carrots.list, function(x)

+ system.time(anova(x, ddf = "Kenward-Roger"))[1])

Figure 3 visualizes time.kr and time.sat, which stand for the computational time in seconds
for the Kenward-Roger’s and Satterthwaite’s approximation methods accordingly. It can be
seen, for instance, that for the data with around 5000 observations Kenward-Roger’s method
took more than 300 seconds (around 5 minutes) compared to the Satterthwaite’s that took
around one second. In this example we considered data not exceeding 6000 observations. For
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Figure 3: Differences in computational time between Kenward-Roger’s and Satterthwaite’s
approximations for the random coefficient model as specified in Equation 6.

the data with around 10000 observations or more the KRmodcomp function threw the following
error: cannot allocate vector of size 957.7 Mb. The comparisons in computational
time were made using Windows 10 version 1703 (OS Build 15063.674) with a 64-bit version
of R and the following hardware configuration: processor Intel(R) Core(TM) i3-5005U CPU
2.00GHz with 2 cores (4 threads) and 8 GB of memory. The comparisons were made with
version 0.4-7 of the pbkrtest package.

10. Discussion and conclusion

In this paper we have presented our implementation of the Satterthwaite’s method of ap-
proximation to one- and multi-degree of freedom tests. The Kenward-Roger’s approximation,
which is implemented in the pbkrtest package is also available as an option in the lmerTest
package. Then it is up to the user to decide which approximation to use or whether to use
any at all. From our practice, we observed that the p values that the approximation methods
provide are generally very close to each other. Schaalje, McBride, and Fellingham (2002)
performed a number of simulations in order to investigate the appropriateness of the ap-
proximation methods. They discovered that complexity of the covariance structures, sample
size and imbalance affect the performance of both approximations. However, these factors
affect the Satterthwaite’s method more than the Kenward-Roger’s. Still we believe that the
Satterthwaite’s method can be considered as a good alternative as it outperforms LRT in
cases with unbalanced and/or small sample designs, generally is faster than Kenward-Roger’s
method and sometimes quite significantly faster. The reason that the LRT is so widely used is
also connected with the fact that it is very easy and fast to use – just apply the anova method
to two nested models. To maintain the user-friendliness we have wrapped the approximation
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methods into the anova and summary methods. So now the users of the lme4 package can get
an extended version of these methods by simply loading the lmerTest package.

Another contribution of the package is a generation of the Type I–III ANOVA tables. By
default the Type III ANOVA table is provided by package lmerTest. In terms of hypothesis
tests this type is the easiest one to interpret both in unbalanced and balanced cases. Never-
theless, in different situations different types of ANOVA tables are advised (Speed et al. 1978;
Senn 2007; Langsrud 2003; Macnaughton 2009).

We have also introduced the step function, which performs backward elimination of non-
significant effects. In Kuznetsova et al. (2015) we have shown the usefulness of this tool in
a number of situations in sensory and consumer studies. When used for the random part
of the model, the step-approach can be seen as a goodness-of-fit/model validation approach
for the in-experienced user that otherwise might have run the risk of applying a too simple
model from a too simplistic view of the data structure. We believe that such data analysis
errors, where hierarchies, clusters, dependencies are not fully accounted for, is one of the more
commonly occurring ones. If the user friendliness of the step function will make some of these
more naive users apply and investigate more complex error structures, and include them for
their fixed effects conclusions, it will be a step in the right direction, producing less amounts
of (artificially) small p values obtained if the too simple error models were used.

Finally, we have implemented the generation of the of least square means and differences of
least square means tables which use the Satterthwaite’s approximation to degrees of freedom.
The R package lsmeans package Lenth (2016a) provides a more general approach for analyzing
least squares means and also supports not only linear mixed models but a broad range of
different types of models.
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A. F - and t-statistics and the Satterthwaite’s approximation

Assume we have the mixed model in Equation 1 with X the n × p design matrix for the
fixed-effects and Z the n× k design matrix for the random effects.

The variance of y is therefore

V (θ) = ZG(θ)Z> +R(θ),

where parameter θ consists of the residual error variance and the variance of random effects.

The variance-covariance matrix of β is

C(θ) = (X>V (θ)−1X)−1 = (X>(ZG(θ)Z> +R(θ))−1X)−1.

For simplicity we will subsequently suppress θ in the notation.

Giesbrecht and Burns (1985) investigated a one-degree test of the hypothesis H0 = l>β where
l is a vector. A corresponding t-statistic is then:

t =
l>β̂√
lĈl>

, (12)

where Ĉ = C(θ̂). They followed Satterthwaite (1946) and assumed that the quantity

df(l>Ĉl)

(l>C(θ)l)

approximately follows a χ2 distribution. Then they used Satterthwaite’s method-of moments
approximation to the degrees of freedom:

df =
2(l>Ĉl)2

[VAR(l>Ĉl)]
.

Taking f(θ) = l>C(θ)l, VAR(f(θ)) can be approximated by the applying univariate delta
method as:

VAR(f(θ)) ≈ [∇f(θ)θ̂]
>A[∇f(θ)θ̂],

where ∇f(θ)θ̂ is a vector of partial derivatives of f(θ) with respect to θ evaluated at θ̂. A

is the variance-covariance matrix of the θ̂ vector, which can be determined using the second
derivatives of the log-likelihood function. Matrix A is not directly extractable from the lme4
package. In the lmerTest package we specify the deviance function with respect to the θ
parameters and determine the second derivatives at the optimum θ̂. Similarly we specify
a function that calculates the variance-covariance matrix with respect to the θ parameters.
Then we calculate partial derivatives evaluated at the optimum.

In a multi-degree of freedom test a hypothesis of interest is H0 : Lβ = 0, where L is an
estimable contrast matrix of q = rank(L) > 1. A commonly used test statistic for this
hypothesis is:

F =
(Lβ̂)>(LĈL>)−1(Lβ̂)

q
. (13)

Even though the statistic is called F , it usually does not follow an F distribution. Fai and
Cornelius (1996) proposed a method for approximating the distributions of F . There they also
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used the Satterthwaite’s method-of-moment approximation to the degrees of freedom. First
they decomposed (LĈL>)−1 in order to yield P>(LĈL>)−1P = D where P is an orthogonal
matrix of eigenvectors and D is a diagonal matrix of eigenvalues. Using this decomposition,
Q = qF can be written as a sum of q independent variables with t distributions,

Q =

q∑
m=1

(PLβ̂)2
m

Dm
=

q∑
m=1

t2νm ,

where (PLβ̂)m denotes the mth element of PLβ̂ and Dm is the mth diagonal element of D.
Then Fai and Cornelius (1996) noted that each νm can be approximated by the Giesbrecht-
Burns single degree-of-freedom method:

νm =
2Dm

g>mAgm
,

where gm is the gradient of lmCl
>
m with respect to θ with lm being the mth row of PL.

Using the relationship E(Fq,ν) = ν
ν−2 for ν > 2, they try to find ν such that q−1Q ∼ Fq,ν

approximately.

Since the tνm can be regarded as having independent Student’s t-distributions with νm degrees
of freedom, then E(Q) can be calculated as:

E(Q) =

q∑
m=1

E(t2νm) =

q∑
m=1

E(F1,νm) =

q∑
m=1

νm
νm − 2

. (14)

Now from
1

q
E(Q) =

ν

ν − 2

ν is found:

ν =
2E(Q)

E(Q)− q

with E(Q) =
∑q

m=1
νm
νm−2 (from Equation 14).

B. Hypothesis contrast matrices

The key step in constructing the F test for an effect is in constructing the contrast matrix
defining the hypothesis appropriately. Package lmerTest implements three types of hypothesis
tests introduced in SAS Institute Inc. (1978). This section describes the algorithms.

B.1. Notations and definitions

Complete rank deficient matrix

Let X be a design matrix. It can be partitioned according to the terms in the model:

X = [1|X2| . . . |Xp] . (15)
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The design matrix is usually assumed to have full (column) rank. If (some of) the model
effects are factors, then the matrix will not be of full rank, but it will be reduced to full rank
by deletion of a selected columns.

We denote by X (cf. Equation 15) the design matrix before reduction to full column rank.
This matrix is generated in lmerTest by creating a rank deficient design matrix for each model
term separately and then concatenating them column-wise as illustrated in Equation 15.

Estimable functions

A linear function of the parameters Lβ is estimable if and only if L is in the row-space of X
(Searle 1997). Therefore rows of X form a generating set from which any estimable L can be
constructed. Since the row spaces of X, X>X, (X>X)−(X>X) are identical, they all form
generating sets for any estimable L. (X>X)−(X>X) has the property of containing lots of
zeros, so it is used as a generating set of estimable functions:

L = (X>X)−(X>X). (16)

Here − is understood as a generalized inverse, X is the complete (rank-deficient) design matrix
from Equation 15.

Contained effects

Consider two effects: e1 and e2. Then e1 is said to be contained in e2 if

1. all factors that appear in e1 (if any) also appear in e2;

2. there are more factors with e2 than with e1;

3. both effects involve the same continuous variables (if any).

Note: Consider the intercept (µ) as contained in all factor effects and not contained in any
effect involving a continuous variable.

For instance, in the TVbo data the effect TVset is contained in the effect TVset:Picture,
intercept µ is contained in TVset, Picture and TVset:Picture. More generally, e1 is con-
tained in e2 if columns of the design matrix X associated with e1 can be represented as linear
combinations of the columns associated with e2.

B.2. Type III hypothesis contrast matrices

Here we refer to the rules of generating Type III hypothesis matrices, as proposed by Good-
night (1978) for the PROC GLM procedure in the SAS software. Let L be the generating set of
estimable functions (16), e be an effect, for which we want to construct hypothesis matrix,
say Le. Then the following rules create hypothesis matrix Le:

Rule 1 Using row operations, zero out the columns in L associated with the effects that do
not contain effect e.

1. Find columns in L associated with the effects that do not contain e: j = 1, . . . , J .

2. For each j, find indices I of all non-zero elements in L[, j].
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� L[i(1), ]←− L[i(1), ]/L[i(1), j].

� For the rest of i ∈ I set L[i, ]←− L[i, ]− L[i, j] · L[i(1), ].

� Set the i(1)th row to zero: L[i(1), ]←− 0.

Rule 1 assumes that e are in a so called standard order (all lower order interactions
are entered in the model before higher order interactions). This is provided in package
lmerTest.

Rule 2 Rows associated with the effects that contain e are orthogonalized to the rows as-
sociated with e. Starting with the first row in L having all zeros associated with e all
other rows are made orthogonal to it using row operations, the row is then set to zero.
This is done for all other rows having all zeros associated with e.

Example: Calculation of Type III hypothesis contrast matrix

For illustration purposes let us consider a subset of the TVbo data with levels "TVset1" and
"TVset2" for TVset and levels "Pic1" and "Pic2" for the Picture effect. First we calculate
the generating set of estimable functions L given in Table 4. We calculate the hypothesis
matrix for TVset (columns 2 and 3 in L) by applying the two rules.

Apply Rule 1: Using row operations, zero out the columns in L associated with the effects
that do not contain effect e.

1. Find columns in L associated with the effects that do not contain TVset: j = 1, 4, 5
((Intercept), Pic1, Pic2).

2. For j = 1, find indices I of all non-zero elements in L[, j]. Here only L[1,1] is non-zero
in column L[, 1], so I = 1.

� L[1, ]←− L[1, ]/L[1, 1].

� Set the 1st row to zero: L[1, ]←− 0.

3. For j = 4, find indices I of all non-zero elements in L[, j]. Here L[4, 4] is non-zero in
column L[, 4], so I = 4.

� L[4, ]←− L[4, ]/L[4, 4].

� Set the 4th row to zero: L[4, ]←− 0.

4. For j = 5, find indices I of all non-zero elements in L[, j]. There are no non-zero
elements in column L[, 5], so I = {}.

The L matrix with deleted zero rows after applying Rule 1 is given in Table 5.

Rule 2 Rows associated with the effects that contain TVset are orthogonalized to the rows
associated with TVset.

As can be seen the second row has zeros in columns associated with TVset, so the first row is
orthogonalized to the second one, and then the second row is set to 0. We get the following
L contrast vector for TVset in Table 6.
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(Intercept) TVset1 TVset2 Pic1 Pic2 TVset1:Pic1 TVset2:Pic1 TVset1Pic2 TVset2Pic2

1 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00
2 0.00 1.00 −1.00 0.00 0.00 0.00 0.00 1.00 −1.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 1.00 −1.00 0.00 1.00 0.00 −1.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 1.00 −1.00 −1.00 1.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: L matrix for the TVbo example.

(Intercept) TVset1 TVset2 Pic1 Pic2 TVset1:Pic1 TVset2:Pic1 TVset1Pic2 TVset2Pic2

1 0.00 1.00 −1.00 0.00 0.00 0.00 0.00 1.00 −1.00
2 0.00 0.00 0.00 0.00 0.00 1.00 −1.00 −1.00 1.00

Table 5: L matrix obtained after applying Rule 1 for the TVbo example.

(Intercept) TVset1 TVset2 Pic1 Pic2 TVset1:Pic1 TVset2:Pic1 TVset1Pic2 TVset2Pic2

1 0.00 1.00 −1.00 0.00 0.00 0.50 −0.50 0.50 −0.50

Table 6: L matrix obtained after applying Rule 2 for the TVbo example.

B.3. Type I hypothesis contrast matrices

The Type I hypothesis contrast matrix L is the Forward-Dolittle transformation of X>X
with each non-zero row divided by its diagonal. Then the contrast matrix Le for an effect in
question e is corresponding to the effect e rows of the L matrix.

B.4. Type II hypothesis contrast matrices

The Type II hypothesis contrast matrix Le for an effect in question e is calculated in the
following way:

1. The columns of the design matrix X in Equation 15 are rearranged in a way that
columns corresponding to effects that do not contain the effect e are put before the
columns corresponding to the effect e. Let us denote this rearranged design matrix by
X ′.

2. The L matrix is calculated as the Forward-Dolittle transformation of X ′>X ′ with each
non-zero row divided by its diagonal.

3. The columns of L are rearranged to reflect the original order of the model.

4. The contrast matrix Le is corresponding to the effect e rows of the L matrix.
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C. Error structure analysis in a random coefficient model

Let us consider the model in Equation 6. The error structure of this model is:

(b0, b1, b2) ∼ N(0,

 σ2
0 σ01 σ02

σ01 σ2
1 σ12

σ02 σ12 σ2
2

), c ∼ N(0, σ2
c ), εijk ∼ N(0, σ2) (17)

Let us specify it via the lmer function:

R> m.carrots <- lmer(Preference ~ sens1 + sens2 +

+ (1 + sens1 + sens2 | Consumer) + (1 | product), data = carrots)

Then we apply the step function from the lmerTest package, requiring not to perform tests
on the fixed effects since we are not interested in them in this example:

R> step(m.carrots, fixed.calc = FALSE)

Table 7 represents the output of the step function wrapped into an ‘xtable’ object of the
xtable package in order to represent the results in a compact way in the paper. The first row
in the random effects table means that the LRT was applied to the model m.carrots and
the reduced one, which does not contain the random slope sens1. We can see that in the
following code:

R> m.carrots.red.sens1 <- lmer(Preference ~ sens1 + sens2 +

+ (1 + sens2 | Consumer) + (1 | product), data = carrots)

R> anova(m.carrots, m.carrots.red.sens1, refit = FALSE)

Data: carrots

Models:

..1: Preference ~ sens1 + sens2 + (1 + sens2 | Consumer) + (1 | product)

object: Preference ~ sens1 + sens2 + (1 + sens1 + sens2 | Consumer) +

object: (1 | product)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

..1 8 3757.3 3798.2 -1870.7 3741.3

object 11 3761.5 3817.8 -1869.7 3739.5 1.8274 3 0.609

The degrees of freedom in this test are equal to 3. The tests were made for three parameters:
random slope for sens1 (σ2

1) and correlations between the random slope sens1 and the random
slope sens2 (σ12) and the intercept (σ01). Model m.carrots.red.sens1 is the final reduced
model (the “elim. num.” column is equal to 0 for the rest of the rows in the random effects
table meaning that the random slope sens2 and the intercept are kept in the model according
to the default Type 1 error equal to 0.1). The error structure of the final reduced model is
then:

(b0, b2) ∼ N(0,

(
σ2

0 σ02

σ02 σ2
2

)
), c ∼ N(0, σ2

c ), εijk ∼ N(0, σ2).
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χ2 χ2 df elim. num. p value

sens1:Consumer 1.83 3 1 0.6090
sens2:Consumer 7.81 2 0 0.0202
product 16.16 1 0 < 0.001

Table 7: Likelihood ratio tests for the random effects and their order of elimination repre-
senting Step 1 of the automated analysis for the carrots data.
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