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Abstract

Network meta-analysis is a powerful approach for synthesizing direct and indirect
evidence about multiple treatment comparisons from a collection of independent studies.
At present, the most widely used method in network meta-analysis is contrast-based, in
which a baseline treatment needs to be specified in each study, and the analysis focuses
on modeling relative treatment effects (typically log odds ratios). However, population-
averaged treatment-specific parameters, such as absolute risks, cannot be estimated by this
method without an external data source or a separate model for a reference treatment.
Recently, an arm-based network meta-analysis method has been proposed, and the R
package pcnetmeta provides user-friendly functions for its implementation. This package
estimates both absolute and relative effects, and can handle binary, continuous, and count
outcomes.
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1. Introduction

In diverse scientific fields, such as social and medical research, summaries of cumulative
knowledge are increasingly based on the results of meta-analyses (Hunter and Schmidt 1996;
Lindholm, Carlberg, and Samuelsson 2005; Cooper, Hedges, and Valentine 2009). Meta-
analysis is a statistical method for combining and contrasting a collection of estimated effect
sizes, such as odds ratios, from multiple independent studies (DerSimonian and Laird 1986).
Various approaches for treatment comparisons in meta-analysis have been introduced (Hedges
and Olkin 1985; Sutton, Abrams, Jones, Jones, Sheldon, and Song 2000; Higgins and Green
2008).
Traditional meta-analysis focuses on direct pairwise comparisons between two treatments
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in the collected studies. In some cases, however, not enough studies directly compare two
treatments of interest. For example, suppose A, B, and C are three treatments for a disease,
and researchers aim to compare A vs. B, while published studies only compare A vs. C or B
vs. C. Although direct evidence is not available, the comparisons A vs. C and B vs. C provide
indirect evidence. Based on this idea, network meta-analysis, also known as mixed treatment
comparisons, was developed to simultaneously compare multiple treatments by synthesizing
direct and indirect evidence (Lumley 2002; Lu and Ades 2004, 2006; Salanti, Higgins, Ades,
and Ioannidis 2008; Lu and Ades 2009; Zhang et al. 2014). This technique has been widely
applied in medical research (e.g., Psaty et al. 2003; Elliott and Meyer 2007; Cipriani et al.
2009). Currently, two types of approaches are used for network meta-analysis. The first
approach is contrast-based. It focuses on modeling treatment contrasts (relative effect sizes,
typically log odds ratios) within each study (Lu and Ades 2004). Another approach is arm-
based (e.g., Zhang et al. 2014; Zhang, Chu, Hong, Neaton, Virnig, and Carlin 2017; Hong,
Chu, Zhang, and Carlin 2016a,b), which focuses on describing population-averaged absolute
effect sizes for each treatment arm.
We use an illustrative example to show the difference between the contrast- and arm-based
approaches. Suppose that the outcome in a network meta-analysis is binary, and yik and
nik are the numbers of events and participants, respectively, in treatment group k in the ith
study. For such data, both the contrast- and arm-based models use the binomial likelihood
yik ∼ Binomial(nik, pik); they differ in the way they model the underlying absolute risks pik
in each study’s treatment group. Specifically, the contrast-based method needs to specify a
baseline treatment b(i) in the ith study. For convenience, we simply denote b(i) as b. Then,
the Bayesian hierarchical model for this approach is (Lu and Ades 2004, 2009):

g(pik) = µi +Xikδibk;
δibk ∼ N(dbk, σ2

bk),

where g(·) is a link function and Xik is a dummy variable taking the value 0 if k = b or
1 if k 6= b. Also, µi is the baseline effect for treatment b in the ith study, and δibk is the
relative effect of treatment k compared with the baseline b on the g-transformed scale. Note
that this model treats the µi’s as nuisances and uses non-informative priors for them. This
model is described as contrast-based because it focuses on the overall relative effects dhk
between treatment pairs (h, k), which are estimated using the evidence consistency equation
dhk = dbk − dbh. This model does not permit a back-transformation from the relative effects
to absolute effects, unless the absolute effect of a given “reference” treatment group can
be accurately estimated from external data, or can be estimated using a separate model
to analyze the existing data in the “reference” treatment group (Welton, Sutton, Cooper,
Abrams, and Ades 2012; Dias, Welton, Sutton, and Ades 2013b).
Population-averaged absolute effects are preferred in some situations such as cost-effectiveness
analysis and patient decisions (Dias et al. 2013b). For example, consider two scenarios com-
paring treatments A and B according to one-year survival rates: (i) pA = 0.8 vs. pB = 0.5; (ii)
pA = 0.004 vs. pB = 0.001. Both scenarios yield an odds ratio of 4.0, but patients would prefer
treatment A in scenario (i) more strongly than in scenario (ii). Therefore, an absolute effect
or absolute difference is preferred in this case. Compared with the contrast-based method,
the arm-based model provides a straightforward way to estimate absolute effects and various
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types of relative effects. The model is specified as (Zhang et al. 2014, 2017):

g(pik) = µk + νik;
(νi1, νi2, . . . , νiK)> ∼ MVN (0,ΣK),

where ΣK is the variance-covariance matrix of the vector of random effects specific to study i.
The µk’s are treatment-specific parameters reflecting absolute effects. Based on the absolute
effects, various types of relative effects can be obtained. In some cases (e.g., the missingness
of treatment arms is not at random), the effect size estimates produced by the arm-based
method may be less biased than those given by the contrast-based method (Zhang et al.
2017). Moreover, the arm-based method can use information contained in single-arm studies,
in which only one treatment group is available or of interest. Single-arm studies cannot be in-
cluded in the contrast-based model but they may provide valuable information for treatment
comparisons and enhance the robustness of a network meta-analysis (Lin, Chu, and Hodges
2016). Although the arm-based approach has many advantages, the convergence of Markov
chain Monte Carlo (MCMC) algorithms for parameter estimation may be slower compared
with the contrast-based approach. The estimates using the arm-based models may not con-
verge well if some treatments are only included in a few (say, less than three) studies. Also,
some researchers have concerns about the arm-based model, for example, that absolute effects
tend to be highly variable compared to relative effects, and that pooling arm-level data may
not fully respect the randomization process in randomized controlled trials (Dias and Ades
2016). However, these concerns are mainly raised because the arm- and contrast-based mod-
els use different assumptions about treatment effects. Specifically, the contrast-based model
assumes that relative effects are exchangeable across studies, while the arm-based model as-
sumes absolute effects are exchangeable (Hong et al. 2016b). Although the assumption of
exchangeable relative effects is popular in meta-analysis, the assumption of exchangeable ab-
solute effects is also accepted in the literature (see, e.g., Van Houwelingen, Zwinderman, and
Stijnen 1993; Shuster, Jones, and Salmon 2007; Senn 2010; Chu, Nie, Chen, Huang, and Sun
2012). More details of the arm-based model are discussed in Dias and Ades (2016) and Hong
et al. (2016b).
Plenty of software packages are dedicated to conducting traditional meta-analysis (e.g., Rosen-
berg, Adams, and Gurevitch 2000; Borenstein, Hedges, Higgins, and Rothstein 2005; Viecht-
bauer 2014; Schwarzer 2015), but very limited software is available specifically for network
meta-analysis. The R (R Core Team 2017) package netmeta (Rücker, Schwarzer, and Krahn
2015) provides models in a frequentist framework described in Rücker (2012). The R package
gemtc (van Valkenhoef and Kuiper 2015) and the Stata (StataCorp 2015) module network
(White 2015, 2017) perform contrast-based analyses. Neither package provides estimates for
population-averaged treatment-specific parameters. This article introduces the R package
pcnetmeta (Lin, Zhang, and Chu 2017), which performs network meta-analysis using the
arm-based model and provides estimates for various effect sizes. This package is available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=pcnetmeta. It uses MCMC techniques on the R platform through JAGS (Plummer
2003, 2016). JAGS is a program for analyzing Bayesian hierarchical models using MCMC sim-
ulation, which is available for diverse computer platforms including Windows and Mac OS X.
The package pcnetmeta provides user-friendly functions to perform network meta-analysis
for various types of data. Convergence of the MCMC routine can be assessed by the function
outputs. The package also provides functions to draw network plots which illustrate the
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comparisons between multiple treatments. In addition, plots for 95% credible intervals of
treatment-specific and relative effect sizes are provided to visually display treatment effects
and their comparisons.
This article is organized as follows. Section 2 presents an overview of arm-based Bayesian
hierarchical models as implemented in the pcnetmeta package. Section 3 illustrates the use
of the package with several examples, and discusses the output structures. Finally, Section 4
closes with suggested future improvements.

2. Arm-based models for network meta-analysis

2.1. Arm-based model for binary outcomes

Suppose a network meta-analysis reviews I studies on K treatments, where each study only
investigated a subset of the K treatments. Let Ti (1 ≤ i ≤ I) be the set of treatments
compared in the ith study. Also, in the ith study, the total number of events/participants in
treatment group k (k ∈ Ti) is denoted by yik/nik. Zhang et al. (2014) specified the following
arm-based model using the probit link function:

yik ∼ Binomial(nik, pik), k ∈ Ti,
Φ−1(pik) = µk + νik,

(νi1, νi2, · · · , νiK)> ∼ MVN (0,ΣK),
(1)

where Φ(·) denotes the standard normal cumulative distribution function. In this model, µk
is a fixed effect for treatment k, and the random effects (νi1, νi2, . . . , νiK)> are correlated
within each study with variance-covariance matrix ΣK . Based on this model, the absolute
risk of treatment k can be estimated as pk = E[pik|µk, σk] = Φ

(
µk/

√
1 + σ2

k

)
(Zeger, Liang,

and Albert 1988), where σ2
k is the kth diagonal element in ΣK . Since this estimate is a

marginal expectation of pik given µk and σk, we can interpret pk as the population-averaged
absolute risk of treatment k. With the estimates pk for absolute risk, we can further estimate
the risk difference (RD), the odds ratio (OR), and the risk ratio (RR), which are defined
as RDkl = pk − pl, ORkl = pk/(1−pk)

pl/(1−pl) , and RRkl = pk/pl, respectively. Other link functions
may be also considered in the arm-based model, but they do not yield simple expressions for
population-averaged absolute risks, though some approximations exist. For example, using
the logit link we can approximate pk = E[pik|µk, σk] ≈

[
1 + exp

(
−µk/

√
1 + C2σ2

k

)]−1
, where

C = 16
√

3
15π (Zeger et al. 1988). This article and the package pcnetmeta use the probit link

function for simplicity.

2.2. Arm-based model for continuous outcomes

Researchers can also perform network meta-analysis on studies with continuous outcomes
(e.g., Kasiske, Lakatua, Ma, and Louis 1998; Philbrook, Barrowman, and Garg 2007; Zhang,
Fu, and Carlin 2015). We continue to use i and k to index the studies and treatments and nik
as the total number of participants receiving treatment k in the ith study. The summary data
include sample mean ȳik and within-study sample standard deviation sik. We can specify the
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arm-based model for continuous outcomes as

ȳik ∼ N(θik, s2
ik/nik), k ∈ Ti,

θik = µk + νik,

(νi1, νi2, · · · , νiK)> ∼ MVN (0,ΣK).
(2)

In this model, µk is of interest because it can be interpreted as the overall effect of treatment k
by noticing that E[θik|µk, σk] = µk, and we may further estimate the effect difference between
treatments k and l, which is defined as dkl = µk − µl.

2.3. Arm-based model for count datasets

Dias, Sutton, Ades, and Welton (2013a) discussed methods for count datasets in network
meta-analysis. Their models are contrast-based, but we can consider the corresponding arm-
based versions.
In some network meta-analyses, the available data are in the form of counts over a certain
time period. The total number of person-years at risk is supplied rather than the total number
of participants. Let yik be the number of events in treatment group k in the ith study, and
Eik is the corresponding exposure time in person-years. Suppose λik is the treatment-specific
rate for treatment group k in the ith study, and we are interested in the population-averaged
treatment-specific rate. We consider the following arm-based model with a Poisson likelihood
and the log link function:

yik ∼ Poisson(Eikλik), k ∈ Ti,
log(λik) = µk + νik,

(νi1, νi2, · · · , νiK)> ∼ MVN (0,ΣK).
(3)

A key assumption for this model is that the rates λik are constant over the follow-up period.
Based on this model, the population-averaged treatment specific rate can be estimated as
λk = E[λik|µk, σk] = exp(µk + σ2

k/2).
A similar model is available for studies that report the proportion of patients developing an
event within a given follow-up period, where the follow-up time may differ for each study (e.g.,
Psaty et al. 2003; Elliott and Meyer 2007). In this case, the event probability depends on the
length of follow-up. Specifically, we have yik and nik as the number of events and participants,
respectively, in treatment group k in the ith study, and the study-specific follow-up times are
denoted fi. Following Dias et al. (2013a), we assume a latent Poisson process with rate
λik for each treatment group in each study; therefore the time Tik until an event occurs is
distributed as exponential with rate λik and survivor function P(Tik > fi) = exp(−λikfi).
Thus, the event probability is pik = 1 − exp(−λikfi). Using the complementary log-log link
cloglog(t) = log(− log(1− t)) for pik, we have cloglog(pik) = log(fi) + log(λik). Again, we can
model log(λik) using model (3) above, and an arm-based model is constructed as follows:

yik ∼ Binomial(nik, pik), k ∈ Ti,
cloglog(pik) = log(fi) + log(λik),

log(λik) = µk + νik,

(νi1, νi2, · · · , νiK)> ∼ MVN (0,ΣK).

(4)
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The parameter of interest is still the population-averaged treatment-specific rate λk = exp(µk+
σ2
k/2).

2.4. Parameter estimation for arm-based models

Let νi = (νi1, νi2, . . . , νiK)>. The full likelihood function for the arm-based model is

L ∝
I∏
i=1

∫
RK

∏
k∈Ti

Lc(yik;µk, νik)

× exp
(
−1

2ν>i Σ−1
K νi

)
(2π)K/2|ΣK |1/2

dνi,

where Lc(yik;µk, νik) is the conditional likelihood given the random effects νik. For example,
for binary outcomes, the conditional likelihood is

Lc(yik;µk, νik) =
[
g−1(µk + νik)

]yik
[
1− g−1(µk + νik)

]nik−yik
,

where g−1(·) is the inverse of the link function. To obtain the maximum likelihood estimates,
the maximization problem is subject to the condition that ΣK is positive definite. When the
outcome is binary or count, the full likelihood function cannot be expressed in a closed form;
for continuous outcomes, it may have a closed form. However, maximizing the likelihood may
be unstable and converge slowly if the number of treatments K is large and the number of
collected studies I is small.
Alternatively, we can, and pcnetmeta does, apply MCMC to obtain Bayesian estimates for pa-
rameters of interest. In arm-based models, vague N(0, 1000) priors are used for the treatment-
specific fixed effects µk. As suggested in Gelman and Hill (2007), we may assign an inverse-
Wishart prior to the unstructured variance-covariance matrix ΣK with the scale matrix being
the K×K identity matrix IK and degrees of freedom K+ 1, i.e., Σ−1

K ∼Wishart(IK ,K+ 1).
This has the effect of setting a uniform prior on the individual correlation parameters. Alter-
natively, the separation strategy by Cholesky decomposition can be used to specify a vague
prior to ΣK (Barnard, McCulloch, and Meng 2000; Lu and Ades 2009; Wei and Higgins
2013). We denote this model as HET-COR because the variances of the random effects are
heterogeneous.
To reduce model complexity, we may assume an exchangeable correlation structure for ΣK

(Zhang et al. 2017), that is, ΣK = DRexD, where D = diag(σ1, σ2, . . . , σK) and

Rex =


1 ρ · · · ρ
ρ 1 · · · ρ
...

... . . . ...
ρ ρ · · · 1

 .

To guarantee that Rex is positive definite, ρ must be greater than − 1
K−1 . A vague uniform

prior on
(
− 1
K−1 , 1

)
can be used for ρ. We denote models with this exchangeable correlation

matrix as HET-EQCOR for heterogeneous variances σ2
k. If we further assume homogeneity

of variances, that is, σ2
k = σ2 for all k = 1, 2, . . . ,K, the model is denoted as HOM-EQCOR.

To avoid overfitting, we can use the deviance information criterion (DIC) proposed by Spiegel-
halter, Best, Carlin, and Van der Linde (2002) for model selection. A smaller penalized
deviance implies a better model.
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Finally, to implement the hierarchical models in JAGS, the package pcnetmeta automatically
generates initial values for the parameters and specifies different random number generators
(RNGs) for different chains. Zero is used to initialize the random effects νik; the initial values
for the variance parameters ΣK are the means of their prior distributions. For example, since
Σ−1
K ∼ Wishart(IK ,K + 1) in the HET-COR model, the initial value for Σ−1

K is the mean
of this Wishart distribution, (K + 1)IK . For the fixed effects µk, the initial values are the
naïve estimates of the corresponding absolute effects computed by simply pooling the data
in each treatment group. For example, consider the continuous outcome in model (2), the
initial values for µk’s are

∑
{i:k∈Ti} ȳiknik/

∑
{i:k∈Ti} nik.

3. Using the R package pcnetmeta
The R package pcnetmeta provides user-friendly functions to perform arm-based network
meta-analysis using the models described above. Users can download its source file at
https://CRAN.R-project.org/package=pcnetmeta, or directly install it within R by typ-
ing install.packages("pcnetmeta"). Note that the pcnetmeta package depends on the R
packages rjags (Plummer 2016) and coda (Plummer, Best, Cowles, and Vines 2006). The
pcnetmeta package does not include a copy of the JAGS library, so users must install JAGS
separately. JAGS is freely available at its homepage http://mcmc-jags.sourceforge.net/.
Also, the package pcnetmeta requires JAGS version ≥ 4.0.0; the earlier versions of JAGS
may not guarantee exact reproducibility of the results. In this section, we introduce the basic
usage of this package.

3.1. Data structure for network meta-analysis
To begin, we briefly introduce the necessary dataset structures. In the package pcnetmeta,
four datasets, smoke, parkinson, dietaryfat, and diabetes, are provided as illustrative
examples.
The dataset smoke contains 24 studies on smoking cessation with binary outcomes, reported
in Hasselblad (1998) and Lu and Ades (2006). This network meta-analysis compares four
treatments, labeled as: 1) no contact (NC); 2) self-help (SH); 3) individual counseling (IC);
and 4) group counseling (GC). We display the dataset’s first few rows below. The column
s.id contains IDs for the 24 studies, and t.id labels the treatments included in each study.
For example, Study 1 compares treatments 1, 3, and 4. The columns r and n are the number
of events (successful cessation) and participants, respectively.

R> library("pcnetmeta")
R> data("smoke", package = "pcnetmeta")
R> head(smoke)

s.id t.id r n
1 1 1 9 140
2 1 3 23 140
3 1 4 10 138
4 2 2 11 78
5 2 3 12 85
6 2 4 29 170

https://CRAN.R-project.org/package=pcnetmeta
http://mcmc-jags.sourceforge.net/
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The dataset parkinson is a collection of studies with continuous outcomes, reported in Dias
et al. (2013a). It contains 7 studies on 5 treatments. The outcome is the mean off-time
reduction in patients given dopamine agonists as adjunct therapy in Parkinson’s disease. One
treatment is placebo, coded by 1, and the other four treatments are active drugs, coded 2 to
5. The dataset is displayed below. The columns s.id, t.id and n have the same meanings
as in the dataset smoke, while mean and sd report the sample means and standard deviations
of the continuous outcome.

R> data("parkinson", package = "pcnetmeta")
R> parkinson

s.id t.id mean sd n
1 1 1 -1.22 3.70 54
2 1 3 -1.53 4.28 95
3 2 1 -0.70 3.70 172
4 2 2 -2.40 3.40 173
5 3 1 -0.30 4.40 76
6 3 2 -2.60 4.30 71
7 3 4 -1.20 4.30 81
8 4 3 -0.24 3.00 128
9 4 4 -0.59 3.00 72
10 5 3 -0.73 3.00 80
11 5 4 -0.18 3.00 46
12 6 4 -2.20 2.31 137
13 6 5 -2.50 2.18 131
14 7 4 -1.80 2.48 154
15 7 5 -2.10 2.99 143

The datasets dietaryfat and diabetes serve as examples for models (3) and (4). This article
uses diabetes to illustrate estimation of treatment-specific rates and rate ratios. This dataset
was analyzed by Elliott and Meyer (2007) to assess the effects of antihypertensive agents on
incident diabetes, and includes the follow-up times (in years) for each study. Twenty-two
clinical studies are included, covering six different treatments: 1) diuretic; 2) placebo; 3) beta
blocker (BB); 4) calcium-channel blocker (CCB); 5) angiotensin-converting-enzyme inhibitor
(ACEI); and 6) angiotensin-receptor blocker (ARB). Users can apply data() in R to load the
datasets dietaryfat and diabetes; we do not display the detailed datasets.
Note that NA is not allowed in a dataset for the package pcnetmeta, because the published
articles collected in a network meta-analysis typically report all summary results (such as
both mean and variance for continuous outcomes). Also, each row in the dataset represents
one treatment group in a study, so a single-arm study is straightforwardly input as a single
row in the dataset for analysis using the arm-based models in the pcnetmeta package.

3.2. Plotting the network

The function nma.networkplot() in package pcnetmeta provides a visual overview of treat-
ment comparisons in network datasets. Calling this function produces a network graph in
an R plot window. Each vertex in the network plot represents a treatment and each edge
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between two nodes stands for a direct comparison between the corresponding two treatments.
The usage of the function is as follows:

nma.networkplot(s.id, t.id, data, title = "", trtname, alphabetic = TRUE,
weight.edge = TRUE, adjust.thick = 5, weight.node = TRUE,
adjust.node.size = 10, node.col = "orange", edge.col = "black",
text.cex = 1, adjust.figsizex = 1.1, adjust.figsizey = 1.1)

Users need to input s.id and t.id for study and treatment IDs respectively. The argument
title gives the graph title, and trtname specifies the treatment names. If trtname is not
specified, the treatment IDs given in t.id are used. The argument alphabetic is a logical
value indicating whether to sort the treatment nodes alphabetically in the clockwise direction
according to the treatment names; if alphabetic = FALSE, the nodes are sorted according to
treatment IDs (t.id). The logical argument weight.edge = TRUE causes the edge thickness
to be drawn proportional to the number of direct treatment comparisons; weight.node =
TRUE causes the node size to be proportional to the number of direct comparisons which
contain that treatment node.
The following code produces network plots for the datasets smoke, parkinson, and diabetes
respectively.

R> data("smoke", package = "pcnetmeta")
R> nma.networkplot(s.id, t.id, data = smoke,
+ trtname = c("NC", "SH", "IC", "GC"))
R> data("parkinson", package = "pcnetmeta")
R> nma.networkplot(s.id, t.id, data = parkinson)
R> data("diabetes", package = "pcnetmeta")
R> nma.networkplot(s.id, t.id, data = diabetes,
+ trtname = c("Diuretic", "Placebo", "BB", "CCB", "ACEI", "ARB"))

Figure 1 shows the resulting graphs. In the left panel for the smoking cessation data, every pair
of treatment nodes is connected by an edge, so all pairs of treatments are directly compared.
For the dataset parkinson in Figure 1b, we did not specify treatment names, so the function
used the treatment IDs from 1 to 5 as the names. Its network plot shows no edge between some
pairs of treatments, e.g., treatments 2 and 3. This means that no study directly compares
treatments 2 and 3. As a result, if the aim is to compare the effects of treatments 2 and
3, only indirect evidence is available, e.g., from the comparisons of treatments 2 vs. 1 and
3 vs. 1. Figure 1c is the network plot for the dataset diabetes; all pairs of treatments are
directly compared except ACEI and ARB.

3.3. Performing arm-based network meta-analysis

The major functions in package pcnetmeta are nma.ab.bin(), nma.ab.cont(), nma.ab.py(),
and nma.ab.followup(), which perform arm-based network meta-analysis for different types
of data using the models introduced in Section 2. In particular, nma.ab.bin() analyzes binary
outcomes, while nma.ab.cont() is used for continuous outcomes. These two functions are
based on models (1) and (2), respectively. Functions nma.ab.py() and nma.ab.followup()
can be used when exposure times or follow-up times are available, and are based on the
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Figure 1: Network plots generated by the function nma.networkplot().

models (3) and (4), respectively. The commands in each of the following subsections may
take around 5–20 minutes on an Intel 2.60 GHz processor. The actual runtime depends on
the complexity of the treatment network and the user’s processor.

Function nma.ab.bin() for binary outcomes

The arguments of the function nma.ab.bin() are as follows

nma.ab.bin(s.id, t.id, event.n, total.n, data, trtname,
param = c("AR", "LOR", "LRR", "RD", "rank.prob"), model = "het_cor",
prior.type, a = 0.001, b = 0.001, c = 10, higher.better = FALSE,
digits = 4, n.adapt = 5000, n.iter = 1e+05, n.burnin = floor(n.iter/2),
n.chains = 3, n.thin = max(1, floor((n.iter - n.burnin)/1e+05)),
conv.diag = FALSE, trace = NULL, dic = FALSE, postdens = FALSE,
mcmc.samples = FALSE)

As in nma.networkplot(), the arguments s.id and t.id are numeric or character vectors
indicating study and treatment IDs. Users also specify each study’s number of events and
participants using event.n and total.n respectively. The argument model can be specified
as "het_cor", "het_eqcor", or "hom_eqcor", which corresponds to the models described
in Section 2.4. When model = "het_cor" (the default), users can specify prior.type =
"invwishart" (the default) to assign an inverse-Wishart prior to the variance-covariance
matrix of random effects. Alternatively, by assigning prior.type = "chol", the separation
strategy by Cholesky decomposition is used for the variance-covariance matrix, and uniform
priors U(0, c) are assigned to the standard deviations and vague priors are assigned to the
correlation components (Barnard et al. 2000; Lu and Ades 2009; Wei and Higgins 2013).
When "het_eqcor" and "hom_eqcor" are used, the correlation matrix of the random effects
has an exchangeable correlation structure. For the "hom_eqcor" and "het_eqcor" models,
two types of priors for the random-effect variances can be used. A popular prior for variances
is inverse-Gamma(ε, ε) where ε can be set to a low value (e.g., 0.001) (Spiegelhalter, Thomas,
Best, and Lunn 2003). However, the posterior may be sensitive to the choice of ε, and a
uniform prior for standard deviations is preferred in some cases (Gelman 2006). Users choose
the prior by specifying prior.type = "unif" (the default) or "invgamma", and the prior
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parameters a, b, and c. If inverse-Gamma priors are used, inverse-Gamma(a, b) with density
ba

Γ(a)x
−a−1e−b/x is assigned to the variances of the random effects; if uniform priors are used,

U(0, c) is assigned to the standard deviations. The default prior parameters are a = b =
0.001 and c = 10.
The argument param is a character string vector which indicates the effect sizes to be es-
timated. As in Section 2.1, param can include absolute risk ("AR"), odds ratio ("OR"), log
odds ratio ("LOR"), risk ratio ("RR"), log risk ratio ("LRR"), risk difference ("RD"). In addi-
tion, researchers may be interested in treatment ranks (Salanti, Ades, and Ioannidis 2011).
Users can estimate the rank probabilities of different treatments (i.e., probabilities of the
treatment having ranks 1, 2, . . . , K) by adding "rank.prob" to the argument param. When
"rank.prob" is added, users need to specify the logical argument higher.better; TRUE in-
dicates that a higher event probability implies a better treatment. For example, the event in
the dataset smoke is smoking cessation, and a higher smoking cessation probability implies a
better treatment. Many outcomes in medical studies are the events of developing a disease
(e.g., Thijs, Lemmens, and Fieuws 2008), in which case a better treatment should lead to a
lower event probability.
The arguments n.adapt, n.iter, n.burnin, n.chains, and n.thin control the MCMC al-
gorithm run by rjags (Plummer 2016). The argument n.adapt is the number of iterations
for adaptation (the default is 5,000); this is used to maximize the sampling efficiency. The
argument n.iter determines the number of iterations in each MCMC chain, and n.burnin
is the number of burn-in iterations at the beginning of each chain which are discarded. The
argument n.chains is the number of MCMC chains; the default is 3. Additionally, n.thin is
the thinning rate for MCMC chains, which is used to save memory and computation time if
n.iter is large. For example, if n.iter is 106 and n.thin is 10, then only one sample would
be kept in every 10 samples in each chains, and the remaining number of iterations is 105.
The argument conv.diag specifies whether to compute potential scale reduction factors
(PSRFs) proposed by Gelman and Rubin (1992) for convergence diagnostics. The argument
trace is a character string vector which can be chosen from the elements specified in param
except for "rank.prob". Trace plots of the specified effect sizes are saved in users’ current
working directory as .png files. A trace plot is a plot of the sampled parameter estimates
at each iteration against iteration number. Both PSRFs and trace plots can be used to ex-
amine whether the MCMC chains are drawn from stationary distributions. Finally, if dic =
TRUE, the function will provide the deviance information criterion (DIC) statistic proposed
by Spiegelhalter et al. (2002); conventionally the model with smallest DIC is considered the
best among the candidate models. The posterior density plot of treatment-specific effect sizes
can be obtained as a .pdf file by setting postdens = TRUE.
The function nma.ab.bin() returns a list with effect size estimates, which lists the posterior
mean, standard deviation, median, and a 95% credible interval (CI) with 2.5% and 97.5%
quantiles as the lower and upper bounds.
Here is an example to demonstrate the function’s usage. We call the function nma.ab.bin()
on the dataset smoke as follows:

R> data("smoke", package = "pcnetmeta")
R> set.seed(12345)
R> smoke.out <- nma.ab.bin(s.id, t.id, r, n, data = smoke, trtname = c("NC",
+ "SH", "IC", "GC"), param = c("AR", "OR", "RR", "LOR", "LRR", "RD",
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+ "rank.prob"), model = "het_cor", higher.better = TRUE, digits = 3,
+ n.adapt = 10000, n.iter = 200000, n.thin = 1, conv.diag = TRUE,
+ dic = TRUE, trace = "LOR", postdens = TRUE)

The following messages were outputted:

Start running MCMC...
Compiling model graph

Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 50
Unobserved stochastic nodes: 29
Total graph size: 646

Initializing model

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%
|**************************************************| 100%
|**************************************************| 100%

Start calculating MCMC convergence diagnostic statistics...
Start calculating deviance information criterion statistics...

|**************************************************| 100%
Start saving trace plots...
Start saving posterior density plot for absolute risk...

When a JAGS model is compiled, it may require an initial sampling phase during which
the samplers adapt their behavior to maximize their efficiency (e.g., a Metropolis-Hastings
random walk algorithm may change its step size) (Plummer 2016). The warning “adaptation
incomplete” may occasionally occur if the number of iterations for the adaptation process
(i.e., the argument n.adapt) is not sufficient, so the MCMC algorithm may not achieve the
maximum efficiency. This warning generally has little impact on the posterior estimates of
the treatment effects. To avoid this warning, users may increase n.adapt.
The results are saved in the object smoke.out, a list containing AbsoluteRisk, OddsRatio,
LogOddsRatio, RelativeRisk, LogRelativeRisk, RiskDifference, TrtRankProb, and DIC.
We can use these effect size names to display the corresponding estimates. For example, the
estimates of absolute risks (posterior mean and standard deviation, and posterior median and
95% credible interval) can be displayed as

R> smoke.out$AbsoluteRisk

$Mean_SD
Mean (SD)

NC 0.082 (0.014)
SH 0.167 (0.052)
IC 0.185 (0.028)
GC 0.229 (0.064)
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$Median_CI
Median (95% CI)

NC 0.081 (0.058, 0.114)
SH 0.159 (0.086, 0.291)
IC 0.183 (0.136, 0.245)
GC 0.221 (0.128, 0.373)

The argument digits in the function nma.ab.bin() can be used to change the number of
digits to the right of the decimal point. Here, we used digits = 3. Each list element in
the object smoke.out consists of two sublists: Mean_SD contains posterior sample means
with sample standard deviations; Median_CI contains posterior medians with 95% CIs. For
example, users can output the medians and 95% CIs for the log odds ratio as follows:

R> smoke.out$LogOddsRatio$Median_CI

NC SH IC
NC -- -0.761 (-1.610, 0.005) -0.924 (-1.430, -0.445)
SH 0.761 (-0.005, 1.610) -- -0.165 (-0.929, 0.657)
IC 0.924 (0.445, 1.430) 0.165 (-0.657, 0.929) --
GC 1.170 (0.402, 1.980) 0.404 (-0.614, 1.420) 0.237 (-0.516, 1.050)

GC
NC -1.170 (-1.980, -0.402)
SH -0.404 (-1.420, 0.614)
IC -0.237 (-1.050, 0.516)
GC --

Since the log odds ratio is a relative effect size comparing a pair of treatments, the output
estimates are displayed in a K × K matrix, where K is the number of treatments. In this
example, K = 4. The element in the ith row and jth column is the estimated log odds ratio of
treatment i compared to treatment j. To statistically test the difference between treatments,
one can examine whether the effect size under the null hypothesis (i.e., the two treatments do
not differ) is within the corresponding 95% CI; under the null hypothesis, ORs and RRs are
1, while LORs, LRRs, and RDs are 0. From the output, the 95% CI of the log odds ratio for
SH vs. NC is (−0.032, 1.610) which contains 0; therefore, there is not sufficient evidence to
reject the null hypothesis. However, the 95% CI of the log odds ratio comparing GC to NC is
(0.399, 1.970), which does not contain 0; therefore, these two treatments differ significantly.
Also, in this example, we included "rank.prob" in the argument param to estimate treatment
rank probabilities, and dic was specified as TRUE to calculate the DIC statistic. Recall that
for the smoking cessation dataset, a higher event probability implies a better treatment, so
we specified the argument higher.better as TRUE. Users can access the treatment rank
probabilities and DIC statistics using

R> smoke.out$TrtRankProb

rank1 rank2 rank3 rank4
NC 0.0000 0.0003 0.0272 0.9730
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Figure 2: Trace plots generated by R function nma.ab.bin() for the log odds ratio comparing
IC and GC in the smoking cessation data.

SH 0.1530 0.2410 0.5800 0.0257
IC 0.1980 0.5350 0.2670 0.0001
GC 0.6480 0.2240 0.1260 0.0017

R> smoke.out$DIC

D.bar 278.70025
pD 44.22552
DIC 322.92577

From the output, treatment GC has the highest probability of being the best treatment
(66.2%). As for the DIC statistic, D.bar is the posterior expectation of the deviance, which
reflects the model fit; it is usually lower when more parameters are used in the model. How-
ever, complex models may lead to overfitting. To balance between the number of parameters
and fitting effects, pD is used to penalize D.bar; it reflects the number of effective parameters
used in the model. DIC is the penalized deviance, calculated as the sum of D.bar and pD; a
model with smaller DIC is preferred.
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Figure 3: Posterior density plots generated by the functions in package pcnetmeta.

Trace plots of LOR are generated because trace = "LOR" was specified. Figure 2 shows the
trace plots of the LOR comparing IC and GC. Since we used the default n.chains = 3, three
trace plots are drawn. Each trace plot shows evidence that the posterior samples of LOR are
drawn from the stationary distribution.
A posterior density plot (Figure 3a) for treatment-specific absolute risks is also generated by
specifying postdens = TRUE. This density plot is smoothed by the R function density().
This plot shows visualized treatment effects, and we may also evaluate treatment differences.
For example, NC clearly has lower event probability than IC and GC, and its posterior density
only overlaps with the densities of IC and GC in tiny regions.

Function nma.ab.cont() for continuous outcomes

For continuous outcomes, the arguments of nma.ab.cont() are mostly similar to those of
nma.ab.bin(). The major difference is that users need to specify the summaries of contin-
uous outcomes (sample means and standard deviations) for the arguments mean and sd in
nma.ab.cont(). Also, the effect sizes to be estimated include continuous treatment-specific
effects and their differences. Users can specify the argument param as "mu" to estimate
treatment-specific effects and "diff" to estimate effect differences. Also, "rank.prob" can be
included in param to estimate treatment rank probabilities. The network dataset parkinson
is used as an example:

R> data("parkinson", package = "pcnetmeta")
R> set.seed(12345)
R> parkinson.out <- nma.ab.cont(s.id, t.id, mean, sd, n, data = parkinson,
+ model = "hom_eqcor", prior.type = "unif", digits = 3, n.adapt = 10000,
+ n.iter = 100000, n.thin = 1, conv.diag = TRUE, trace = "mu",
+ postdens = TRUE)

In this example, we used the model "hom_eqcor", which assumes an exchangeable correlation
structure for the correlations between treatment effects. We display the medians and the
corresponding 95% CIs for treatment-specific effects and effect differences as follows.

R> parkinson.out$TrtEffect$Median_CI
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Median (95% CI)
Trt1 -0.719 (-1.600, 0.174)
Trt2 -2.530 (-3.550, -1.520)
Trt3 -0.985 (-1.860, -0.144)
Trt4 -1.340 (-1.990, -0.617)
Trt5 -1.940 (-2.960, -0.969)

R> parkinson.out$EffectDiff$Median_CI

Trt1 Trt2 Trt3
Trt1 -- 1.810 (0.744, 2.880) 0.274 (-0.839, 1.370)
Trt2 -1.810 (-2.880, -0.744) -- -1.540 (-2.770, -0.324)
Trt3 -0.274 (-1.370, 0.839) 1.540 (0.324, 2.770) --
Trt4 -0.618 (-1.590, 0.403) 1.190 (0.108, 2.330) -0.338 (-1.260, 0.557)
Trt5 -1.210 (-2.520, -0.018) 0.600 (-0.833, 1.910) -0.916 (-2.330, 0.234)

Trt4 Trt5
Trt1 0.618 (-0.403, 1.590) 1.210 (0.018, 2.520)
Trt2 -1.190 (-2.330, -0.108) -0.600 (-1.910, 0.833)
Trt3 0.338 (-0.557, 1.260) 0.916 (-0.234, 2.330)
Trt4 -- 0.558 (-0.218, 1.750)
Trt5 -0.558 (-1.750, 0.218) --

The effect difference in the ith row and jth column is calculated as the effect of treatment i
minus that of treatment j. To statistically test the difference between two treatments, users
may check whether 0 is within the corresponding 95% CI for the effect difference. For in-
stance, from the output, the 95% CI for the effect difference between treatments 1 and 2 is
(−2.860,−0.762), which does not contain 0. Therefore, treatments 1 and 2 differ significantly.
The posterior density plot (Figure 3b) for treatment-specific effects is obtained by specifying
postdens = TRUE. From the density plot, the overlap region of densities for treatments 1
and 2 is fairly small, and this supports the above conclusion.

Functions nma.ab.py() and nma.ab.followup() for count datasets

For models (3) and (4), treatment effects can be related to the follow-up times of participants.
Some studies report the total exposure times in person-years (e.g., Hooper et al. 2000) for
each treatment group, and some report the mean follow-up time for each study (e.g., Psaty
et al. 2003; Elliott and Meyer 2007). The functions nma.ab.py() and nma.ab.followup()
can be used for these two types of datasets, corresponding to models (3) and (4), respectively.
In these two functions, the argument param can include "rate" (treatment-specific rate),
"lograte" (log rate), "ratio" (rate ratio), "logratio" (log rate ratio), and "rank.prob"
(treatment rank probabilities). Since the two functions are similar, this article focuses on
using the dataset diabetes to illustrate the usage and output of nma.ab.followup(). The
function is called as follows:

R> data("diabetes", package = "pcnetmeta")
R> set.seed(12345)
R> diabetes.out <- nma.ab.followup(s.id, t.id, r, n, folup, data = diabetes,
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+ trtname = c("Diuretic", "Placebo", "BB", "CCB", "ACEI", "ARB"),
+ model = "het_cor", digits = 3, n.adapt = 10000, n.iter = 200000,
+ n.thin = 2, conv.diag = TRUE, trace = "lograte", postdens = TRUE)

Log rate ratio (the treatment in a row compared to that in a column) for each pair of treat-
ments can be displayed as follows:

R> diabetes.out$LogRateRatio$Median_CI

Diuretic Placebo BB
Diuretic -- 0.109 (-0.654, 0.819) 0.096 (-0.559, 0.835)
Placebo -0.109 (-0.819, 0.654) -- -0.016 (-0.625, 0.754)
BB -0.096 (-0.835, 0.559) 0.016 (-0.754, 0.625) --
CCB -0.169 (-0.896, 0.434) -0.055 (-0.822, 0.530) -0.075 (-0.600, 0.442)
ACEI -0.263 (-0.958, 0.392) -0.157 (-0.781, 0.405) -0.167 (-0.716, 0.429)
ARB -0.324 (-1.130, 0.560) -0.212 (-1.020, 0.603) -0.228 (-0.917, 0.637)

CCB ACEI ARB
Diuretic 0.169 (-0.434, 0.896) 0.263 (-0.392, 0.958) 0.324 (-0.560, 1.130)
Placebo 0.055 (-0.530, 0.822) 0.157 (-0.405, 0.781) 0.212 (-0.603, 1.020)
BB 0.075 (-0.442, 0.600) 0.167 (-0.429, 0.716) 0.228 (-0.637, 0.917)
CCB -- 0.093 (-0.510, 0.641) 0.156 (-0.637, 0.760)
ACEI -0.093 (-0.641, 0.510) -- 0.062 (-0.793, 0.774)
ARB -0.156 (-0.760, 0.637) -0.062 (-0.774, 0.793) --

From the output, all of the 95% CIs contain 0, so the difference between any pair of treatments
is not significant. The posterior density plot of the log rates is shown in Figure 3c, which also
indicates that treatment-specific density curves do not differ much.

3.4. Plotting 95% credible intervals

When presenting network meta-analysis results, it is helpful to report the 95% CIs for ef-
fect sizes of interest. The package pcnetmeta provides functions absolute.plot() and
contrast.plot() to draw the 95% CIs for treatment-specific and relative effect sizes, re-
spectively. Users can simply call these functions on objects obtained from nma.ab.bin(),
nma.ab.cont(), nma.ab.py(), and nma.ab.followup(). Here, we use the three objects ob-
tained is the previous sections as examples to generate treatment-specific 95% CI plots:

R> absolute.plot(smoke.out, width = 5, height = 1.5)
R> absolute.plot(parkinson.out, width = 5, height = 1.5)
R> absolute.plot(diabetes.out, width = 8, height = 2.5)

The generated plots are shown in the left panels of Figure 4. Contrast plots showing compar-
isons to a reference treatment can be generated by the following code:

R> contrast.plot(smoke.out, reference = "NC", width = 5, height = 1.5)
R> contrast.plot(parkinson.out, reference = "Trt1", width = 5, height = 1.5)
R> contrast.plot(diabetes.out, reference = "Placebo", width = 8,
+ height = 2.5)
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Figure 4: The left three panels show the plots for treatment-specific (absolute) effects gen-
erated by the function absolute.plot(); the right three panels show the plots for relative
effects generated by the function contrast.plot().

The argument reference specifies the reference treatment to be compared against. The right
panels of Figure 4 display the contrast plots.
Figure 4a shows the treatment-specific 95% CI plot for the smoking cessation data. Clearly,
the 95% CIs of IC and GC do not overlap with the 95% CI of NC. This indicates significant
differences between IC vs. NC and GC vs. NC. This can be confirmed by Figure 4b: The
95% CIs of ORs comparing IC vs. NC and GC vs. NC do not intersect with the vertical line
at OR = 1. Figure 4c is the treatment-specific 95% CI plot for the Parkinson’s disease data.
Note that the 95% CIs for treatments 1 and 2 overlap only in a tiny region. Correspondingly,
the 95% CI for the effect difference between the two treatments in Figure 4d does not intersect
with the vertical line at 0. Finally, Figures 4e and 4f show the 95% CI plots for treatment-
specific and relative effects for the diabetes dataset. All of the treatment-specific 95% CIs
have a large overlap with other CIs. The 95% CIs of the rate ratios compared with placebo
intersect with the vertical line at 1; therefore, the active treatments do not differ significantly
from placebo.

3.5. Plotting treatment rank probabilities

Function rank.prob() is used to graph the probabilities of each treatment having each of the
different possible ranks among the treatments. Users can call this function for the objects
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Figure 5: Plots of treatment rank probabilities generated by the function rank.prob().

smoke.out, parkinson.out, and diabetes.out as follows:

R> rank.prob(smoke.out, cex.axis = 2, cex.lab = 2)
R> rank.prob(parkinson.out, cex.axis = 2, cex.lab = 2)
R> rank.prob(diabetes.out, cex.axis = 1, cex.lab = 2)

Figure 5 shows the plots of treatment rank probabilities. In the plots, each vertical bar
represents probabilities that a specific treatment has different possible ranks. A darker area
indicates the probability of having a higher rank, thus the black areas show the probabili-
ties of having the best treatment. Therefore, from Figures 5a and 5b, treatments GC and
Trt2 have much higher probabilities of being the best treatment, compared with other treat-
ments in their respective studies. Figure 5c shows the rank probabilities plot for the dataset
diabetes. Treatment ARB has the highest probability of being the best treatment, although
the probability for treatment ACEI is close to the highest probability, so ARB and ACEI do
not differ much.

4. Discussion
This article presents an overview of the R package pcnetmeta. Arm-based models are intro-
duced to demonstrate the underlying methods of the functions. Practical usage of various
functions is illustrated with examples of real network meta-analyses. Also, the package pro-
vides several plots for interpretation of network meta-analysis outputs.
MCMC convergence diagnostics have been extensively discussed in the literature (Cowles and
Carlin 1996; Kass, Carlin, Gelman, and Neal 1998). The PSRFs and trace plots provided by
the package pcnetmeta are used to examine whether the MCMC chains are drawn from sta-
tionary distributions; however, additional techniques are required to determine the effective
sample size for adequate convergence (Robert and Casella 2004, p. 500). By specifying the ar-
gument mcmc.samples = TRUE in nma.ab.bin(), nma.ab.cont(), nma.ab.followup(), and
nma.ab.py(), the MCMC posterior samples are saved in the output objects. Functions in
other packages developed for MCMC convergence and sample-size adequacy, such as the R
package mcmcse (Flegal and Hughes 2012), can be called for these posterior samples.
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The current version of pcnetmeta does not detect inconsistency in arm-based network meta-
analysis. Future work would add functions for network consistency assessment (Zhao, Hodges,
Ma, Jiang, and Carlin 2016). Moreover, both the contrast-based and arm-based methods can
be extended to handle individual patient data (IPD; Jansen 2012; Saramago, Chuang, and
Soares 2014; Hong, Fu, Price, and Carlin 2015; Veroniki, Soobiah, Tricco, Elliott, and Straus
2015); a future update of the package may include functions for IPD.
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