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Abstract

Recent advances in the implementation of spatial econometrics model estimation tech-
niques have made it desirable to compare results, which should correspond between im-
plementations across software applications for the same data. These model estimation
techniques are associated with methods for estimating impacts (emanating effects), which
are also presented and compared. This review constitutes an up-to-date comparison of
generalized method of moments and maximum likelihood implementations now available.
The comparison uses the cross-sectional US county data set provided by Drukker, Prucha,
and Raciborski (2013d). The comparisons will be cast in the context of alternatives us-
ing the MATLAB Spatial Econometrics toolbox, Stata’s user-written sppack commands,
Python with PySAL and R packages including spdep, sphet and McSpatial.

Keywords: spatial econometrics, maximum likelihood, generalized method of moments, esti-
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1. Introduction

Researchers applying spatial econometric methods to empirical economic questions now have a
wide range of tools, and a growing literature supporting these tools. In the 1970s and 1980s,
it was typical for researchers to use tools coded in Fortran or other general programming
languages, or to seek to integrate functions into existing statistical and/or matrix language
environments (Anselin 2010). The use of spatial econometrics tools was widened by the ease
with which methods and examples presented in Anselin (1988b) could be reproduced using
SpaceStat (Anselin 1992), written in GAUSS (Aptech Systems, Inc. 2007), and shipped as
a built runtime module. It was rapidly complemented by the Spatial Econometrics toolbox
for MATLAB (The MathWorks, Inc. 2011), provided as source code together with extensive
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documentation (see also LeSage and Pace 2009, http://www.spatial-econometrics.com/).
This toolbox is under active development, and accepts contributed functions, thus broaden-
ing its appeal. In addition, Griffith and Layne (1999) gave code listings for model fitting
techniques using SAS (SAS Institute Inc. 2008) and SPSS (IBM Corporation 2010). A suite
of commands for spatial data analysis for use with Stata (StataCorp. 2011) was provided
by Maurizio Pisati, and distributed using the standard contributed command system (Pisati
2001).1

The thrust of SpaceStat was largely been taken over by GeoDa (Anselin, Syabri, and Kho
2006).2 The Python (van Rossum 1995) spatial analysis library (PySAL; Rey and Anselin
2010, http://pysal.org/) has also been launched. Since the R language and environment (R
Core Team 2014) became available in the 1990s, collaborative code development has proceeded
with varying speed. Initial attempts to implement spatial econometrics techniques in R in
the spdep (Bivand 2013) package were checked against SpaceStat, and subsequently against
Maurizio Pisati’s Stata code and GeoDa by comparing results for the same input data and
spatial weights (Bivand and Gebhardt 2000; Bivand 2002). A broad survey of the analysis
of spatial data in the R environment is given by Bivand (2006) and Bivand, Pebesma, and
Gómez-Rubio (2013b).

In the spirit of Rey (2009), this comparison will attempt to examine some features of the
implementation of user-written sppack commands for fitting spatial econometrics models in
Stata, with those in the Spatial Econometrics toolbox for MATLAB, in R and in Python. We
have chosen only to compare implementations for which the estimations can be scripted, and
from which the output can be transferred back to R in binary form. A consequence of this
restriction is that we have not included GeoDa. Because Millo and Piras (2012) provide
recent comparative results for implementations of spatial panel models in R and MATLAB, we
restrict our consideration to cross-sectional models, and within that to cross-sectional models
implemented in at least two application languages. This results in our putting Bayesian
methods for spatial econometric models aside until they become available in other languages
than MATLAB. Finally, we have chosen not to consider tests for residual autocorrelation or
for model specification,3 or other diagnostic or exploratory techniques or measures, feeling
that model estimation is of more immediate importance.

Initially, we describe the framework used for our comparative study, and the data set cho-
sen for use. Next we define the models to be compared, and then move to comparisons for
generalized method of moments (GMM) estimators. The GMM presentation is a substan-
tial extension of Piras (2010), as many theoretical results have been published since then,
and have been incorporated into the sphet package, as well as made available in Stata and
PySAL. Following the comparison of GMM implementations, we examine implementations
of maximum likelihood estimators, focussing on the consequences of details in the choices of
numerical methods across the alternatives. Before concluding, we compare the provision of
functions for calculating emanating effects (Kelejian, Tavlas, and Hondroyiannis 2006), also

1Most of the comparison in this paper will be made against the user-written sppack commands Drukker,
Prucha, and Raciborski (2013c). For the sake of simplicity, we sometimes will refer in the main text simply to
Stata. The reader should keep in mind that this is a shortcut for user-written sppack commands in Stata.

2https://geodacenter.asu.edu/projects/opengeoda, source code: http://code.google.com/p/

opengeoda/.
3See e.g., Anselin, Bera, Florax, and Yoon (1996); Anselin (1988a); Anselin and Bera (1998); Florax and

Folmer (1992); Cliff and Ord (1972); Florax, Folmer, and Rey (2003); Kelejian and Piras (2011); Burridge
(1980).

http://www.spatial-econometrics.com/
http://pysal.org/
https://geodacenter.asu.edu/projects/opengeoda
http://code.google.com/p/opengeoda/
http://code.google.com/p/opengeoda/
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known as impacts (LeSage and Fischer 2008; LeSage and Pace 2009), simultaneous spatial
reaction function/reduced form (Anselin and Lozano-Gracia 2008), equilibrium effects (Ward
and Gleditsch 2008), and unwittingly touched upon by Bivand (2002) in trying to create a
prediction method for spatial econometrics models.

1.1. Comparative study

The comparative study was constructed around unified R scripts. The first script prepared
the data from the input data set for export to MATLAB in a text file, to Stata as a dta file and
to Python as a dbf file written as part of an ESRI Shapefile. The data to be exported were run
through model.frame first to generate the intercept where needed and any dummy variables
(none were needed with the data set used here). Next, the first script read a GAL-format file
of county neighbors from which to form spatial weights; a row-standardized weights object was
then formed for export and use in R. Weights were exported to MATLAB in a three-column
sparse matrix text file, to Stata in GWT-format and to Python in GAL-format.

This R script was then used to run R code to estimate chosen spatial econometrics models, and
to write scripts for MATLAB, Stata and Python. Keeping all of the code in a single R script
was intended to ensure that attention was focussed on estimating the same models across the
different implementations. The scripts were run chunk-by-chunk by hand or by highlighting
code for execution in the script editors of the different applications, but finally for MATLAB
and Stata they were run from start to termination continuously. The scripts output is a binary
objects containing the estimated model results; in the R case, save was used for the objects
from a given class of models. In MATLAB, use was made of the analogous save function;
in Stata the file command with write binary options was used; in Python save imported
from NumPy (Oliphant 2006). With these mechanisms, and after careful investigation of the
output estimation objects, we were able to ensure that we were comparing estimates of the
same model components.

A second unified script was used to coordinate and document the collation of results from
the four applications into tabular form for this article, typically by setting up the results
from one application in a column vector, using cbind to combine these columns. The bi-
nary output from R was read using load; from Stata using the R function readBin; from
MATLAB using readMat in the R.Matlab package (Bengtsson 2005); and from Python using
the npyLoad function from the RcppCNPy package. The tables for presentation below were
then formatted using the same rounding arguments either for the whole table or row-wise, so
that no differences could be introduced by rounding results from implementations in different
ways. The remaining differences, if any, come from differences in the implementations, and it
is these we intend to account for as far as possible.

The analysis has been carried out on an Intel Core i7 64-bit system with 8GB RAM under
Windows 7 Enterprise SP1. The software used was Stata 12.1 with the sppack version“st0292”,
MATLAB R2011b with the March 2010 version of the Spatial Econometrics toolbox,4 R 2.15.2
(R Core Team 2014) with packages spdep 0.5-56, sphet 1.5, and McSpatial 1.1.1 (McMillen
2012) and their contemporary dependencies, and Python 2.7 (32-bit) with PySAL 1.4. Some
of the PySAL model estimation functions may also be accessed from GeoDaSpace, but we

4Local modifications were made in a copy kept by agreement with its authors as a subdirectory on http://

R-Forge.R-project.org/projects/spdep2/; these changes will be mentioned in the comparison of maximum
likelihood methods, as they permitted additional options and returned values to be used.

http://R-Forge.R-project.org/projects/spdep2/
http://R-Forge.R-project.org/projects/spdep2/
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have used PySAL directly here.

We can see from the comparison of OLS results for the selected data set shown in Table 2
that the linear algebra output of the applications used is identical, and we can assume that
any differences found in comparing spatial econometrics techniques will then not be caused by
divergences in linear algebra implementations. There are, however, other underlying technolo-
gies that may differ, in particular numerical optimization. From examining source code where
available, it appears that the GM methods in PySAL use the SciPy (Jones, Oliphant, Peter-
son, and others 2001) fmin_l_bfgs_b function in the optimize module, based on L BFGS B
version 2.1 from 1997,5 a quasi-Newton function for bound-constrained optimization. Nash
and Varadhan (2011) provide a helpful guide to available numerical optimization technolo-
gies, and to those available in R. In sphet, use is made of the nlminb function, which is a
reverse-communication trust-region quasi-Newton method from the Port library (Gay 1990),6

with enhanced scaling features. The same function is used by default for fitting in spdep
when more than one parameter is to be optimized; optionally, other optimizers, including the
R implementation of L BFGS B version 2.1. For bounded line search in spdep, use is made of
the optimize function, based on Brent (1973). In the R McSpatial package (McMillen 2012),
optimize is used first to conduct a line search, and then nlm, a Newton-type algorithm
(Schnabel, Koontz, and Weiss 1985) is used to optimize all the parameters in a maximum
likelihood model, possibly modifying the outcome of the line search. The GM functions in
the Spatial Econometrics toolbox use an included function minz contributed by Michael Cliff;
for bounded line search, the MATLAB fminbnd function also based on Brent (1973) is used,
while when more than one parameter is to be optimized, the MATLAB fminsearch function
is used – it is an implementation of the Nelder-Mead simplex algorithm. Finally, the Stata
implementations of spatial econometric models use optimize mechanisms described in the
help page for maximize, referred to in Drukker et al. (2013c,d). The default numerical op-
timizer is "nr", a Stata-modified Newton-Raphson algorithm, but other algorithms may be
chosen (Gould, Pitblado, and Poi 2010).

1.2. Data set

We were fortunate to be able to use the simulated US Driving Under the Influence (DUI)
county data set used in Drukker et al. (2013b,c,d) for our comparison. The data used is
simulated for 3109 counties (omitting Alaska, Hawaii, and US territories), and uses simu-
lations from variables used by Powers and Wilson (2004). The counties are taken from an
ESRI Shapefile downloaded from the US Census.7 The dependent variable dui is defined
as the alcohol-related arrest rate per 100,000 daily vehicle miles traveled (DVMT). The ex-
planatory variables include police (number of sworn officers per 100,000 DVMT); nondui
(non-alcohol-related arrests per 100,000 DVMT); vehicles (number of registered vehicles per
1,000 residents), and dry (a dummy for counties that prohibit alcohol sale within their bor-
ders, about 10% of counties). A further dummy variable elect takes values of 1 if a county
government faces an election, 0 otherwise, and has 295 non-zero entries. Descriptive statistics
for the simulated DUI data set are shown in Table 1.

Table 2 shows the stylized results from estimating the relationship between the simulated

5http://www.scipy.org/doc/api_docs/SciPy.optimize.lbfgsb.html, http://users.eecs.

northwestern.edu/~nocedal/lbfgsb.html.
6http://netlib.sandia.gov/port/.
7ftp://ftp2.census.gov/geo/tiger/TIGER2008/tl_2008_us_county00.zip.

http://www.scipy.org/doc/api_docs/SciPy.optimize.lbfgsb.html
http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html
http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html
http://netlib.sandia.gov/port/
ftp://ftp2.census.gov/geo/tiger/TIGER2008/tl_2008_us_county00.zip
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Min. 1st Qu. Median Mean 3rd Qu. Max.

dui 15.01 19.88 20.83 20.84 21.82 26.62
police 25.28 29.73 30.72 30.70 31.67 36.78
nondui 18.01 34.41 40.19 40.98 46.74 76.50
vehicles 390.40 479.90 501.30 501.80 523.60 625.90

Table 1: Descriptive statistics for the dependent variable and the non-dummy explanatory
variables, simulated DUI data set.

R lm Stata reg MATLAB SE ols Python PySAL OLS

Intercept −5.4428237 −5.4428237 −5.4428237 −5.4428237
(0.229431) (0.229431) (0.229431) (0.229431)

police 0.5990957 0.5990957 0.5990957 0.5990957
(0.014935) (0.014935) (0.014935) (0.014935)

nondui 0.0002746 0.0002746 0.0002746 0.0002746
(0.001088) (0.001088) (0.001088) (0.001088)

vehicles 0.0156842 0.0156842 0.0156842 0.0156842
(0.000670) (0.000670) (0.000670) (0.000670)

dry 0.1060904 0.1060904 0.1060904 0.1060904
(0.035011) (0.035011) (0.035011) (0.035011)

Table 2: OLS estimation results for four implementations, simulated DUI data set (standard
errors in parentheses).

dependent variable and four explanatory variables using least squares. Powers and Wilson
(2004, p. 331) found that “there is no significant relationship between prohibition status and
the DUI arrest rate when controlling for the proportionate number of sworn officers and the
non-DUI arrest rate per officer” when examining data for 75 counties in Arkansas. Their best
model has an adjusted R2 of 0.397, while the simulated data has a higher value of 0.850, and
the explanatory variables with the exception of nondui are all significant. As can be seen
easily, all four implementations, R lm, Stata reg, MATLAB Spatial Econometrics (SE) toolbox
ols, and Python PySAL OLS give identical results, so confirming that all four applications are
handling the same data.

Drukker et al. (2013d) do not specify how spatial dependence was introduced into the depen-
dent variable and/or residuals. Using the 3109 county SpatialPolygons read from the ESRI
Shapefile mentioned above, we recreated the Queen contiguity list of neighbors with poly2nb

in spdep. The descriptive statistics for the neighbor object shown by Drukker et al. (2013b)
match ours exactly:8

R> library("rgdal")

R> county <- readOGR("tl_2008_us_county00", "tl_2008_us_county00")

8We were perplexed to find that the results from fitting the ML SARAR model given by Drukker et al.
(2013d), did not match those we obtained in R or Stata. We initially adopted row-standardized spatial weights,
W, where the county contiguities cij , taking values of 1 if contiguous, sharing at least one boundary point,
and 0 otherwise, are row-standardized by dividing by row sums. It turned out (personal communication,
Rafal Raciborski) that the spatial weights used in estimation in Drukker et al. (2013d) were in fact minmax-
normalized, where the required operation is:

wij =
cij
m
. (1)
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R> drop <- county$STATEFP00 == "02" | county$STATEFP00 == "15" |

+ as.character(county$STATEFP00) > "56"

R> ccounty <- county[!drop, ]

R> library("rgeos")

R> strt <- gUnarySTRtreeQuery(ccounty)

R> library("spdep")

R> nblist <- poly2nb(ccounty, foundInBox = strt)

R> nblist

Neighbour list object:

Number of regions: 3109

Number of nonzero links: 18474

Percentage nonzero weights: 0.1911259

Average number of links: 5.942104

2. A general spatial model

The present discussion is almost entirely based on Kelejian and Prucha (2010), Drukker,
Egger, and Prucha (2013a), Arraiz, Drukker, Kelejian, and Prucha (2010) and Drukker et al.
(2013c) that provide some important extensions to Kelejian and Prucha (1998, 1999). The
model presented is quite general and allows for some of the right hand side variables to be
endogenous. Specifically, the point of departure will be the following Cliff-Ord spatial model:

y = Yπ + Xβ + ρLagWy + u (3)

where y is an n× 1 vector of observations on the dependent variable, Y is an n× p matrix of
observations on p endogenous variables, X is a n× k matrix of observations on k exogenous
variables, W is an n × n observed and non-stochastic spatial weighting matrix and, conse-
quently, Wy is an n×1 variable that is generally referred to as the spatially lagged dependent
variable; π and β are corresponding parameters; and ρLag is the spatial autoregressive coef-
ficient. Given the presence of Y, the model can be viewed as a representation of a single
equation of a system of equations.9

The error vector u follows a spatial autoregressive process of the form:

u = ρErrMu + ε (4)

where m is the minmax value, the minimum of the pair of maxima of row and column sums:

m = min(max

n∑
i=1

cij ,max

n∑
j=1

cij). (2)

Using these weights, we could reproduce the ML SARAR estimation results given by Drukker et al. (2013d),
and could confirm that the underlying contiguities were the same as those used in the Stata documentation.

9A spatial lag of the matrix of observations on the exogenous variables WX may be added to the model,
however Kelejian and Prucha (1997) warn against this. To avoid complications, we will not consider it in
the present section. To avoid complications, we will not consider it in the present section. However, in the
maximum likelihood implementation we will discuss the estimation of a model that includes WX among the
set of regressors.
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where ρErr is a scalar parameter generally referred to as the spatial autoregressive parameter,
M is an n× n spatial weighting matrix that may or may not be the same as W,10 Mu is an
n× 1 vector of observation on the spatially lagged vector of residuals.

An alternative, more compact way to express the same model is:

y = Zδ + u (5)

where Z = [Y,X,Wy] is the set of all (endogenous and exogenous) explanatory variables,
and δ = [π>, β>, ρLag]

> is the corresponding vector of parameters. Finally, the assumption on
which the maximum likelihood relies is that ε ∼ N(0, σ2). In the GMM approach, the estima-
tion theory is developed both under the assumptions that the innovations ε are homoskedastic,
and heteroskedastic of unknown form.

2.1. Notation

Here we adopt the notation ρLag for the spatial autoregressive parameter on the spatially
lagged dependent variable y, and ρErr for the spatial autoregressive parameter on the spatially
lagged residuals. In Ord (1975), ρ is used for both parameters, but subsequently two schools
have developed, with Anselin (1988b) and LeSage and Pace (2009) (and many others) using
ρ for the spatial autoregressive parameter on the spatially lagged dependent variable y, and
λ for the spatial autoregressive parameter on the spatially lagged residuals. Kelejian and
Prucha (1998, 1999) (and many others particularly in the econometrics literature) adopt the
opposite notation, using λ for the spatial autoregressive parameter on the spatially lagged
dependent variable y, and ρ for the spatial autoregressive parameter on the spatially lagged
residuals. Our choice is an attempt to disambiguate in this comparison, not least because the
different software implementations use one or other scheme, so inviting confusion.

The names used for models also vary between software implementations, so that the general
model given in Equation 3 is also known as a SARAR model, with first order autoregressive
processes in the dependent variable and the residuals. The same model is termed a SAC
model in LeSage and Pace (2009) and the MATLAB Spatial Econometrics toolbox. This
model and all its derivatives are simultaneous autoregressive (SAR) models in the sense used
in spatial statistics (see also Ripley 1981, p. 88), in contrast to conditional autoregressive
(CAR) models often used in disease mapping and other application areas. Other issues in the
naming of models will be mentioned in the next section.

2.2. Restrictions on the general model

The general model (Equation 3) may be restricted by setting π = 0 to remove the endogenous
variables. All of the models considered when comparing maximum likelihood implementations,
and many GMM implementations, impose this restriction. The spatial lag model is formed
as a special case with ρErr = 0, and the spatial error model with ρLag = 0. The spatial error
model with no endogenous variables is:

y = Xβ + u,u = ρErrMu + ε (6)

10In many empirical applications W and M are assumed to be identical. However, both R and Stata
allow them to differ. From an implementation perspective, the main complication is in the definition of the
instrument matrix. We will discuss this issue in the next section.
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This model is known as SEM (spatial error model) in LeSage and Pace (2009), and SARE
(spatial autoregressive error model) in Drukker et al. (2013d).

The spatial lag model with no endogenous variables is:

y = Xβ + ρLagWy + ε (7)

This model is known as SAR (spatial autoregressive model) in both LeSage and Pace (2009)
and Drukker et al. (2013d).

In fitting spatial lag models and by extension any model including the spatially lagged de-
pendent variable, it has emerged over time that, unlike the spatial error model, the spatial
dependence in the parameter ρLag feeds back, obliging analysts to base interpretation not on
the fitted parameters β, but rather on correctly formulated impact measures, as discussed in
references given on page 3.

This feedback comes from the data generation process of the spatial lag model (and by ex-
tension in the general model). Rewriting:

y − ρLagWy = Xβ + ε

(I− ρLagW)y = Xβ + ε

y = (I− ρLagW)−1Xβ + (I− ρLagW)−1ε

where I is the n× n identity matrix. This means that the expected impact of a unit change
in an exogenous variable r for a single observation i on the dependent variable yi is no longer
equal to βr, unless ρLag = 0. The awkward n× n Sr(W) = ((I− ρLagW)−1Iβr) matrix term
is needed to calculate impact measures for the spatial lag model, and similar forms for other
models including the general model, when ρLag 6= 0.11

3. Comparing GMM implementations

The estimation of the general SARAR(1,1)12 model consists of various steps. Given the
simultaneous presence of the endogenous variables on the right hand side of Equation 3 and
the spatially autocorrelated residuals, these steps will alternate instrumental variables (IV)
and GMM estimators. These estimators will be based on a set of linear and quadratic moment
conditions of the form:

EH>ε = 0 (8)

Eε>Aε = 0 (9)

where H is an n×p non-stochastic matrix of instruments, and A is an n×n weighting matrix
whose specification will be introduced later. At this point, it is useful to introduce the spatial
Cochrane-Orcutt transformation of the model, that is:

y? = Z?δ + ε (10)

11When an additional endogenous variable is included, one should make additional (and generally restrictive)
assumptions to be able to calculate this impact measures. Since, to the best of our knowledge, no theory is
available for this case, we will exclude it from our discussion.

12This notation is simply to emphasize that the model has only one spatial lag for the dependent variable,
and one lag of the error term. Of course, a researcher can include as many lags as he wishes.
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where y? = y − ρErrMy and Z? = Z− ρErrMZ.

As a preview of the estimation steps, an initial IV estimator of δ leads to a set of consistent
residuals. This vector of residuals constitutes the basis for the derivation of the quadratic
moment conditions that provide a first consistent estimate for the autoregressive parameter
ρErr.

13 An estimate of δ is obtained from the transformed model after replacing the true
value of ρErr with its consistent estimate obtained in the previous step. Finally, in a new GM
iteration, it is possible to obtain a consistent and efficient estimate of ρErr based on generalized
spatial two stage least square residuals. The asymptotic variance-covariance matrix for the
coefficients is then calculated using the estimate of δ, the residuals, and the estimate of the
spatial coefficient ρErr.

3.1. SARAR model

For the case of no additional endogenous variables other than the spatial lag, the “ideal”
instruments should be expressed in terms of E (Wy). This is simply because the best instru-
ments for the right hand side variables are the conditional means and, since X and MX are
non-stochastic, we can simply focus on the spatial lags Wy and MWy (see Equation 10).
Given the reduced form of the model

y = (I− ρLagW)−1(Xβ + u) (11)

it follows that the best instruments can be expressed in terms of the E (Wy) = W(I −
ρLagW)−1Xβ (Lee 2003, 2007; Kelejian, Prucha, and Yuzefovich 2004; Das, Kelejian, and
Prucha 2003). Given that the roots of ρLagW are less than one in absolute value, Kelejian
and Prucha (1999) suggested to generate an approximation to the best instruments (say H)
as the subset of the linearly independent columns of

H = (X,WX,W2X, . . . ,WqX,MX,MWX, . . . ,MWqX) (12)

where q is a pre-selected finite constant and is generally set to 2 in applied studies.14 The in-
clusion of instruments involving M in the instrument matrix H is only needed for the formula-
tion of instrumental variable estimators applied to the spatially Cochrane-Orcutt transformed
model. At a minimum the instruments should include the linearly independent columns of X
and MX. In a more general setting where additional endogenous variables are present, since
the system determining y and Y is not completely specified, the optimal instruments are not
known. In this case it may be reasonable to use a set of instruments as above where X is
augmented by other exogenous variables that are expected to determine Y. Unless additional
information is available, it is not recommended to take the spatial lag of these additional
exogenous variables.

The starting point for the estimation of ρErr are the two following quadratic moment conditions
expressed as functions of the innovation ε

E[ε>Asε] = 0 (13)

13The estimate of ρErr could be, in turn, used to define a weighting matrix for the moment conditions in
order to obtain a consistent and efficient estimator. While possible, this would imply some computational
complications. However, the ρErr is already consistent and, therefore, can be used to define the transformed
model.

14While R and Stata set q = 2 by default, PySAL leaves the choice open to users.



10 Comparing Implementations of Estimation Methods for Spatial Econometrics

where the matrices As are such that tr(As) = 0. Furthermore, under heteroskedasticity it is
also assumed that the diagonal elements of the matrices As are zero. The reason for this is
that simplifies the formulae for the variance-covariance matrix (i.e., only depends on second
moments of the innovations and not on third and fourth moments). Specific suggestions for
As are given below. In general, such choices will depend on whether or not the model assumes
heteroskedasticity.

As we already mentioned, the actual estimation procedure consists of several steps, which
we will review next. Our review of the estimation procedure will be intentionally brief, as
we refer the interested reader to more specific literature (Kelejian and Prucha 2010; Drukker
et al. 2013a; Arraiz et al. 2010; Drukker et al. 2013c).

Step 1.1 – 2SLS estimator

The initial set of estimates are obtained from the untransformed model using the matrix of
instruments H, yielding to:

δ̃ = (Z̃>Z̃)−1Z̃>y (14)

where Z̃ = PZ = [X,Ŵy], Ŵy = PWy, P = H(H>H)−1H> and H was specified above.
The estimate δ̃ can then be used to obtain a initial estimate of the regression residuals, say
ũ. The GMM estimator of the next step is based on the assumption that these regression
residuals are consistent.

Step 1.2 – Initial GMM estimator

Let δ̃ be the initial estimator of δ obtained from Step 1.1, let ũ = y − Zδ̃, and ¯̃u = M ũ.
Then, we can operationalize the sample moments corresponding to Equation 13, that is:

m(δ̃, ρErr) = n−1

 (ũ− ρErr
¯̃u)>A1(ũ− ρErr

¯̃u)
...

(ũ− ρErr
¯̃u)>As(ũ− ρErr

¯̃u)


It is convenient to rewrite m(δ̃, ρErr) as an explicit function of the parameters ρErr and ρ2Err as
in the following expression

m(δ̃, ρErr) = Γ̃

[
ρErr

ρ2Err

]
− γ̃

where

Γ̃ = n−1

 ũ>(A1 + A>1 )¯̃u −¯̃uA1
¯̃u

...
...

ũ>(As + A>s )¯̃u −¯̃uAs
¯̃u

 and γ̃ = n−1

 ũ>A1ũ
...

ũ>Asũ


Therefore, the initial GMM estimator for ρErr is obtained by simply minimizing the following
relation:

ρ̃Err = argmin


[
Γ̃

(
ρErr

ρ2Err

)
− γ̃

]> [
Γ̃

(
ρErr

ρ2Err

)
− γ̃

] .
The expression above can be interpreted as a nonlinear least squares system of equations.
The initial estimate is thus obtained as a solution of the above system.
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We finally need an expression for the matrices As. Drukker et al. (2013a) suggest, for the
homoskedastic case, the following expressions:15

A1 =
{

1 + [n−1tr(M>M)]2
}−1

[M>M− n−1tr(M>M)I] (15)

and
A2 = M (16)

On the other hand, when heteroskedasticity is assumed, Kelejian and Prucha (2010) recom-
mend the following expressions for A1 and A2:

16

A1 = M>M− diag(M>M) (17)

and
A2 = M (18)

Step 2.1 – GS2SLS estimator

Using the estimate of ρErr obtained in Step 1.2, one can take a Cochrane-Orcutt transformation
of the model as in Equation 10 and estimate it again by 2SLS. The entire procedure is known
in the literature as generalized spatial two stage least square (GS2SLS):

δ̂ = [Ẑ?>Z]−1Ẑ?>y (19)

where Ẑ? = PZ?, Z? = Z− ρ̃ErrWZ, y? = y − ρ̃ErrWy and P = H(H>H)−1H>.

Step 2.2 – Consistent and efficient GMM estimator

In the second sub-step of the second step, an efficient GMM estimator of ρErr based on the
GS2SLS residuals is obtained by minimizing the following expression:

ρ̂Err = argmin


[
Γ̂

(
ρErr

ρ2Err

)
− γ̂

]>
(Ψ̂ρErrρErr)−1

[
Γ̂

(
ρErr

ρ2Err

)
− γ̂

]
where Ψ̂ρErrρErr is an estimator for the variance-covariance matrix of the (normalized) sample
moment vector based on GS2SLS residuals. This estimator differs for the cases of homoskedas-
tic and heteroskedastic errors.

For the homoskedastic case, the r, s (with r, s=1,2) element of Ψ̂ρErrρErr is given by:

Ψ̂ρErrρErr
rs = [σ̃2]2(2n)−1tr[(Ar + A>r )(As + A>s )]

+ σ̃2n−1ã>r ã>s

+ n−1(µ̃(4) − 3[σ̃2]2)vecD(Ar)
>vecD(As)

+ n−1µ̃(3)[ã>r vecD(As) + ã>s vecD(Ar)] (20)

15The scaling factor v =
{

1 + [n−1tr(M>M)]2
}−1

is needed to obtain the same estimator of Kelejian and
Prucha (1998, 1999)

16For the heteroskedastic case, Arraiz et al. (2010) derive a consistent and efficient GMM estimator based
on 2SLS residuals. While we will not review this estimator in the present section, the R and PySAL imple-
mentations allow for this additional step.
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where ãr = T̂α̃r, T̂ = HP̂, P̂ = Q̂−1HHQ̂HZ[Q̂>HZQ̂−1HHQ̂>HZ]−1, Q̂−1HH = (n−1H>H), Q̂HZ =
[n−1H>Z], Z = (I− ρ̃ErrM)Z, α̃r = −n−1[Z>(Ar + A>r )ε̂], σ̂2 = n−1ε̂>ε̂, µ̂(3) = n−1

∑n
i=1 ε̂

3,
and µ̂(3) = n−1

∑n
i=1 ε̂

4.

For the heteroskedastic case, the r, s (with r, s=1,2) element of Ψ̂ρErrρErr is given by:

Ψ̂ρErrρErr
rs = (2n)−1tr[(Ar + A>r )Σ̂(As + A>s )Σ̂] + n−1ã>r Σ̂ã>s (21)

where, Σ̂ is a diagonal matrix whose ith diagonal element is ε̂2, and ε̂, and ãr are defined as
above.17

Having completed the previous steps, a consistent estimator for the asymptotic VC matrix Ω
can be derived. The estimator is given by nΩ̂ where:

Ω̂ =

(
Ω̂δδ Ω̂δρErr

Ω̂δρ>Err
Ω̂ρErrρErr

)

where Ω̂δδ = P̂>Ψ̂δδP̂, Ω̂δρErr
= P̂>Ψ̂δρErr

[Ψ̂ρErrρErr ]
−1Ĵ[Ĵ>[Ψ̂ρErrρErr ]

−1Ĵ]−1, Ω̂ρErrρErr =

[Ĵ>[Ψ̂ρErrρErr ]
−1Ĵ]−1, Ĵ = Γ̂[1, 2ρ̂Err]

>.

Some of the element of the VC matrix were defined before. Once more, the estimators for
Ψ̂δδ(ρ̂Err), and Ψ̂δρErr

(ρ̂Err) are different for the homoskedastic and the heteroskedastic cases.

In the homoskedastic case: Ψ̂δδ = σ̂2Q̂HH, Ψ̂δρErr
= σ̂2n−1H>[a1,a2]+

µ(3)n−1H>[vecD(A1), vecD(A2)].

In the heteroskedastic case: Ψ̂δδ = n−1H>Σ̂H, Ψ̂δρErr
= n−1H>Σ̂[a1a2].

Homoskedasticity with and without additional endogenous variables

There are various implementations of the GMM general model (under homoskedasticity) that
are presented in Table 3.18 Some of them are based on the Kelejian and Prucha (1999) moment
conditions (i.e., the R function gstsls available from spdep, the Spatial Econometrics toolbox
function sac_gmm, and PySAL GM_Combo). The remaining implementations are based on the
Drukker et al. (2013a) moment conditions (i.e., the function spreg available from sphet, the
Stata command spreg gs2sls, and PySAL GM_Combo_Hom).

The results for all of them are reported in Table 3. Specifically, the results based on the
Kelejian and Prucha (1999) moment conditions correspond to columns one, four, and six. A
glance at this columns reveals that, while the estimated coefficients obtained from the function
gstsls in R and PySAL GM_Combo are identical (up to the sixth digit), those obtained from
the Spatial Econometrics toolbox function sac_gmm are slightly different. The discrepancies
with sac_gmm in MATLAB are related to a different sets of instruments. The SE toolbox
uses two different sets of instruments: one for estimating the “original” model, and one for
estimating the model after the Cochrane-Orcutt transformation. In the first step of the
procedure, the matrix of instruments contains all of the linearly independent columns of X,
WX, and W2X and it is the same for all three implementations. However, to estimate the
transformed model, the matrix of instruments employed by MATLAB includes, along with

17It is worth noticing here that the second term in Equation 21 limits to zero when there are only exogenous
variables in the model. As we will demonstrate later, while the implementations in R and Stata produce an
estimate of this term, PySAL simply assumes it to be zero.

18For simplicity, in all models it is assumed that W and M are the same. As mentioned, this assumption
will be relaxed later in the paper.
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R spreg Stata spivreg PySAL GM_Endog_Combo_Hom

Intercept 11.605968 11.605968 11.605968
(1.666744) (1.666744) (1.666744)

nondui −0.000196 −0.000196 −0.000196
(0.002759) (0.002759) (0.002759)

vehicles 0.092996 0.092996 0.092996
(0.005649) (0.005649) (0.005649)

dry 0.398260 0.398260 0.398260
(0.090902) (0.090902) (0.090902)

police −1.351308 −1.351308 −1.351308
(0.141018) (0.141018) (0.141018)

ρLag 0.193190 0.193190 0.193190
(0.044310) (0.044310) (0.044310)

ρErr −0.085975 −0.085975 −0.085975
(0.030183) (0.030183) (0.030183)

Table 4: SARAR estimation when police is treated as endogenous. Results for three imple-
mentations, DUI data set (standard errors in parentheses).

the intercept (untransformed), the transformed exogenous variables (say X?), and the spatial
lags of them (say, WX? and W2X?).19 The R and PySAL implementations use X? (which
may or may not include an intercept), and then spatial lags of X. Finally, there are also
differences in reported standard errors between the three implementations. These differences
pertain to a degrees of freedom correction in the variance-covariance matrix operated in R
and MATLAB. However, the same correction is available as an option from PySAL.20

It should also be noted that of the three available implementations, the SE toolbox is the
only one that produces inference for ρErr.

21

Let us turn now to the results shown in columns two, three, and five. From Table 3 it can be ob-
served that, apart from a different decimal for the intercept calculated in Stata, all implemen-
tations otherwise match exactly. The only major differentiation among the three implementa-
tions is the possibility of setting a different matrix A1 in PySAL. As noted in Anselin (2013),
there may be a problem with one of the sub-matrix (i.e., ΩδρErr

) of the variance-covariance
matrix of the estimated coefficients. The standard result that the variance-covariance matrix
must be block-diagonal between the model coefficients and the error parameter may be inval-
idated by certain choices of A1 (e.g., the one used by Drukker et al. 2013a). The options of
choosing alternative A1 in PySAL are meant to avoid this problem.

As in Drukker et al. (2013c), the set of explanatory variables includes police. Undoubtably,
the size of the police force may be related with the arrest rates (dui). As a consequence,
police is treated as an endogenous variable. Drukker et al. (2013c) also assume that the

19The present discussion is assuming that W and M are the same, otherwise M should be considered instead
of W.

20Unless otherwise stated, we tried to use the default values of the various implementations.
21Kelejian and Prucha (1999) do not derive the joint asymptotic distribution of the parameters of the

model but consider ρErr as a nuisance parameter. Instructions on how the inference on the spatial parameter
is calculated in the SE toolbox can be found on Ingmar Prucha’s web page at http://econweb.umd.edu/

~prucha/STATPROG/OLS/desols.pdf

http://econweb.umd.edu/~prucha/STATPROG/OLS/desols.pdf
http://econweb.umd.edu/~prucha/STATPROG/OLS/desols.pdf
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dummy variable elect (where elect is 1 if a county government faces an election, 0 otherwise)
constitutes a valid instrument for police.

Table 4 presents the results when this additional endogeneity is taken into account. Results
from three different implementations are presented, namely the function spreg available from
sphet under R, the command spreg available from Stata (setting the option to het), and
the function GM_Combo_Het available from PySAL. A glance at Table 4 shows that all imple-
mentations give the same results. As pointed out in LeSage and Pace (2009), the estimated
vector of parameters in a spatial model does not have the same interpretation as in a simple
linear regression model. The estimate of ρLag is positive and significant thus indicating spatial
autocorrelation in the dependent variable. Drukker et al. (2013c) try to find some possible
explanation for this. On the one hand, the positive coefficient may be explained in terms
of coordination effort among police departments in different counties. On the other hand, it
might well be that an enforcement effort in one of the counties leads people living close to
the border to drink in neighboring counties. The estimate of ρErr is also significant but nega-
tive. As we will see later, those results are also in line with the evidence from the maximum
likelihood estimation of the model.

One thing should be noted here. When we discussed the instrument matrix, we anticipated
that when additional endogenous variables were present (as it is in this case), the optimal
instruments are unknown. We also anticipated that, unless additional information was avail-
able, we did not recommended the inclusion of the spatial lag of these additional exogenous
variables in the matrix of instruments. However, results reported in Table 4 do consider
the spatial lags of elect. This is because, unlike R and PySAL, there is no option in Stata
not to include them. For comparison purposes then, the default values of the corresponding
arguments in R and PySAL were set to include those spatial lags.

Heteroskedasticity with and without additional endogenous variables

When the errors are assumed to be heteroskedastic of unknown form, the results are those
presented in Table 5 (when no additional endogeneity is assumed) and Table 6 (when police

is treated as endogenous). From Table 5 it can be noticed that the implementations in R
and PySAL are identical (up to the sixth decimal), and that Stata only presents very minor
differences. Those differences relate to the estimated value of the ρErr coefficient (obtained
through the non-linear least square algorithm), and to the standard error of the intercept.

When the endogeneity of the police variable is taken into account, the implementations in R
and PySAL are again identical, and Stata presents the same minor differences (see Table 6).

W and M are different

As we anticipated, W and M do not need to be the same in all applications. Since PySAL
does not include this feature, results are limited to R and Stata. From an implementation
perspective, the main complication in this case is the definition of the instrument matrix.
While if W and M are identical the instruments need to be specified only in terms of W,
when the two spatial weighting matrix are different the instruments should combine them as
in Equation 12.

Table 7 summarizes the estimation results when police is endogenous and W and M are
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R spreg Stata spreg PySAL GM_Combo_Het

Intercept −6.410088 −6.410088 −6.410088
(0.445961) (0.445958) (0.445961)

police 0.598088 0.598088 0.598088
(0.018154) (0.018154) (0.018154)

nondui 0.000247 0.000247 0.000247
(0.001097) (0.001097) (0.001097)

vehicles 0.015713 0.015713 0.015713
(0.000784) (0.000784) (0.000784)

dry 0.106121 0.106121 0.106121
(0.033807) (0.033807) (0.033807)

ρLag 0.046944 0.046944 0.046944
(0.017928) (0.017928) (0.017928)

ρErr −0.000366 −0.000378 −0.000366
(0.036803) (0.036803) (0.036803)

Table 5: SARAR estimation with heteroskedasticity. Results for three implementations, DUI
data set (standard errors in parentheses).

R spreg Stata spivreg PySAL GM_Combo_Het

Intercept 11.649298 11.649298 11.649298
(1.873178) (1.873179) (1.873178)

nondui −0.000155 −0.000155 −0.000155
(0.002843) (0.002843) (0.002843)

vehicles 0.093058 0.093058 0.093058
(0.005967) (0.005967) (0.005967)

dry 0.398707 0.398707 0.398707
(0.094791) (0.094791) (0.094791)

police −1.352871 −1.352871 −1.352871
(0.149223) (0.149223) (0.149223)

ρLag 0.192149 0.192149 0.192149
(0.051833) (0.051833) (0.051833)

ρErr −0.050266 −0.050263 −0.050266
(0.039931) (0.039931) (0.039931)

Table 6: SARAR estimation with heteroskedasticity when police is treated as endogenous.
Results for three implementations, DUI data set (standard errors in parentheses).

different.22 Since the endogeneity of the police variable is accounted for, the default value to
compute the lagged “additional” instruments (i.e., lag.instr) was changed in R. The results
from the two implementations are almost identical except for a difference in the last decimal
digit for the estimate of ρErr. This is due to small differences in the optimization routines
adopted in the two environments. When the residuals are assumed to be heteroskedastic, a
similar evidence is observed.23

22M is defined as a row-standardized six nearest neighbors matrix, treating the county centroid coordinates
as projected, not geographical.

23Results are not reported but are available from the authors upon request.
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R spreg Stata spivreg

Intercept 9.210831 9.210831
(1.454592) (1.454592)

nondui −0.000238 −0.000238
(0.002480) (0.002480)

vehicles 0.083249 0.083249
(0.004799) (0.004799)

dry 0.361584 0.361584
(0.081570) (0.081570)

police −1.105622 −1.105622
(0.119709) (0.119709)

ρLag 0.180395 0.180395
(0.040716) (0.040716)

ρErr −0.011908 −0.011906
(0.033255) (0.033255)

Table 7: SARAR estimation when police is treated as endogenous and W and M are
different. Results for two implementations, DUI data set (standard errors in parentheses).

3.2. Spatial lag model

The estimation of the spatial lag model in Equation 7 can be easily undertaken using two
stage least squares. If the only restriction is ρErr = 0 and there are exogenous variables other
than the spatial lag in the model (i.e., if π 6= 0), additional instruments are then needed in
order to estimate the model.

When homoskedasticity is assumed, the variance covariance matrix can be estimated consis-
tently by

σ̃2(Z̃>Z̃)−1 (22)

where σ̃2 = n−1
∑n
i=1 ũ2

i and ũ = y − Zδ̃. On the other hand, when heteroskedasticity
is assumed the estimation of the coefficients variance covariance matrix takes the following
sandwich form:

(Z̃>Z̃)−1(Z̃>Σ̃Z̃)(Z̃>Z̃)−1 (23)

where Σ̂ is a diagonal matrix whose elements are the squared residuals.

Homoskedasticity with and without additional endogenous variables

From Table 8 we can see that five implementations are available of the spatial lag model
when considering homoskedastic innovations and no additional endogenous variables. The
first two columns of the table report results obtained from R. There are multiple functions
that allow the estimation of the spatial lag model available from R under the spdep and
sphet packages. stsls was the first function made available as part of the package spdep.24

With the development of sphet, the wrapper function spreg also allows the estimation of the
spatial lag model. The other three columns of Table 8 report the results obtained from Stata,
PySAL, and the SE toolbox, respectively.

24stsls was originally contributed by Luc Anselin.
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R stsls R spreg Stata spreg gs2sls PySAL GM_Lag SE sar_gmm

Intercept −6.410152 −6.410152 −6.410152 −6.410152 −6.410152
(0.418129) (0.418129) (0.417725) (0.417725) (0.418129)

police 0.598081 0.598081 0.598081 0.598081 0.598081
(0.014918) (0.014918) (0.014904) (0.014904) (0.014918)

nondui 0.000247 0.000247 0.000247 0.000247 0.000247
(0.001087) (0.001087) (0.001086) (0.001086) (0.001087)

vehicles 0.015714 0.015714 0.015714 0.015714 0.015714
(0.000669) (0.000669) (0.000668) (0.000668) (0.000669)

dry 0.106134 0.106134 0.106134 0.106134 0.106134
(0.034962) (0.034962) (0.034928) (0.034928) (0.034962)

ρLag 0.046950 0.046950 0.046950 0.046950 0.046950
(0.016977) (0.016977) (0.016960) (0.016960) (0.016977)

Table 8: Lag model estimation results for five implementations. DUI data set (standard errors
in parentheses).

R spreg Stata spivreg PySAL GM_Lag

Intercept 11.507606 11.507606 11.507606
(1.686222) (1.684594) (1.686222)

nondui −0.000293 −0.000293 −0.000293
(0.002771) (0.002768) (0.002771)

vehicles 0.092866 0.092866 0.092866
(0.005663) (0.005657) (0.005663)

dry 0.397357 0.397357 0.397357
(0.091419) (0.091331) (0.091419)

police −1.348024 −1.348024 −1.348024
(0.141410) (0.141273) (0.141410)

ρLag 0.195595 0.195595 0.195595
(0.045906) (0.045862) (0.045906)

Table 9: Lag model estimation when police is treated as endogenous. Results for three
implementations. DUI data set (standard errors in parentheses).

Given that we are considering the same matrix of instruments, the coefficient values of all im-
plementations agree exactly. This must be expected given that the OLS results also matched.
There are differences, though, in the reported standard errors. In the two (R and SE toolbox)
functions, the error variance is calculated with a degrees of freedom correction (i.e., dividing
by n− k), while in the other two implementations is simply divided by n.

Table 9 shows the results for the lag model when police is treated as endogenous. While all
the coefficients match, differences in the standard error are produced by the same degrees of
freedom correction.

Heteroskedasticity with and without additional endogenous variables

Apart from MATLAB SE toolbox, all other implementations (including the two R functions
stsls and spreg) allow the estimation of the lag model under heteroskedastic innovations. Of
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course, the estimated coefficients are not different from the homoskedastic case, and the only
variation is in the standard errors. However, the standard errors under heteroskedasticity are
equal across the four models, and, therefore, we are not reporting them in the paper.25

HAC estimation

A different specification of the model can be based on the assumptions that the error term
follows

u = Rε (24)

where R is an n × n unknown non-stochastic matrix, and ε is a vector of innovations. The
asymptotic distribution of the corresponding IV estimators involves the VC matrix:

Ψ = n−1H>ΩH (25)

where Ω = RR> denotes the variance covariance matrix of ε. Kelejian and Prucha (2007)
suggest estimating the individual r, s elements of Ψ as

ψ̃rs = n−1
n∑
i=1

n∑
j=1

hirhjsε̂iε̂jK(d∗ij/d) (26)

where the subscripts refer to the elements of the matrix of instruments H and the vector of
estimated residuals ε̂. The Kernel function K() is defined in terms of the distance measure
d∗ij , the distance between observations i and j. The bandwidth d is such that if d∗ij ≥ d, the
associated Kernel is set to zero (K(d∗ij/d) = 0). In other words, the bandwidth together with
the Kernel function limits the number of sample covariances.

Based on Equation 26, the asymptotic variance covariance matrix (Φ̃) of the S2SLS estimator
of the parameters vector is given by:

Φ̃ = n2(Z̃>Z̃)−1Z>H(H>H)−1Ψ̃(H>H)−1H>Z(Z̃>Z̃)−1 (27)

Piras (2010) mentioned that the implementation was compared with code used by Anselin
and Lozano-Gracia (2008) and that the two implementations gave the same results. However,
at the time Piras (2010) was published, no other public implementation was available. Here
we compare standard error estimates using a Triangular kernel with a variable bandwidth of
the six nearest neighbors.26

The example in Table 10 refers to the case in which police is treated as endogenous. Of
course, the coefficients are the same and are comparable to those in Table 9. It is interesting to
note that also the standard errors are the same between the two implementations. Also, as one
would expect, they are a little bit higher than those in Table 9. When there are no additional
endogenous variables other than the spatial lag, the results from the two implementation
match well and are not reported here. Of course, the model can also be estimated by OLS
when no form of endogeneity is present. Results are in accordance also in this case.

25These and other results are available from the authors upon request.
26After reading the coordinates for each location, we used the function knearneigh to generate the distances

and, after some transformation between objects, the final kernel using the R function read.gwt2dist. In
PySAL, the function pysal.kernelW_from_shapefile was used to directly read the shape file in and generate
the kernel. In both cases, the centroids of the counties were used as point locations, but the distances for the
nearest neighbor procedure were calculated as though the coordinates were projected, while they are in fact
geographical. There are many available options for the kernel both in R and PySAL.
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R spreg PySAL GM_Lag

Intercept 11.507606 11.507606
(1.842620) (1.842620)

nondui −0.000293 −0.000293
(0.002805) (0.002805)

vehicles 0.092866 0.092866
(0.005980) (0.005980)

dry 0.397357 0.397357
(0.095334) (0.095334)

police −1.348024 −1.348024
(0.149460) (0.149460)

ρLag 0.195595 0.195595
(0.054681) (0.054681)

Table 10: HAC estimation when police is treated as endogenous. Results for two implemen-
tations. DUI data set (standard errors in parentheses).

3.3. Spatial error model

In the spatial error model (i.e., ρLag = 0), we can still use most of the formulae above. The
first step of the estimation procedure is either OLS (when π = 0), or IV, when π 6= 0 and there
are endogenous variable (other than the spatial lag) in the model. After estimating ρErr in
the GMM step, we can then take the spatial Cochrane-Orcutt transformation. The resulting
model can be then estimated by two stage least squares using the matrix of instruments H,
where H is made up of, at least, the linearly independent columns of X, and MX.

Homoskedasticity with and without additional endogenous variables

Table 11 shows the spatial error model estimation results for six different implementations.
These implementations include two R functions (GMerrorsar available from spdep,27 and
spreg available from sphet), one Stata command (spreg gs2sls), two different implementa-
tion based on PySAL (GM_Error and GM_Error_Hom), and, finally, the SE toolbox for MATLAB
(sem_gmm).

Three of them are based on the Kelejian and Prucha (1999) moment conditions (columns one,
four, and six), the others are based on Drukker et al. (2013a) moment conditions (columns
two, three, and five). Let us focus first on the results obtained using Kelejian and Prucha
(1999) moment conditions. All three implementations produce the same identical estimated
coefficients. There are differences in terms of the standard errors. We refer to the fact that,
while GMerrorsar and sem_gmm produce an estimate for the standard error of the spatial
coefficient, the GM_Error function in PySAL does not. The reason is that in their original
contribution Kelejian and Prucha (1999) do not derive the joint asymptotic distribution of the
parameters of the model and, therefore, GM_Error does not produce any inference on ρErr.

28

Moving now to the three implementations that are based on Drukker et al. (2013a) moment
conditions, we observe that, while Stata and spreg (available from R) present exactly the

27GMerrorsar was originally contributed by Luc Anselin.
28Instructions on how to produce inference are again available from Ingmar Prucha’s website at http:

//econweb.umd.edu/~prucha/STATPROG/OLS/desols.pdf.

http://econweb.umd.edu/~prucha/STATPROG/OLS/desols.pdf
http://econweb.umd.edu/~prucha/STATPROG/OLS/desols.pdf
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R spreg Stata spivreg PySAL GM_Endog_Error_Hom

Intercept 15.484115 15.484115 17.326391
(1.578958) (1.578959) (1.748870)

nondui −0.000208 −0.000208 −0.000226
(0.002755) (0.002755) (0.002962)

vehicles 0.092430 0.092430 0.099270
(0.005655) (0.005655) (0.006272)

dry 0.395797 0.395797 0.421893
(0.090901) (0.090901) (0.097922)

police −1.337080 −1.337080 −1.508904
(0.141153) (0.141153) (0.156655)

ρErr −0.004487 −0.004483 −0.005472
(0.025467) (0.025467) (0.025496)

Table 12: Error model estimation when police is treated as endogenous. Results for three
implementations. DUI data set (standard errors in parentheses).

same results, some distinctions are observed in PySAL.29 The reason for these differences was
anticipated before. In a spatial error model, the second term in Equation 21 limits to zero
(when there are only exogenous variables in the model). The implementations in R and Stata
produce an estimate of this term, while PySAL does not. In fact, we modified the R code for
the error model setting the second term of Equation 21 to zero. As a consequence, we obtain
the same results of PySAL.30 However, as it can be appreciated from Table 11, the differences
(with this specific dataset) are very minor.

Table 12 displays the results produced by three implementations when police is instrumented.
The only three implementations in which this feature is available are R, Stata, and PySAL.
A glance at the table reveals that the results across implementations are very different. The
differences between R and Stata are very minor and they can be attributable to differences in
optimization routines. The differences with PySAL relates to a different specification of the
instrument matrix. The instrument matrix in PySAL is specified in terms of the exogenous
variables (i.e., X), which are augmented with the only additional instrument (elect). How-
ever, one could argue that while the initial step only involves the X matrix, the third step
(after the GMM estimator is obtained) also involve the MX (through X?).

Heteroskedasticity with and without additional endogenous variables

The same evidence is confirmed also when heteroskedasticity is assumed and, therefore, results
are not reported in the paper but are available from the authors. We will make one final
remark. In our theoretical review of the general spatial model we anticipated the possibility
of obtaining a consistent and efficient estimator of ρErr based on 2SLS rather than GS2SLS.

Table 13 reports the results when considering this additional step (i.e., step1.c) while taking
all the variables as exogenous. Stata does not present this feature. Results from R and PySAL

29Anselin, Amaral, and Arribas-Bel (2012) report different results between the implementations of Stata and
PySAL. We tried to replicate the results in Table 2 of Anselin et al. (2012) and noticed that the latest release
of Stata gives results that are different from those reported in the table. However, the new Stata results match
exactly those given in the third column of Table 2 (i.e., sphet2).

30Results are available from the authors upon request.
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R spreg PySAL GM_Endog_Error_Het

Intercept −5.432185 −5.431451
(0.255239) (0.255217)

police 0.599834 0.599890
(0.018086) (0.018084)

nondui 0.000257 0.000256
(0.001096) (0.001096)

vehicles 0.015614 0.015609
(0.000781) (0.000780)

dry 0.103715 0.103545
(0.033712) (0.033710)

ρErr 0.051595 0.056201
(0.030924) (0.029984)

Table 13: Error estimation results. Results for two implementations (step 1.c). DUI data set
(standard errors in parentheses).

are very similar and again differences are due to the estimation of (α̃).31

4. Comparing maximum likelihood estimation

Having compared implementations of GMM estimators, we move to cross-section maximum
likelihood (ML) estimation, recalling that ML estimation for spatial panel models was com-
pared for MATLAB and R implementations in Millo and Piras (2012). Since Python PySAL
has no ML implementations, it will not be considered. None of the ML implementations make
provision for instrumenting endogenous right hand side variables, nor for accommodating het-
eroskedasticity – this is provided for in Bayesian implementations in the Spatial Econometrics
toolbox.

In Section 1.1 (page 4), we described the numerical optimizers used in the various applica-
tions. In many cases, the numerical optimization functions can return numerical Hessians
for use as estimators of the covariance matrix of model coefficients, which may be used in-
stead of analytical, asymptotic covariance matrices. In other cases, the numerical Hessian
may be found by examining the form of the function being optimized around the optimum,
for example using finite-difference Hessian algorithms. In implementations in the MATLAB
Spatial Econometrics toolbox, use is made of fdhess taken from the CompEcon toolbox by
Paul Fackler, but with the relative step size hard-coded to 1.0 · 10−8 in sar, sdm and sac, but
to 1.0 · 10−5 in sem as in the original CompEcon function. In R, use is made of fdHess from
the nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2013) package with a default
relative step size of 6.055 · 10−6 used without modification. In these comparisons in R, we
will usually use analytical, asymptotic covariance matrices, but numerical Hessians are used
sometimes for comparison.

An extensive treatment of maximum likelihood estimation for spatial models is given by
LeSage and Pace (2009, pp. 45–75). Further discussion of the general model, and issues
arising in fitting two parameters when the surface of the function shows little structure may

31Evidence for this can be obtained from the authors upon request.
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be found in Bivand (2012). Here we compare implementations in MATLAB, Stata and R,
looking first at spatial lag models, from which some general conclusions are drawn about the
implementations, before going on to the spatial error model and the general two-parameter
spatial model.

4.1. Spatial lag model

The log-likelihood function for the spatial lag model is:

`(β, ρLag, σ
2) = −n

2
ln 2π − n

2
lnσ2 + ln |I− ρLagW|

− 1

2σ2
[((I− ρLagW)y −Xβ)>((I− ρLagW)y −Xβ)]

and by extension the same framework is used for the spatial Durbin model when [W(WX)]
are grouped together. Since β can be expressed as (X>X)−1X>(I − ρLagW)y, all of the
cross-product terms can be pre-computed as cross-products of the residuals of two ancilliary
regressions: y = Xβ1+ε1 and Wy = Xβ2+ε2, and the sum of squares term can be calculated
much faster than the log-determinant (Jacobian) term of the n× n sparse matrix I− ρLagW;
see LeSage and Pace (2009) for details. The legacy method for computing the log-determinant
term is to use eigenvalues of W:

ln(|I− ρLagW|) =
n∑
i=1

ln(1− ρLagζi) (28)

using ρLag to represent either parameter, and where ζi are the eigenvalues of W (Ord 1975,
p. 121); other methods are reviewed in Bivand, Hauke, and Kossowski (2013a).

One discrepancy that we can account for before presenting any further results is that the
log-likelihood values at the optimimum differ between two implementations: 1551.08 in R
McSpatial sarml and a similar value in the SE toolbox sar function (there is a small difference
because the SE toolbox optimizer differs somewhat, and is discussed below), and −2628.58
in the other two: R spdep lagsarlm and Stata spreg ml.

The reason appears to be that π in the log likelihood calculation is not multiplied by 2 in the
first two cases, but is in the second two. If we convert the R McSpatial value by subtracting
n
2 log(π) (line 65 in file McSpatial/R/sarml.R), and adding n

2 log(2π), we get −2628.58. Simi-
larly, correcting the SE toolbox value (line 453 file spatial/sar models/sar.m), we get a value
close to that of Stata and R spdep. The same kind of difference appears in other reported SE
toolbox log likelihood values.

From Table 14, we see that the coefficient estimates of the R lagsarlm and Stata spreg

ml implementations agree exactly for the chosen number of digits shown. The R sarml

implementation differs slightly in coefficient estimates for the intercept and for ρLag, but uses
a different numerical optimizer. All these three optimize the same objective function, and
reach the same optimum given the stopping value used by the optimizer. These three were
also using eigenvalues to compute the log-determinant values; Stata spreg ml and R sarml

only use eigenvalues, while R lagsarlm offers a selection of methods (Bivand et al. 2013a), but
here used eigenvalues. We will return below to differences in standard errors after explaining
why the SE toolbox sar function yields different coefficient estimates.

The SE toolbox uses a pre-computed grid of log determinant values, choosing the nearest
value of the log determinant from the grid rather than computing exactly for the current
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R lagsarlm R sarml Stata spreg ml SE sar

Intercept −6.337479 −6.337699 −6.337479 −6.349369
(0.382022) (0.380978) (0.380987) (0.088679)

police 0.598157 0.598157 0.598157 0.598145
(0.014908) (0.014903) (0.014903) (0.016146)

nondui 0.000249 0.000249 0.000249 0.000249
(0.001086) (0.001086) (0.001086) (0.001083)

vehicles 0.015711 0.015711 0.015711 0.015712
(0.000668) (0.000668) (0.000668) (0.000524)

dry 0.106131 0.106131 0.106131 0.106131
(0.034931) (0.034929) (0.034929) (0.034754)

ρLag 0.043423 0.043430 0.043423 0.044000
(0.014922) (0.014782) (0.014782) (0.000625)

Table 14: Maximum likelihood spatial lag model estimation results for four implementations,
DUI data set (standard errors in parentheses).
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Figure 1: Spatial Econometrics toolbox log determinant artefacts during line search; compar-
ison of the gridded method with two alternatives.

proposed value of ρLag at each call to the log likelihood function. In order to investigate the
consequences of this design choice, which has its motivation in picking from a grid of ρLag

and log-determinant values during Bayesian estimation, additions were edited into the sar

function to return internal values so that they could be examined, to capture values from the
optimizer while running, and to add three extra methods for computing the log-determinant.

The method used by default for info.lflag = 0 in sar_lndet is to call lndetfull, which
creates a coarse grid of log-determinant values for ln |I − ρLagW| for ρLag at 0.01 steps over
a given range using the sparse matrix LU method. These log-determinant values are then
spline-interpolated to a finer grid at 0.001 steps of ρLag in sar_lndet.
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R lagsarlm SE gridded LU SE spline LU SE eigen/asy

Intercept −6.337479 −6.349369 −6.337479 −6.337479
(0.382022) (0.088679) (0.373889) (0.382022)

police 0.598157 0.598145 0.598157 0.598157
(0.014908) (0.016146) (0.012629) (0.014908)

nondui 0.000249 0.000249 0.000249 0.000249
(0.001086) (0.001083) (0.001084) (0.001086)

vehicles 0.015711 0.015712 0.015711 0.015711
(0.000668) (0.000524) (0.000348) (0.000668)

dry 0.106131 0.106131 0.106131 0.106131
(0.034931) (0.034754) (0.034793) (0.034931)

ρLag 0.043423 0.044000 0.043423 0.043423
(0.014922) (0.000625) (0.013052) (0.014922)

Table 15: Maximum likelihood spatial lag model estimation results for alternative Spatial
Econometric toolbox log-determinant implementations, DUI data set (standard errors in
parentheses).

In info.lflag = 3, the spline-interpolation was changed to return a fitted spline object,
which could then be used in the objective function f_sar to interpolate using ppval for the
current proposed value of ρLag, so returning a much closer log-determinant value than that
available from the look-up table. Finally, info.lflag = 5 was added to provide the standard
eigenvalue method, calculating the log-determinant for the current proposed value of ρLag.

Figure 1 shows the behavior of the optimizer for info.lflag taking values of 0 – the gridded
LU log-determinant values (gridded LU in Table 15), 3 – values interpolated from a spline
object fitted to a coarse grid of LU log-determinant values (spline LU in Table 15), and 5
– values calculated using the eigenvalues of W (eigen/asy in Table 15). In the info.lflag

= 0 case, behavior is further inhibited by rounding effects in choosing values from the look
up table, and by the inconsistency caused by the sum-of-squared error term in the objective
function being calculated using the current proposed value of ρLag, while the log-determinant
value is for the selected grid slot. In this default scenario, the value of the log determinant
oscillates between two values of ρLag spanning the optimum, and the line search terminates
after a series of jumps with tighter tolerance passed as info.convg as 1.0 · 10−8; its default
tolerance set in sar is 1.0 · 10−4, but using a tighter tolerance did not improve performance.
When permitted to compute the log-determinant for the current proposed value of ρLag in the
two alternative cases, the Brent line search function used in sar converges quickly.

Table 15 shows that when the MATLAB SE toolbox sar function uses eigenvalues to calculate
the log-determinant, and is forced to return analytical, asymptotic coefficient standard errors
(right column), the output agrees exactly with that of R lagsarlm using eigenvalues and
returning analytical, asymptotic coefficient standard errors (first column). The coefficient
estimates for the interpolated LU log-determinants in column three also agree, as the line
search has estimated ρLag at the same value. Here, however, the standard errors are calculated
using the numerical Hessian estimated at the optimum; sar by default switches between
asymptotic and numerical Hessian standard errors at n > 500, but the criterion was changed
to 4000 in the final column. The second column contains the results shown above in Table 14,
final column. We have thus accounted for the differences in results of coefficient estimation
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R sarlm Stata NR R lagsarlm

Intercept 0.380978 0.380987 0.382022
police 0.014903 0.014903 0.014908
nondui 0.001086 0.001086 0.001086
vehicles 0.000668 0.000668 0.000668
dry 0.034929 0.034929 0.034931
ρLag 0.014782 0.014782 0.014922

Table 16: Maximum likelihood spatial lag model standard error estimation results for alter-
native implementations, DUI data set.

between the MATLAB SE toolbox sar function and the other implementations, and proceed
to differences in standard errors.

The standard errors reported by R sarlm are taken from the Hessian returned by the opti-
mization function nlm. Stata spreg ml by default uses a modified Newton-Raphson method
nr, reporting standard errors taken from the Hessian returned by the optimization function,
rather than the analytical calculations even for small n. Table 16 compares the analytical,
asymptotic standard errors in the third column with those returned using numerical Hessian
values. The differences that we observe can be explained through these two different ap-
proaches, either analytical standard errors calculated using asymptotic formulae, or standard
errors calculated from the numerical Hessian.

4.2. Other ML estimators

The log-likelihood function for the spatial error model is:

`(β, ρErr, σ
2) = −n

2
ln 2π − n

2
lnσ2 + ln |I− ρErrW|

− 1

2σ2
[(y −Xβ)>(I− ρErrW)>(I− ρErrW)(y −Xβ)]

As we can see, the problem is one of balancing the log determinant term ln(|I − ρErrW|)
against the sum of squares term. When ρErr approaches the ends of its feasible range, the log
determinant term may swamp the sum of squares term.

β may be concentrated out of the sum of squared errors term, for example as:

`(ρErr, σ
2) = −N

2
ln 2π − N

2
lnσ2 + ln |I− ρErrW|

− 1

2σ2
[y>(I− ρErrW)>(I−QρErrQ

>
ρErr

)(I− ρErrW)y]

where QρErr is obtained by decomposing (X− ρErrWX) = QρErrRρErr .

The relationship between the log-determinant term and the sum of squares term in the log
likelihood function in the spatial error model is analogous to that in the spatial lag model,
but the sum of squares term involves more computation in the case of the spatial error model.
In all cases, a simple line search may be used to find ρLag or ρErr, and other coefficients may
be calculated using an ancilliary regression once this has been done.

The general model is more demanding, and requires that ρLag and ρErr be found by constrained
numerical optimization in two dimensions by searching for the maximum on the surface of
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R errorsarlm Stata spreg ml R sacsarlm Stata spreg ml

Intercept −5.432939 −5.432938 −6.356649 −6.356651
(0.229072) (0.229284) (0.419559) (0.421408)

police 0.599777 0.599777 0.598036 0.598036
(0.014891) (0.014891) (0.014912) (0.014923)

nondui 0.000258 0.000258 0.000250 0.000250
(0.001087) (0.001087) (0.001086) (0.001086)

vehicles 0.015619 0.015619 0.015717 0.015717
(0.000667) (0.000668) (0.000669) (0.000669)

dry 0.103890 0.103890 0.106312 0.106313
(0.034967) (0.034993) (0.034930) (0.034967)

ρLag 0.044393 0.044393
(0.017190) (0.017311)

ρErr 0.045856 0.045857 −0.003813 −0.003815
(0.029878) (0.030069) (0.035057) (0.035846)

Table 17: Maximum likelihood spatial error and general spatial model estimation results for
two implementations, DUI data set (standard errors in parentheses).

the log-likelihood function, which is like that of the spatial error model with additional terms
in I− ρLagW, here assuming that the same spatial weights are used in both processes:

`(ρLag, ρErr, σ
2) = −N

2
ln 2π − N

2
lnσ2 + ln |I− ρLagW|+ ln |I− ρErrW|

− 1

2σ2
[y>(I− ρLagW)>(I− ρErrW)>(I−QρErrQ

>
ρErr

)(I− ρErrW)(I− ρLagW)y]

The tuning of the constrained numerical optimization function, including the provision of
starting values, reasonable stopping criteria, and also the choice of algorithm may all affect the
results achieved. The Stata implementation uses a grid search for initial values of (ρLag, ρErr)
(Drukker et al. 2013d), the Spatial Econometrics toolbox uses the generalized spatial two-
stage least squares estimates, with the option of a user providing initial values, and the spdep
implementation for row-standardized spatial weights matrices uses either four candidate pairs
of initial values at 0.8(L,U), (0, 0), 0.8(U,U), and 0.8(U,L), where L anf U are two-element
vectors of bounds on (ρLag, ρErr), a full grid of nine points at the same settings, or user provided
initial values; optimizers may be chosen by the user.

As we can see from Table 17, the computed coefficients agree adequately for the spatial error
model implementations for R and Stata. There are minor differences in the standard errors
between R and Stata, because of the use of the numerical Hessian to calculate the standard
errors in Stata. The SE toolbox estimates differ somewhat because of the use of gridded log
determinant values explained above for the spatial lag model case, and are not presented here.

The R spdep function sacsarlm can be used to estimate the general spatial model; results for
sacsarlm and Stata spreg ml are given the two right-hand columns in Table 17. Again, the
coefficient estimates are in good agreement even given the flatness of the objective function
seen in Figure 2, and the closeness of ρErr to zero (optimum of −2628.6 at the values of
(ρLag, ρErr) given in Table 17 third column). This estimation success is assisted by the choice
of starting values for numerical optimization, without which outcomes may vary.
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Figure 2: Contour plot values of the general spatial model log likelihood function for a 40×40
grid of values of (ρLag, ρErr) showing values > −4000, DUI data set, calculated with R spdep
function sacsarlm.

5. Implementing impact measures

In addition to the fitting of spatial econometric models, associated measures are needed to
assist in their interpretation, in particular the impact of changes in right hand side variables in
models including the spatially lagged dependent variable. In Section 1 above, we reviewed the
need to calculate these emanating effects, which we will term impacts, though the cumbersome
Sr(W) matrix, where r is the index of the right hand side variable. This matrix term may
be approximated using traces of powers of the spatial weights matrix as well as analytically.
The average direct impacts are represented by the sum of the diagonal elements of the matrix
divided by n for each exogenous variable, the average total impacts are the sum of all matrix
elements divided by n for each exogenous variable, while the average indirect impacts are the
differences between these two vectors of impacts.

In Stata, the average total impacts are available by predicting from the estimated model using
the original data, assigning the result to a new variable. Choosing variable r, xr is incremented
by one, and a new prediction made, once again assigning the result to a new variable. The
mean of the difference between the two predictions is then the required measure (Drukker et al.
2013d). For the spatial lag model estimated by maximum likelihood, and the police variable,
the value is 0.625310; one may calculate average total impacts for all models including the
spatially lagged dependent variable in Stata irrespective of estimation method.

In spdep, impacts methods are available for ML and GM spatial lag and general spatial
model objects. The methods can use either dense matrices or truncated series of traces, so
the impacts for a single model fit may be examined using dense or sparse procedures, and using
different methods for computing the traces. The same methods are available for estimation
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R direct SE direct R total SE total β

police 0.598350 0.598349 0.625310 0.625310 0.598157
nondui 0.000249 0.000249 0.000261 0.000261 0.000249
vehicles 0.015717 0.015717 0.016425 0.016425 0.015711
dry 0.106165 0.106165 0.110948 0.110948 0.106131

Table 18: Direct and total impacts calculated using W traces for spatial lag models estimated
using maximum likelihood in R, lagsarlm and MATLAB Spatial Econometrics toolbox (SE),
sar with local modifications (eigenvalue log determinants); fitted β coefficient values shown
for comparison, DUI data set.
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Figure 3: Monte Carlo tests for impacts from spatial lag models (direct shown in blue, total
in black), implementations in Spatial Econometrics toolbox (SE: solid line) and R spdep (R:
dashed line), DUI data set.

functions in the sphet package, including the spreg function. Similarly, the MATLAB Spatial
Econometrics toolbox model estimation functions report impacts, in their original form as the
mean values of simulations to be presented below. Here the calculated impact values for the
fitted values of the β coefficients are returned in addition. Table 18 shows the correspondence
of the output values for the four variables in the DUI model, together with the fitted β
coefficient values; in all cases, the total impacts are somewhat larger than these coefficients.

Estimated spatial models provide ways of inferring about the significance of the right hand side
variables. When the spatially lagged dependent variable is present, the fitted β coefficient
values and their standard errors do not provide a satisfactory basis for inference if ρLag 6=
0. This problem may be resolved by drawing samples from the estimated model, using a
multivariate Normal distribution centred on the fitted values of [ρLag, β], their covariance
matrix, and then calculating the impacts of the sample coefficients.

As mentioned, MATLAB Spatial Econometrics toolbox model estimation functions perform by
default simulation, and report the impacts as the means of the simulated coefficient impact
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distributions. The simulations themselves may also be returned, and their distribution by
variable analyzed to permit inference. R impacts methods for fitted model objects also permit
the performance of simulations, returning the simulated impacts as mcmc objects defined in
the coda package (they are Monte Carlo simulations, but because the Spatial Econometrics
toolbox originally used MCMC simulations, the initial implementation had followed that lead,
and used an mcmc object for output).

Figure 3 shows that the distributions of direct and total impacts in both MATLAB and R for
variables nondui and dry are very similar, and that zero falls in the middle of the simulated
distributions for nondui (the same conclusion as that seen in Table 14). For police and
vehicles, the two implementations give very similar distributions, but those of direct impacts
overlap the total impacts distributions only in the lower half. The simulation results permit
us to infer from estimated spatial models including the spatially lagged dependent variable.

6. Concluding remarks

In conclusion, we can report that although there are some differences between results yielded
when using available software implementations of spatial econometrics estimation methods
on the same data set, it has been possible to establish why these differences arise. Some
differences relate to differing interpretations of the underlying literature, others to choices
of techniques used in implementations. Most of the methods proposed in the literature and
considered here can be used in most of the applications, and in most cases will give the same
or very similar results.

Fortunately, comparing functions in the MATLAB Spatial Econometrics toolbox, Python
PySAL functions and the R spdep and sphet packages is eased by the fact that the code
is open source, and so open to scrutiny. We have also benefited from answers to questions
given by developers of these implementations, and by developers of the sppack for Stata.

What remains is to encourage researchers who use these and other software applications to
take active part in discussion lists, where more experienced users can offer advice to those
starting to discover the attractions of using spatial econometrics tools to tackle empirical
economic questions. Once more real-world examples of the application of, for instance, impact
measures, have been published, the usefulness of such advances will become more evident.
Having multiple implementation in different application languages provides users with more
choice, and, as we have seen, constitutes a “reality check” that gives insight into the ways that
formulae can be rendered into code.
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Bivand RS, Pebesma E, Gómez-Rubio V (2013b). Applied Spatial Data Analysis with R. 2nd
edition. Springer-Verlag, New York.

Brent R (1973). Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood
Cliffs.

Burridge P (1980). “On the Cliff-Ord Test for Spatial Correlation.” Journal of the Royal
Statistical Society B, 42, 107–108.

Cliff A, Ord JK (1972). “Testing for Spatial Autocorrelation among Regression Residuals.”
Geographical Analysis, 4, 267–284.

Das D, Kelejian HH, Prucha IR (2003). “Finite Sample Properties of Estimators of Spatial
Autoregressive Models with Autoregressive Disturbances.” Papers in Regional Science, 82,
1–27.

Drukker DM, Egger P, Prucha IR (2013a). “On Two-Step Estimation of a Spatial Autoregres-
sive Model with Autoregressive Disturbances and Endogenous Regressors.” Econometric
Reviews, 32(5-6), 686–733.

Drukker DM, Peng IRPH, Raciborski R (2013b). “Creating and Managing Spatial-Weighting
Matrices with the spmat Command.” Stata Journal, 13(2), 242–286.

Drukker DM, Prucha IR, Raciborski R (2013c). “A Command for Estimating Spatial-
Autoregressive Models with Spatial-Autoregressive Disturbances and Additional Endoge-
nous Variables.” Stata Journal, 13(2), 287–301.

Drukker DM, Prucha IR, Raciborski R (2013d). “Maximum Likelihood and Generalized Spa-
tial Two-Stage Least-Squares Estimators for a Spatial-Autoregressive Model with Spatial-
Autoregressive Disturbances.” Stata Journal, 13(2), 221–241.

Florax RJGM, Folmer H (1992). “Specification and Estimation of Spatial Linear Regression
Models: Monte Carlo Evaluation of Pre-Test Estimators.” Regional Science and Urban
Economics, 22, 405–432.

Florax RJGM, Folmer H, Rey SJ (2003). “Specification Searches in Spatial Econometrics:
The Relevance of Hendry’s Methodology.” Regional Science and Urban Economics, 33,
557–579.

Gay DM (1990). “Usage Summary for Selected Optimization Routines.” Computing Science
Technical Report No. 153.

Gould W, Pitblado JS, Poi B (2010). Maximum Likelihood Estimation with Stata. StataCorp
LP, College Station.

Griffith DA, Layne LJ (1999). A Casebook for Spatial Statistical Data Analysis. Oxford
University Press, New York.

IBM Corporation (2010). IBM SPSS Statistics 19. Armonk. IBM Corporation, URL http:

//www-01.ibm.com/software/analytics/spss/.

Jones E, Oliphant T, Peterson P, others (2001). “SciPy: Open Source Scientific Tools for
Python.” URL http://www.scipy.org/.

http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/analytics/spss/
http://www.scipy.org/


34 Comparing Implementations of Estimation Methods for Spatial Econometrics

Kelejian HH, Piras G (2011). “An Extension of Kelejian’s J-Test for Non-Nested Spatial
Models.” Regional Science and Urban Economics, 41, 281–292.

Kelejian HH, Prucha IR (1997). “Estimation of Spatial Regression Models with Autoregressive
Errors by Two-Stage Least Squares Procedures: A Serious Problem.” International Regional
Science Review, 20(1&2), 103–111.

Kelejian HH, Prucha IR (1998). “Generalized Spatial Two-Stage Least Squares Procedure for
Estimating a Spatial Autoregressive Model with Autoregressive Disturbances.” Journal of
Real Estate Finance and Economics, 17(1), 99–121.

Kelejian HH, Prucha IR (1999). “A Generalized Moments Estimator for the Autoregressive
Parameter in a Spatial Model.” International Economic Review, 40, 509–533.

Kelejian HH, Prucha IR (2007). “HAC Estimation in a Spatial Framework.” Journal of
Econometrics, 140(1), 131–154.

Kelejian HH, Prucha IR (2010). “Specification and Estimation of Spatial Autoregressive
Models with Autoregressive and Heteroskedastic Disturbances.” Journal of Econometrics,
157(1), 53–67.

Kelejian HH, Prucha IR, Yuzefovich Y (2004). “Instrumental Variable Estimation of a Spatial
Autoregressive Model with Autoregressive Disturbances: Large and Small Sample Results.”
In JP LeSage, KR Pace (eds.), Advances in Econometrics: Spatial and Spatiotemporal
Econometrics, pp. 163–198. Elsevier, Oxford.

Kelejian HH, Tavlas GS, Hondroyiannis G (2006). “A Spatial Modelling Approach to Conta-
gion among Emerging Economies.” Open Economies Review, 17(4-5), 423–441.

Lee LF (2003). “Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive
Model with Autoregressive Disturbances.” Econometric Reviews, 22, 307–335.

Lee LF (2007). “GMM and 2SLS Estimation of Mixed Regressive, Spatial Autoregressive
Models.” Journal of Econometrics, 137, 489–514.

LeSage JP, Fischer MM (2008). “Spatial Growth Regression: Model Specification, Estimation
and Interpretation.” Spatial Economic Analysis, 3, 275–304.

LeSage JP, Pace KR (2009). Introduction to Spatial Econometrics. CRC Press, Boca Raton,
FL.

McMillen D (2012). McSpatial: Nonparametric Spatial Data Analysis. R pack-
age version 1.1.1, URL http://CRAN.R-project.org/src/contrib/Archive/McSpatial/

McSpatial_1.1.1.tar.gz.

Millo G, Piras G (2012). “splm: Spatial Panel Data Models in R.” Journal of Statistical
Software, 47(1), 1–38. URL http://www.jstatsoft.org/v47/i01/.

Nash JC, Varadhan R (2011). “Unifying Optimization Algorithms to Aid Software System
Users: optimx for R.” Journal of Statistical Software, 43(9), 1–14. URL http://www.

jstatsoft.org/v43/i09/.

http://CRAN.R-project.org/src/contrib/Archive/McSpatial/McSpatial_1.1.1.tar.gz
http://CRAN.R-project.org/src/contrib/Archive/McSpatial/McSpatial_1.1.1.tar.gz
http://www.jstatsoft.org/v47/i01/
http://www.jstatsoft.org/v43/i09/
http://www.jstatsoft.org/v43/i09/


Journal of Statistical Software 35

Oliphant TE (2006). “Guide to NumPy.” Trelgol Publishing, URL http://numpy.scipy.

org/.

Ord JK (1975). “Estimation Methods for Models of Spatial Interaction.” Journal of the
American Statistical Association, 70(349), 120–126.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2013). nlme: Linear and Nonlinear
Mixed Effects Models. R package version 3.1-109, URL http://CRAN.R-project.org/

package=nlme.

Piras G (2010). “sphet: Spatial Models with Heteroskedastic Innovations in R.” Journal of
Statistical Software, 35(1), 1–21. URL http://www.jstatsoft.org/v35/i01/.

Pisati M (2001). “sg162. Tools for Spatial Data Analysis.” Stata Technical Bulletin, 10(60),
21–37.

Powers EL, Wilson JK (2004). “Access Denied: The Relationship between Alcohol Prohibition
and Driving under the Influence.” Sociological Inquiry, 74(3), 318–337.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rey SJ (2009). “Show Me the Code: Spatial Analysis and Open Source.” Journal of Geo-
graphical Systems, 11, 191–207.

Rey SJ, Anselin L (2010). “PySAL: A Python Library of Spatial Analytical Methods.” In
MM Fischer, A Getis (eds.), Handbook of Applied Spatial Analysis, pp. 175–193. Springer-
Verlag, Berlin.

Ripley BD (1981). Spatial Statistics. John Wiley & Sons, New York.

SAS Institute Inc (2008). SAS/IML 9.2 User’s Guide. SAS Institute Inc., Cary. URL http:

//www.sas.com/.

Schnabel RB, Koontz JE, Weiss BE (1985). “A Modular System of Algorithms for Uncon-
strained Minimization.” ACM Transactions on Mathematical Software, 11(4), 419–440.

StataCorp (2011). Stata Data Analysis Statistical Software: Release 12. StataCorp LP, College
Station, TX. URL http://www.stata.com/.

The MathWorks, Inc (2011). MATLAB – The Language of Technical Computing, Version 7.13
(R2011b). The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.

com/products/matlab/.

van Rossum G (1995). Python Reference Manual. CWI Report, URL http://ftp.cwi.nl/

CWIreports/AA/CS-R9526.ps.Z.

Ward MD, Gleditsch KS (2008). Spatial Regression Models. Sage, Thousand Oaks.

http://numpy.scipy.org/
http://numpy.scipy.org/
http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=nlme
http://www.jstatsoft.org/v35/i01/
http://www.R-project.org/
http://www.sas.com/
http://www.sas.com/
http://www.stata.com/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://ftp.cwi.nl/CWIreports/AA/CS-R9526.ps.Z
http://ftp.cwi.nl/CWIreports/AA/CS-R9526.ps.Z


36 Comparing Implementations of Estimation Methods for Spatial Econometrics

Affiliation:

Roger Bivand
Department of Economics
Norwegian School of Economics
Helleveien 30
5045 Bergen, Norway
E-mail: Roger.Bivand@nhh.no

Gianfranco Piras
Regional Research Institute
West Virginia University
886 Chestnut Ridge Road
P.O. Box 6825
Morgantown, WV 26506-6825, United States of America
E-mail: Gianfranco.Piras@mail.wvu.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 63, Issue 18 Submitted: 2013-05-23
January 2015 Accepted: 2014-10-13

mailto:Roger.Bivand@nhh.no
mailto:Gianfranco.Piras@mail.wvu.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Comparative study
	Data set

	A general spatial model
	Notation
	Restrictions on the general model

	Comparing GMM implementations
	SARAR model
	Step 1.1 – 2SLS estimator
	Step 1.2 – Initial GMM estimator
	Step 2.1 – GS2SLS estimator
	Step 2.2 – Consistent and efficient GMM estimator
	Homoskedasticity with and without additional endogenous variables
	Heteroskedasticity with and without additional endogenous variables
	W and M are different

	Spatial lag model
	Homoskedasticity with and without additional endogenous variables
	Heteroskedasticity with and without additional endogenous variables
	HAC estimation

	Spatial error model
	Homoskedasticity with and without additional endogenous variables
	Heteroskedasticity with and without additional endogenous variables


	Comparing maximum likelihood estimation
	Spatial lag model
	Other ML estimators

	Implementing impact measures
	Concluding remarks

