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Abstract

A complete assessment of population growth and viability from field census data often
requires complex data manipulations, statistical routines, mathematical tools, program-
ming environments, and graphical capabilities. We therefore designed an R package called
popbio to facilitate both the construction and analysis of projection matrix models. The
package consists primarily of the R translation of MATLAB code found in Caswell (2001)
and Morris and Doak (2002) for the analysis of projection matrix models. The package
also includes methods to estimate vital rates and construct projection matrix models from
census data typically collected in plant demography studies. In these studies, vital rates
can often be estimated directly from annual censuses of tagged individuals using transition
frequency tables. Because the construction of projection matrix models requires careful
management of census data, we describe the steps to construct a projection matrix in
detail.

Keywords: demography, matrix population model, projection matrix, vital rates, stochastic
growth rate.

1. Introduction

Demographic studies focus on estimating the growth, survival, and reproductive success of
individuals within a population. Often these fundamental parameters are strongly influenced
by the age, size, or life-history stage of the individuals involved. For example, mature logger-
head sea turtles (Caretta caretta) have higher survival rates than new hatchlings and these
stages contribute to population growth and viability in different ways (Crouse et al. 1987).
As a result, age- or stage-based projection matrix models are the principal tool for assessing
population growth and viability in structured populations (Leslie 1945; Lefkovitch 1965).

Estimation of demographic rates and the subsequent analysis of projection matrix models
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remains a challenge in ecology (Caswell 2001; Morris and Doak 2002). For example, selection
of the appropriate size or stage classes often requires fitting statistical models, such as logistic
regressions, to the census observations in order to identify those state variables that have
a strong influence on vital rates. Construction of the projection matrix from the set of
individual life-history observations often involves complex data manipulations to correctly
summarize vital rates. Determining the precision with which demographic parameters have
been estimated generally requires resampling methods which can become complex for large
datasets (Kalisz and McPeek 1992). Calculation of population growth rates, sensitivities,
and other demographic measures of long-term viability requires eigenvalues and eigenvectors
of the projection matrix. Finally, projection of stochastic growth rates based on a random
sequence of matrices or other stochastic processes often requires a programming environment.

To address these challenges, we have developed an R package called popbio to construct and
analyze matrix population models. R is a free software program that is primarily used for
statistical computing and graphics (R Development Core Team 2007). However, R is also a
complete programming language that supports mathematical tools for matrix analyses, so all
the statistical, mathematical, and graphical capabilities needed for demography are available
within the R environment.

The popbio package consists primarily of the R translation of code from Caswell (2001) and
Morris and Doak (2002) written in MATLAB (The MathWorks, Inc. 2007) for the analysis of
projection matrix models. In addition, the package includes methods to construct projection
matrix models from census data typically collected in plant demography studies. Benefits of
this package include standardizing a variety of basic methods to ease the burden of initiating
a demographic analysis, even for ecologists not yet familiar with the R language. Use of the
package introduces a convenient way to document methods used to summarize census data
and to build projection matrices, because simple R scripts can be written that make use of the
standardized functions within the package. Those same scripts will enable other researchers
to reproduce the analysis simply by re-executing the scripts on the same dataset.

1.1. Outline of the paper

The first section of the paper focuses on the analysis of projection matrix models. We discuss
the calculation of population growth rates in R and then present two specific examples of
R functions translated from MATLAB code in Caswell (2001) and Morris and Doak (2002).
In the first example, we introduce three functions to calculate age-specific rates from a stage-
classified matrix described in Chapter 5 in Caswell (2001). In the second example, we present
three functions to calculate stochastic growth rates described in Chapter 7 in Morris and Doak
(2002). A complete list of converted functions for the analysis of projection matrix models
within each book can be accessed within R using the popbio help pages.

R> help("Caswell")
R> help("Morris")

The second section of the paper focuses on the estimation of vital rates and construction
of a single projection matrix. We follow the approach described in Caswell (2001, section
6.1.1) and estimate state transition rates using transition frequency tables. Therefore, much
of our discussion and examples apply to demographic studies of plants or other sessile organ-
isms where individuals are tagged and their survival, growth, and reproductive success are
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consistently measured over several projection intervals. Morris and Doak (2002) present addi-
tional methods to estimate vital rates based on logistic regression and the RCapture package
includes methods to estimate vital rates in capture-recapture experiments (Baillargeon and
Rivest 2007). Because the construction of transition frequency tables and projection matrices
requires careful management of census data, we describe these steps in some detail for new
R users. We also describe how to perform logistic regression to identify potential stage classes
and generate a series of resampled projection matrices.

1.2. R for new users

For ecologists that are new to the R programming language, the extensive online documen-
tation (R Development Core Team 2007) is invaluable. A number of introductory books
(Dalgaard 2002; Crawley 2005) complement the primary R documentation. In particular,
Crawley (2005) includes many examples relevant to ecologists and the short discussion of
basic matrix operations in the appendix centers around an age-classified demographic model.
Because R is based on an open-source model, a large user-community contributes functions
and data through add-on packages, which are available from the Comprehensive R Archive
Network. For example, the RCapture package includes functions for the estimation of vital
rates in a capture-recapture experiment (Baillargeon and Rivest 2007). In addition, the de-
mogR package includes functions for analyzing life tables and matrix population models in
human and other age-structured populations (Jones 2007).

Finally, the popbio package itself contains help pages for each function and data set, examples
of useful analyses, and demonstrations of the range of capabilities, all oriented toward easing
the process of learning how to analyze demographic data. Two demonstrations are available
within the package; one (stage.classify) illustrates the use of logistic regression to identify
potential stage classes and the other (fillmore) illustrates the construction and analysis of
population projection matrices using census data from a plant population. These demos may
be run as follows.

R> demo ("stage.classify")
R> demo("fillmore")

Finally, every function and data set includes a detailed help page describing the input pa-
rameters, defaults, and working examples. These may be accessed as illustrated below for the
stoch.growth.rate function.

R> help("stoch.growth.rate")
R> example("stoch.growth.rate")

2. Analyzing a projection matrix

2.1. Calculating growth rates by projection

At the center of any demographic study of structured populations are the state vector n;
describing the distribution of individuals across age, size, or stage categories and the popula-
tion projection matrix A = T + F describing the transformation of the number of individuals
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from one census to the next. The matrix T (transitions) represents the set of transitions
due to growth and survival and the matrix F (fertilities) represents the transitions due to
reproduction (Caswell 2001). Projections of the age or stage distribution through time are
given by the following recursion equation.

Ny 1 = Ant (1)

The population growth rate and stable stage distribution can be calculated by deterministic
projections or by matrix computations using the dominant eigenvalue and right eigenvector
(Caswell 2001). In the first case, Equation 1 is used repeatedly to create a time series of stage
vectors. Eventually, the stage vector n, converges to a stable stage distribution fi, where each
component changes by the same proportion (A) with each progressive iteration.

The function pop.projection projects the growth of a population over time by specifying
a projection matrix, initial stage vector, and number of iterations. In this example, the
projection matrix is the mean matrix for a rare plant (Freville et al. 2004) and projections are
repeated over 15 intervals. The population growth rate A and stable stage distribution are
estimated from the final iteration. As illustrated in Figure 1, a plot using stage.vector.plot
of the resulting stage vectors can be helpful for identifying convergence to the stable stage
distribution and to explore short-term dynamics.

R> stages <- c("seedling", "vegetative", "flowering")

R> A <- matrix(c(0, 0, 5.905, 0.368, 0.639, 0.025, 0.001, 0.152,
+ 0.051), nrow = 3, byrow = TRUE, dimnames = list(stages,

+ stages))

R> n <- c(5, 5, 5)

R> p <- pop.projection(4, n, 15)

R>p

$lambda
[1] 0.997

$stable.stage
seedling vegetative flowering
0.4525 0.4711 0.0763

$stage.vectors
0 1 2 3 4 5 6 7 8 9 10
seedling 5 29.53 6.023 5.11 13.03 10.8 8.85 10.11 10.32 9.78 9.81
vegetative 5 5.16 14.188 11.30 9.16 10.7 10.86 10.24 10.31 10.43 10.30
flowering 5 1.02 0.866 2.21 1.84 1.5 1.71 1.75 1.66 1.66 1.68
11 12 13 14
seedling 9.92 9.81 9.75 9.74
vegetative 10.24 10.23 10.19 10.14
flowering 1.66 1.65 1.65 1.64

$pop.sizes
[1] 15.0 35.7 21.1 18.6 24.0 23.0 21.4 22.1 22.3 21.9 21.8 21.8 21.7 21.6
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Figure 1: Projected time series for a rare plant with three stage classes.

[15] 21.5

$pop.changes
[1] 2.380 0.590 0.884 1.290 0.959 0.930 1.032 1.008 0.981 0.997 1.001
[12] 0.994 0.995 0.997

R> stage.vector.plot(p$stage.vectors, col = 2:4)

2.2. Calculating growth rates using eigenvalues

The function eigen.analysis uses the built-in function eigen to calculate common demo-
graphic parameters from eigenvalues and eigenvectors of the projection matrix. The popu-
lation growth rate A is the dominant eigenvalue and the stable stage distribution and repro-
ductive values are the corresponding right and left eigenvectors, respectively. The sensitivity
and elasticity matrices identify matrix elements with the greatest absolute or proportional
effects on population growth rate (de Kroon et al. 2000). The damping ratio measures the
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rate of convergence to a stable stage distribution and is determined by the ratio of the dom-
inant eigenvalue to the second largest eigenvalue. Additional details on reproductive value,
damping ratio, sensitivity, and elasticity can be found in Caswell (2001). By default, only the
sensitivities for non-zero elements in the projection matrix are displayed by eigen.analysis.

R> eighA <- eigen.analysis(4)
R> eigA

$lambda
[1] 0.996

$stable.stage
seedling vegetative flowering

0.4523 0.4714 0.0763

$sensitivities

seedling vegetative flowering
seedling 0.000 0.000 0.0346
vegetative 0.552 0.576 0.0932
flowering 1.298 1.353 0.2189
$elasticities

seedling vegetative flowering
seedling 0.00000 0.000 0.20536
vegetative 0.20406 0.369 0.00234
flowering 0.00130 0.206 0.01121

$repro.value
seedling vegetative flowering
1.00 2.69 6.32

$damping.ratio
[1] 6.51

2.3. Age-specific rates from a stage-classified matrix

Demographic studies often classify individuals by size or stage class, especially when life his-
tory stages are easy to measure but ages are difficult to determine. In other cases, size variables
are better than age at predicting survival, growth and reproduction. This is commonly the
case for most plants and for animals with indeterminate growth. Because stage-structured de-
mography is based on observations revealing both survival and growth of individuals from one
census to the next, age-specific rates may be calculated from the resulting stage-structured
model (Cochran and Ellner 1992; Tuljapurkar and Horvitz 2006). Important quantities in-
clude age-specific survival, the net reproductive rate, and generation time.

Caswell (2001, Chapter 5) develops a number of methods for determining age-specific traits
from stage-classified models using examples from killer whales (Orcinus orca) and teasel
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(Dipsacus sylvestris). For illustrative purposes, the growth and survival matrix (T) and the
fertility matrix (F) for these two examples are available within the popbio package in the
data sets whale and teasel.

The most fundamental aspect of age-specific survival is given by the mean time spent by
individuals in each stage class. Related quantities include the variance and the coefficient of
variation of the mean time spent in each stage class. Also useful are the mean and variance
of the time to death. The R function fundamental .matrix returns a list containing all five
of these quantities given a transition matrix T as input. In the illustration below, only the
mean time in each stage class (N) is displayed. On average, a yearling killer whale spends
one year as a yearling, 11 years as a juvenile, and about 17.4 years as a reproductive adult.

R> data("whale")
R> fundamental.matrix(whale$T)$N

yearling juvenile mature postreprod

yearling 1.0 0.0 0.0 0
juvenile 11.0 11.2 0.0 0
mature 17.4 17.8 21.5 0
postreprod 40.0 41.0 49.5 51

The net reproductive rate R is a measure of the replacement rate of a population and equals
the mean number of offspring produced by a single newborn individual during its lifetime.
In plant demography, many plants may produce more than one type of offspring class in
a prebreeding census, since seeds will be released just after the census and may remain in
the seed bank or germinate and develop into seedlings or small vegetative classes during the
census interval. In contrast, mature plants only produce one type of offspring in a postbreeding
census, the recently formed and immediately censused seeds. To cover the prebreeding census
situation, Caswell (2001) recommends using the dominant eigenvalue of the matrix R = FN
to calculate net reproductive rate.

R> data("teasel")
R> net.reproductive.rate(teasel$T, teasel$F)

[1] 14.4

The generation time for a structured population is defined in several different ways. Within
the popbio package it is defined as the time required for a population to increase by a factor
of Ry (Caswell 2001, equation 5.73).

R> generation.time(teasel$T, teasel$F)

[1] 3.15

2.4. Modeling population viability and stochastic growth rates

Morris and Doak (2002) model population growth and extinction risks of structured popu-
lations in variable environments in Chapter 7 and the following stochastic growth functions
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were converted from the MATLAB code in Boxes 7.3 to 7.5. Details on default parameters
are found in the corresponding help pages and all three examples in this section use four pro-
jection matrices for mountain golden heather (Hudsonia montana) in the hudsonia dataset.
All three functions accept any list of two or more projection matrices as the main input pa-
rameter and the sample function is then used internally to select matrices at random. By
default, all three functions print helpful comments that track the progress during long itera-
tions. For clarity and presentation below, we have suppressed the output of comments with
the verbose=FALSE option.

First, the function stoch.projection can be used to simulate stochastic population growth.
The function requires a list of projection matrices and an initial population vector as input;
reasonable defaults are given for the number of time steps, iterations, and selection probabil-
ities. The output is a matrix listing the final population vector in the last time step for each
iteration. In this example, the golden heather population is projected through 50 time steps
for both a uniform (x.eq) and a nonuniform (x.uneq) selection of matrices. In the latter
case, the probability distribution for sampling is given as the vector argument prob, which is
used by sample to select the matrices.

R> data("hudsonia")

R> n <- c(4264, 3, 30, 16, 25, 5)

R> names(n) <- c("seed", "seedlings", "tiny", "small", "medium",

+ "large")

R> x.eq <- stoch.projection(hudsonia, n, nreps = 1000, verbose = FALSE)
R> x.uneq <- stoch.projection(hudsonia, n, nreps = 1000, prob = c(0.2,
+ 0.2, 0.2, 0.4), verbose = FALSE)

The vast majority of final population sizes of Hudsonia montana are much less than the initial
size (n = 4343), a dramatic illustration of a population unlikely to persist under these two
stochastic models (Figure 2). In the figure, the blue color representing matrix selection from
a nonuniform distribution where the “best” year with a growth rate of 1.02 is selected 40%
of the time is partially transparent, allowing the overlap between the two histograms to be
clearly visible.

Second, the methods used by the stoch.projection function can also be modified to yield an
estimate of the log stochastic growth rate by averaging successive growth rates over a very long
simulation (50,000 iterations by default). In addition to calculating stochastic growth rates
by matrix selection and projection, they may also be calculated using Tuljapukar’s second-
order approximation (Tuljapurkar 1990). The function stoch.growth.rate calculates the
logarithm of the stochastic growth rate using both methods.

R> stoch.growth.rate(hudsonia, verbose = FALSE)

$approx
[1] -0.0371

$sim
[1] -0.0366
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Figure 2: Projection of stochastic growth rates for Hudsonia montana with histograms for
both uniform and nonuniform sampling probabilities. The dotted line represents the starting
population size.

$sim.CI
[1] -0.0372 -0.0360

Finally, the function stoch.quasi.ext estimates the probability of reaching a quasi-extinction
threshold. Figure 3 illustrates the results obtained using an extinction threshold of 10 above-
ground individuals in ten separate runs, each with 500 iterations of population growth over
50 years. Since the stage distribution of most plant populations like H. montana are pre-
dominantly seeds, this stage is excluded from the extinction threshold using the sumweight
option.

R> sqe <- stoch.quasi.ext(hudsonia, n, Nx = 10, nreps = 500,

+ sumweight = c¢(0, 1, 1, 1, 1, 1), verbose = FALSE)

R> matplot(sqe, xlab = "Years", ylab = "Quasi-extinction probability",
+ type = "1", 1ty = 1, col = rainbow(10))
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Figure 3: Time for the Hudsonia montana population to reach a quasi-extinction threshold of
10 above-ground individuals. The lines are separate estimates of the cumulative distribution
of extinction probabilities based on 500 iterations of population growth over 50 years.

3. Constructing a projection matrix

From an experimental viewpoint, a demographic study follows marked or tagged individuals
and, via multiple observations throughout their lives, estimates their growth, survival, and
reproductive success. These individuals may be classified by age, size, or life-history stage
at each of a repeated set of censuses. Thus, the initial census data consist of a life-history
trajectory for each identified individual, with each point in the trajectory composed of the
date or time of the census, the identifier of the individual, and information on the individual’s
current age, size, or stage, and its reproductive status.

Census records are easily organized into an R data frame in longitudinal format. To illustrate
this, we provide two census data sets, one (test.census) from a hypothetical plant population
sampled over a three year period and one (aq.census) from an ongoing study of Aquilegia
(Ranunculaceae) populations in the southwestern United States. The following fragments
from these two data frames illustrate the general structure typical of demographic datasets.
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R> data("test.census")
R> head2(test.census)

plant year stage fruits
1 1 2001 seedling 0
2 2 2001 seedling 0
3 3 2001 seedling 0
41 18 2003 seedling 0

R> data("aq.census")
R> head2(aq.census)

plot year plant status rose leaf infl fruits

1 903 1996 1 dormant 0 0 NA 0
2 903 1996 2 flower NA NA NA 1
3 903 1996 3 dormant 0 0 NA 0
2853 930 2003 258 dead NA NA NA 0

Construction of a projection matrix from a census data frame typically requires the following
steps, each of which will be described in the following sections. Because the state transition
rates are estimated using transition frequency tables (Caswell 2001, Section 6.1.1), these
methods apply to demographic studies of plants or other sessile organisms where all tagged
individuals are observed and measured during each census.

3.1.

. Creating a stage-fate data frame by linking each observation of an individual during one

census with its fate as revealed by the subsequent census.

. Possibly adding one or more fertility columns to the stage-fate data frame to record the

reproductive success of each individual. This may be necessary if individual reproduc-
tion cannot be calculated completely from the census data.

Converting the stage-fate data frame into a transition frequency table to construct
a transition matrix and summarizing individual fertility rates to construct a fertility
matrix.

Possibly adding directly to the transition matrix additional life-cycle transitions that
do not correspond to those observable in the census data. For example, survival rates
for cryptic stages such as seeds in the seed bank may be estimated from experimental
data rather than observed in the census.

Creating stage-fate data frames

To illustrate the linking of census observations on each individual to create stage-fate data,
consider the test.census example. It includes step-by-step instructions to build a stage-fate
data frame using two R methods: reshape and merge. In the latter case, the merge function

11
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executes a self-join on the census data frame using common identifiers (in this case plant,
the identifier of individuals) and then subset matches rows where year in the first copy of
the census table equals year-1 in the second copy of the census table.

R> trans <- subset(merge(test.census, test.census, by = "plant",
+ sort = FALSE), year.x == year.y - 1)
R> head2(trans)

plant year.x stage.x fruits.x year.y stage.y fruits.y
2 1 2001 seedling 0 2002 dead 0
7 2 2001 seedling 0 2002 vegetative 0
12 2 2002 vegetative 0 2003 vegetative 0
97 16 2002 seedling 0 2003 dead 0

The simple self-join above yields column names that may not express their content as clearly
as possible. Rename the rows and columns to improve their clarity by assigning new names.

R> rownames (trans) <- 1:nrow(trans)

R> colnames(trans) [2:7] <- c("year", "stage", "fruits", "year2",
+ "fate", "fruits2")

R> head2(trans)

plant year stage fruits year2 fate fruits2
1 1 2001 seedling 0 2002 dead 0
2 2 2001 seedling 0 2002 vegetative 0
3 2 2002 vegetative 0 2003 vegetative 0
23 16 2002  seedling 0 2003 dead 0

3.2. Adding fertility rates

The stage-specific fertility rates in the final projection matrix are estimated by averaging
individual fertility rates by stage, so census records should contain counts or estimates of
offspring production. For certain types of life cycles, a partial estimate of reproductive output
is observable in a census but not the entire transition corresponding to reproduction. For
example, fruit or seed production is observable, but during a complete census interval seeds
are dispersed and not reobserved until they emerge as germinating seedlings. In such cases,
the census dataset lacks information on the direct link between parents and offspring that is
required in the fertility matrix. One solution is to calculate relative fertilities based on the
proportion of total reproductive output attributable to an individual times the total number
of seedlings at the end of the projection interval. This may be calculated and inserted into a
new stage-fate data frame for a single census interval (trans01) as follows.

R> transOl1 <- subset(trans, year == 2001, c(plant, stage, fruits,
+ fate))
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R> seedlings <- nrow(subset (test.census, year == 2002 & stage ==
+ "seedling"))
R> seedlings

(1] 5

R> transOl$seedling <- transO1$fruits/sum(transO1$fruits) *

+ seedlings
R> trans0O1

plant stage fruits fate seedling
1 1 seedling 0 dead 0.000
2 2 seedling 0 vegetative 0.000
4 3 seedling 0 dead 0.000
5 4 seedling 0 dead 0.000
6 5 seedling 0 vegetative 0.000
8 6 seedling 0 vegetative 0.000
10 7  vegetative 0 reproductive 0.000
13 8 vegetative 0 vegetative 0.000
14 9 reproductive 2 dead 0.667
15 10 reproductive 4 reproductive 1.333
17 11 reproductive 9 reproductive 3.000

Several subtleties emerge when estimating individual fertility rates in species with anonymous
reproduction (Caswell 2001). First, the timing of the birth pulse (e.g., when seeds are re-
leased from fruits in plant reproduction) relative to the timing of the census influences the
values of fertility elements within the projection matrix A. Second, the longevity of anony-
mous reproductive propagules influences the handling of fertilities; for example, persistent
seed banks may require the introduction of additional, unobservable stages or other complex-
ities. Finally, differences in survival and growth (e.g., germination for plants) for propagules
of different ages (e.g., an age-structured seed bank) introduce further challenges. Because
these generally must be handled in special ways to account for unique biological features of
different life cycles, there is no general modeling method available. However, the ability to
add specific fertilities to the stage-fate data frame and the mathematical sophistication of
R allow appropriate calculations to be performed without reliance on external software.

Specific comments are possible, however, for the influence of simple pre- and postbreeding
censuses of plants without seed banks on the estimates of individual fertility in the stage-
fate data frame. For a prebreeding census, i.e., when each census immediately precedes the
pulse of reproduction, fertility rates should include the survival of offspring during the census
interval. For a postbreeding census, however, the seeds were just released immediately prior
to each census, so the fertility estimates are just the total number of seeds produced during
the immediately preceding reproductive pulse.

3.3. Constructing transition and fertility matrices

After having followed the steps outlined above, the original census data have been transformed
into a data frame (trans01) describing the connection between the stage of an individual

13
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during one census and its fate and reproductive output as revealed by the subsequent one. The
next step creates the projection matrix A, which is composed of the transitions representing
growth and survival (T) and those representing fertility (F) (Caswell 2001). All of these are
created by the projection.matrix function and the function includes a number of reasonable
defaults for the stage, fate, and fertility column names. By default, the matrix is sorted by
the factor levels in the stage column. To change the order of columns, add the option to sort
by a given stage vector or first order the stage column using ordered as illustrated below.
The function also includes an option to output a list with separate transition and fertility
matrices if needed.

R> stages <- c("seedling", "vegetative", "reproductive")
R> projection.matrix(trans0l, sort = stages)

seedling vegetative reproductive

seedling 0.0 0.0 1.667
vegetative 0.5 0.5 0.000
reproductive 0.0 0.5 0.667

R> transOl$stage <- ordered(transOl$stage, levels = stages)
R> projection.matrix(trans01, TF = TRUE)

$T
seedling vegetative reproductive
seedling 0.0 0.0 0.000
vegetative 0.5 0.5 0.000
reproductive 0.0 0.5 0.667
$F
seedling vegetative reproductive
seedling 0 0 1.67
vegetative 0 0 0.00
reproductive 0 0 0.00

Since the step of constructing a projection matrix is so central to demographic analyses, it
warrants more detailed description. The following outlines the steps that are carried out
internally by projection.matrix. First, the table function is used to cross-tabulate stage
by fate and create a state transition frequency table with state at time ¢ in columns and fate at
time t+1 in rows. This arrangement corresponds to the traditional orientation of demographic
projection matrices, which postmultiply the projection matrix by the state vector n; to yield
the state for the following time, n;y; (see Equation 1). In this example, the fates are sorted
with the dead fate appearing in the last row for display.

R> tf <- table(transOl$fate, transOl$stage)
R> tf[c(stages, "dead"), ]
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seedling vegetative reproductive

seedling 0 0 0
vegetative 3 1 0
reproductive 0 1 2
dead 3 0 1

Next, the prop.table function is used to divide transition counts by the column total to get
state transition rates. The dead fate must be removed from the final matrix. This can be
accomplished by retrieving only those rows and columns listed in the stage vector.

R> T.mat <- prop.table(tf, 2)[stages, stages]

R> T.mat
seedling vegetative reproductive
seedling 0.0 0.0 0.000
vegetative 0.5 0.5 0.000
reproductive 0.0 0.5 0.667

Finally, the tapply function is used to calculate the stage-specific fertility rates by averaging
individual fertilities by initial stage class to create a row of mean fertilities. The corresponding
row is then added to a matrix of zeros. Note that in many stage-structured populations, fer-
tility estimates in a prebreeding census may be included in multiple rows (e.g., corresponding
to fates as both seeds and seedlings if some can progress rapidly through the early life cycle
stages).

R> F.mat <- T.mat * O
R> F.mat[1, ] <- tapply(transOl$seedling, transOl$stage, mean)

R> F.mat

seedling vegetative reproductive

seedling 0 0 1.67
vegetative 0 0 0.00
reproductive 0 0 0.00

3.4. Adding estimated transitions directly to matrix

In many species, it is also not possible to directly observe all possible transitions in a pop-
ulation, especially for cryptic transitions such as seed bank survival. These must be added
directly into the projection matrix. To illustrate this, consider the formatted stage-fate data
frame for Aquilegia called aq.trans included in the package. The following steps calculate
two additional elements to add to the transition matrix, one for seed survivorship within
the seed bank and one for recruitment from the seed bank into the seedling class. In this
case, both are calculated under the assumptions that the observations were obtained from a
prebreeding census and that all seeds are equivalent within the seed bank.

First, an appropriate, single-year subset of the data are obtained.

15
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R> data("aq.trans")

R> aq96 <- subset(aq.trans, year == 1996, select = c(plot, plant,
+ stage, fate, fruits))

R> head2(aq96)

plot plant stage fate fruits

1 903 1 small small 0
2 903 2 flower large 1
3 903 3 small large 0
1331 930 106 flower small 5

Experiments outside of the scope of the demographic census yielded estimates of the seed
survival rate, the initial seed bank size, and the number of seeds per fruit.

R> seed.survival <- 0.126
R> seed.bank.size <- 10000
R> seeds.per.fruit <- 120

Next, assume that both newly matured seeds and those in the seed bank contribute equally
to the recruit pool observed in the next census and therefore to the recruitment rate.

R> recruits <- nrow(subset(aq.trans, year == 1997 & stage ==

+ "recruit"))

R> seeds.from.plants <- sum(aq96$fruits) * seeds.per.fruit

R> recruitment.rate <- recruits/(seed.bank.size + seeds.from.plants)

Individual fertilities corresponding to reproductive transitions from mature plants to new
recruits and into the seed bank are added directly to the stage-fate data frame using the
following equations.

R> ag96$recruit <- aq96$fruits/sum(aq96$fruits) * seeds.from.plants *
+ recruitment.rate

R> aq96%seed <- aq96$fruits * seeds.per.fruit * seed.survival

R> head2(aq96)

plot plant stage fate fruits recruit seed

1 903 1 small small 0 0.00 0.0

903 2 flower large 1 1.02 15.1
3 903 3 small large 0 0.00 0.0
1331 930 106 flower small 5 5.12 75.6

Finally, estimated transitions are added directly as new elements in the matrix with the add
option to projection.matrix by specifying a series of three arguments for each new element:
the row and column indices for the new element and the value of that element. In this
example, estimates of seed bank survival and recruitment are added directly to the transition
matrix as elements (1,1) and (2, 1), respectively.
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R> A96 <- projection.matrix(aq96, add = c(1, 1, seed.survival,
+ 2, 1, recruitment.rate))
R> A96

seed recruit small large flower

seed 0.12600 0.0 0.000 0.000 48.0426
recruit 0.00853 0.0 0.000 0.000 3.2530
small  0.00000 0.5 0.403 0.176 0.3065
large 0.00000 0.0 0.239 0.471 0.4839
flower 0.00000 0.0 0.000 0.118 0.0806

Because these steps are a routine part of our demographic analysis of Aquilegia, they are
incorporated into the aq.matrix function. Its help page also explains these steps in greater
detail.

For other species, the additional transitions required to represent the corresponding life cycle
may be different than those described above. Consequently, a somewhat different procedure
will be required leading up to the final construction of the projection matrix. The math-
ematical completeness of the R language, however, ensures that all the calculations can be
done directly and can be incorporated into a customized function analogous to aq.matrix for
convenience and to aid the documentation.

3.5. Selecting stage classes

Definition of appropriate age, size, or stage classes requires identifying states with a strong
influence on the vital rates. Ideally, a state variable will be highly correlated with all three
vital rates—survival, growth, and reproduction—thus enabling prediction of an individual’s
fate and performance based on information about its state (Morris and Doak 2002, Chapter 6).
Graphical and statistical analyses often help to identify those state variables that have the
best power to predict differences in vital rates among individuals of different sizes.

In the next example, Aquilegia rosette size is examined as a potential explanatory state
variable for survival. A logical vector for survival is first added to the data frame. A subset
for flowering plants is then selected and the table function is used to summarize survival of
flowering plants by rosette size class. Because the number of surviving plants is binomially
distributed, those data are fit to a logistic regression using the R function glm with a logit link
function (Crawley 2005). The same procedure is repeated for non-flowering plants. Figure 4
illustrates both the data and the resulting logistic regression functions. In this case it is clear
that rosette size is a useful explanatory variable for survivorship, and different relationships
hold for flowering and non-flowering individuals.

R> aq.trans$survived <- aq.trans$fate != "dead"
R> flwr <- subset(aq.trans, rose > 0 & rose <= 7 & stage ==
+ "flower")
R> x.flwr <- table(flwr$rose, flwr$survived)
R> x.flwr
FALSE TRUE

1 10 27

17
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Figure 4: Survival rates in Aquilegia depend on flowering state and plant size.

2 7 32
3 5 37
4 4 21
5 0 10
6 2 9
7 0 5

R> rose <- 1:7

R> glm.flwr <- glm(x.flwr ~ rose, binomial)

R> non.flwr <- subset(aq.trans, rose > 0 & rose <= 7 & stage Jin}),
+ c("large", "small"))

R> x.non.flwr <- table(non.flwr$rose, non.flwr$survived)

R> glm.non.flwr <- glm(x.non.flwr ~ rose, binomial)

Some models commonly used to fit relationships between vital rates and potential state vari-
ables are listed in Morris and Doak (2002, Table 6.1). These include regression, analysis of
variance, and generalized linear models such as logistic regression and loglinear models. In
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addition, demographic studies may include life table response experiments involving fixed,
random, or regression designs and models to evaluate spatiotemporal variation in transition
rates (Caswell 2001). R includes functions for these and many other statistical models (Pin-
heiro and Bates 2000; Venables and Ripley 2002), which enables researchers to conduct a
variety of statistical tests in a demography study.

3.6. Resampling transitions

A detailed description of resampling methods to estimate confidence intervals or other mea-
sures of uncertainty for demographic estimates is described in Chapter 12 in Caswell (2001).
We illustrate one approach to generate a series of bootstrap projection matrices by resampling
from the set of observed transitions in the stage-fate data frames below.

R> n <- nrow(trans01)
R> n

[1] 11

R> x <- sample(n, replace = TRUE)
R> x

[1] 110 1 3 1 4 8 210 4 3

R> bt <- transO01[x, ]

R> bt

plant stage fruits fate seedling
1 1 seedling 0 dead 0.00
15 10 reproductive 4 reproductive 1.33
1.1 1 seedling 0 dead 0.00
4 3 seedling 0 dead 0.00
1.2 1 seedling 0 dead 0.00
5 4 seedling 0 dead 0.00
13 8 vegetative 0 vegetative 0.00
2 2 seedling 0  vegetative 0.00
15.1 10 reproductive 4 reproductive 1.33
5.1 4 seedling 0 dead 0.00
4.1 3 seedling 0 dead 0.00

R> projection.matrix(bt)

seedling vegetative reproductive
seedling 0.000 0 1.33
vegetative 0.125 1 0.00
reproductive 0.000 0 1.00

19
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Repeating the procedure above will generate additional bootstrap matrices. The function
boot.transitions simplifies the procedure and returns projection matrices, stage vectors
and population growth rates for each bootstrap sample. The function also includes the option
to resample by subsets of initial class counts. As shown in Figure 5, the resampled values
of population growth rate or other demographic parameters can easily be plotted using hist
with 95% confidence intervals calculated using quantile and then added to the histogram
using abline.

R> boot.transitions(trans01, 5)

$lambda
[1] 0.000 1.380 0.829 1.545 1.393

$matrix

all a2l a31 al2 a22 a32 al3 a23 a33
1 00.800 0 00.000 1.000 0.000 0 0.00
2 00.600 O 0 0.000 1.000 2.000 0 0.75
3 00.500 0 00.667 0.333 0.667 0 0.00
4 00.600 0 00.000 1.000 2.167 0 1.00
5 0 0.571 0O 0 0.000 1.000 1.333 0 1.00
$vector

seedling vegetative reproductive
1 10 1 0
2 5 2 4
3 4 6 1
4 5 4 2
5 7 2 2

R> x <- boot.transitions(trans01, 200)

R> ci <- quantile(x$lambda, c(0.025, 0.975))

R> hist(x$lambda, col = "grey80", xlab = "Lambda", main = "")
R> abline(v = ci, 1ty = 3)

4. Conclusion

Beyond the empirical challenges associated with demographic studies, complete analysis of
the resulting demographic data requires a variety of statistical and mathematical calculations.
Fully understanding the dynamics of natural populations with complex life cycles requires
great care and errors of interpretation resulting from incorrect analysis are not uncommon
(Caswell 2001). Consequently, there is a great need for statistical and graphical methods that
ease the initial demographic analysis but do not limit the potential to increase sophistication
as the analysis proceeds.

The popbio package has served well to organize our own demographic research by helping
to formalize and document our analyses. By contributing to the community of R users, we
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Figure 5: Bootstrap estimates of population growth rates for the hypothetical plant popula-
tion. Estimates are based on 200 samples from the original stage-fate data frame and 95%
confidence intervals are represented by the vertical dotted lines.

hope to foster greater cooperation that results in ongoing improvements in both the formal
analysis of demographic data and the availability of demographic datasets for a diversity of
natural populations. In the future, we plan to include addtional functions and graphical
methods described in both Caswell (2001) and Morris and Doak (2002). The community
of demographers can also aid with the improvement of analytical techniques by suggesting
improvements to existing methods and by integrating census data from many different studies
into the package for comparative analyses.
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