
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 4, July-August 2003

Cite this article as follows: Sikha Bagui: “Achievements and Weaknesses of Object-Oriented
Databases”, in Journal of Object Technology, vol. 2, no. 4, July-August 2003, pp. 29-41.
http://www.jot.fm/issues/issue_2003_07/column2

Achievements and Weaknesses of
Object-Oriented Databases

Sikha Bagui, Department of Computer Science, University of West Florida,
U.S.A.

Abstract
Object-oriented database systems began developing in the mid-80’s out of a necessity
to meet the requirements of applications beyond the data processing applications which
were [are] served by relational database systems. This paper serves as an overview on
the achievements of object-oriented database technology so far, and also discusses the
weaknesses that have to be yet resolved by the object-oriented database community
before object-oriented database technology can become as widespread as relational
databases.

1 INTRODUCTION

Object-oriented database systems, which can be considered fifth-generation database
technology, began developing in the mid-80’s out of a necessity to meet the requirements
of applications beyond the data processing applications, which characterized relational
database systems (fourth-generation database technology). Attempts to use relational
database technology for advanced applications like computer aided design (CAD),
computer aided manufacturing (CAM), software engineering, knowledge-based systems,
and multimedia systems, quickly exposed the shortcomings of relational database systems
[22], [8]. The need to perform complex manipulations on existing databases and a new
generation of database applications generated a need that would be better satisfied by
object-oriented databases (OODBs).

Many definitions of object orientation and object-oriented databases have been
developed over the years ([3], [21], [33], [9], [10], [20], [25]), but we will define object-
oriented databases as databases that integrate object orientation with database
capabilities. Object orientation allows a more direct representation and modeling of real-
world problems, and database functionality is needed to ensure persistence and
concurrent sharing of information in applications.

Today there are over 25 object-oriented database products on the market, including,
GemStone from Servio Corporation, ONTOS from ONTOS, ObjectStore from Object

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_07/column2

ACHIEVEMENTS AND WEAKNESS OF OBJECT-ORIENTED DATABASES

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Design, Inc., and many others [26]. In addition, relational database management systems
from Oracle, Microsoft, Borland, Informix, and others have incorporated object-oriented
features into their relational systems. A lot of these products have been around since the
mid to late ‘80’s, and after almost one and half decades of development, the lack of
maturity of a lot of these products has contributed to the slow acceptance of OODBs into
the real worldwide market of today. Most current OODBs are still not full-fledged
database systems comparable to current relational database systems (RDBs) [26]. In this
paper we will discuss some of the achievements and weaknesses of the present OODBs.

In section two of this paper we briefly present the OODB model. In section three we
discuss the achievements of OODBs, and in section four we present the weaknesses of
current OODBs.

2 THE OBJECT-ORIENTED DATABASE (OODB) MODEL

Object-oriented database systems evolved from a need to satisfy the demand for a more
appropriate representation and modeling of real world entities, so OODBs provide a
much richer data model than conventional (relational) databases. The OODB paradigm is
based on a number of basic concepts, namely object, identity, class, inheritance,
overriding, and late binding [2], [4], [24], [32], [37].

In the object-oriented data model (OODM), any real world entity is represented by
only one modeling concept – the object. An object has a state and a behavior associated
with it. The state of an object is defined by the value of its properties (attributes).
Properties can have primitive values (like strings and integers) and nonprimitive objects.
A nonprimitive object would in turn consist of a set of properties. Therefore objects can
be recursively defined in terms of other objects. The behavior of an object is specified by
methods that operate on the state of the object.

Each object is uniquely identified by a system-defined identifier (OID). Objects with
the same properties and behavior are grouped into classes. An object can be an instance
of only one class [6], [7] or an instance of several classes [12], [14].

Classes are organized in class hierarchies. A subclass inherits properties and methods
from a superclass, and in addition, a subclass may have specific properties and methods.
In some systems, such as ORION[5], a class may have more than one superclass
(multiple inheritance), while in others it is restricted to only one superclass (single
inheritance).

Most models allow for overriding inherited properties and methods. Overriding is the
substitution of the property domain with a new domain or the substitution of a method
implementation with a different one [8].

ACHIEVEMENTS OF THE OBJECT-ORIENTED DATABASE MODEL

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 31

3 ACHIEVEMENTS OF THE OBJECT-ORIENTED DATABASE
MODEL

OODBs allow representation of complex objects in a more straightforward way than
relational systems. In this section we will discuss some of the achievements of OODBs
so far: OODBs allow users to define abstractions, facilitate the development of some
relationships, eliminate the need for user defined keys, have developed a new set of
equality predicates, eliminate the need for joins in some cases, have performance gains
over the RDB model in some situations, and have support for versioning and long-
duration transactions. Finally, object algebra has been developed, although it may not be
as developed as relational algebra yet.

OODBs allow users to define abstractions

OODBs have the ability to define new abstractions and to control the implementation of
these abstractions. The new abstractions can match the data structures needed for intricate
tasks – new abstract data types. That is, OODB packages today allow the user to create a
new class with attributes and methods, have the classes inherit attributes and methods
from superclasses, create instances of the class each with a unique object identifier,
retrieve the instances either individually or collectively, and load and run methods [26].
OODMs also allow the definition of objects as aggregates of other objects, and
aggregates can be nested at several levels. Properties too can have complex structures,
and can be defined using the collection constructor. Furthermore, they can have
nonprimitive objects as values, allowing deeply nested object structures [8].

Multivalued properties are used in the OODMs to express complex data structures.
In the relational model this is obtained by using additional relations [8] and joins.

An example of an OODB package that includes all of the above features would be
ENCORE [38]. The data model in ENCORE is based primarily on data abstraction.
ENCORE allows subtyping (inheritance), encapsulation, complex structures, object
identity, and late binding of methods. ENCORE also has the ability to relate objects by
means of properties. In ENCORE, a property p relates an object x to a set of objects S
without making any statement about how this relationship is computed. This could be
computed by a direct reference to the identity of S (or its members), or it could be
computed by matching of values for some other properties as a join.

OODBs facilitate development of some relationships

OODBs offer the feature of inverse relationships to express a mutual reference between
two objects (a binary relationship). This system ensures referential integrity by
establishing corresponding reference as soon as a reference is created. It is even possible
to automatically propagate deletion via these references [15]. An example of an OODB

ACHIEVEMENTS AND WEAKNESS OF OBJECT-ORIENTED DATABASES

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

package that supports the automatic maintenance of inverse relationships is ObjectStore
[35].

OODBs eliminate need for user defined keys

The OODB model has an OID that it is automatically generated by the system and that
guarantees uniqueness to each object. This, in addition to eliminating the need for user
defined keys in the OODB model, has brought other advantages to OODBs: 1) the OID
cannot be modified by the application; 2) as discussed in [23] and [37], the notion of
object identity provides a separate and consistent notion of identity, which is independent
of how an object is accessed or modeled with descriptive data. Therefore, two objects are
different if they have different OIDs, even if they have the same structures and the same
values for all their properties. In the RDB model, where object identification is supported
by user-defined keys, those objects would be considered the same object [8].

Development of equality predicates

In RDBs, equality is always based only on values. In RDBs, two tuples are the same
entity if all key attributes have the same values. In OODBs, however, different types of
equality have been developed and defined [37], [8]:

1. Identity equality of objects: Two objects, S1 and S2 are equal if they have the same
object (that is, if they have the same OID).

2. Value equality of objects: This can be determined in two ways: (a) Two primitive
objects are equal if they have the same value. (b) Two nonprimitive objects are
equal if they have the same number of properties, and if, for any property pi of S1
there exists a property pj of S2 that is equal in value.

3. Value equality of properties.
4. Identity equality of properties.

OODBs reduce need for Joins

The capability of navigating through object structures and the resulting path expressions
in object attributes gives us a new perspective on the issue of joins in OODBs. The
relational join is a mechanism that correlates two relations on the basis of values of a
corresponding pair or attributes in the relations. Since two classes in an OODB may have
corresponding pairs of attributes, the relational join (or, explicit join) may still be
necessary in OODBs. For example, suppose we have a class Student and a class
School, and both have attributes Name and Age. Although the Name and Age
attributes of the class School may not have the domains of Name and Age attributes of
class Student and vice versa, we may wish to relate the two classes on the basis of
values of these attributes (e.g. find all the student objects whose age is less than the age
of the school the student goes to).

But, as mentioned above, path expressions can reduce the need for joins of classes
significantly, as compared to RDBs [26]. There are also times when the need for the
relational join can be eliminated [26]. For example, when the domain of an attribute of a

ACHIEVEMENTS OF THE OBJECT-ORIENTED DATABASE MODEL

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 33

class A is class B, the fetching of the OIDs of objects in a class that are stored as values
of an attribute in another class eliminate the need for an implicit join between objects.

Therefore, in OODBs there is a distinction between the implicit join, derived from
the hierarchical nesting of objects, and the explicit join, which is similar to the relational
join where two objects are explicitly compared by using either the value or the identity
equality. Furthermore, all explicit joins (using the value equality or the identity equality)
cannot be defined in relational query language because any predicate in RDBs can only
involve atomic attributes [8].

Performance gain using OODBs

Although most current OODBs are not full-fledged database systems comparable to
current RDBs, OODBs have a few sources of performance gain over RDBs:

1. In an OODB, the value of an attribute of an object X, whose domain is another
object Y, is the object identifier (OID) of the object Y. Therefore, if an application
has already retrieved object X and now would like to retrieve object Y, the
database system may retrieve object Y by looking up its OID. If the OID is a
physical address of an object, the object may be retrieved directly; if the OID is a
logical address, the object may be fetched by looking up a hash table entry
(assuming that the system maintains a hash table that maps an OID to is physical
address) [26]. This would not be possible so easily in RDBs, since RDBs do not
maintain OIDs.

2. A second source of performance gain in OODBs over RDBs is that most OODBs
convert the OIDs stored in an object to memory pointers when the object is loaded
into memory. Since RDBs do not store OIDs, they cannot store memory pointers
to other tuples. The facility to navigate through memory-resident objects is a
fundamentally absent feature in RDBs, and the performance drawback that results
from it cannot be neutralized by simply having a large buffer space in memory.
Therefore, for applications that require repeated navigation through linked objects
loaded in memory, OODBs can dramatically outperform RDBs [26].

3. Also, even if OODBs are not indexed, it may be convenient to execute arbitrary
queries that suit the object structure by sequential scan – that is, exploit the
reference paths between objects. When queries are formulated in the direction not
supported by references, the query will be processed by sequential scan [15].
However, queries that are formulated on object relationships not directly modeled
by references are executed inefficiently.

Support for versioning or long-duration transactions

Versioning and long-duration transactions are missing in RDBs. Few OODBs offer
versioning and long-duration transactions, though with limited facilities only [26].

ACHIEVEMENTS AND WEAKNESS OF OBJECT-ORIENTED DATABASES

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Development of Object Algebra

Though not as developed and mature as relational algebra, object algebra has been
developed that defines five fundamental object-preserving [30] operators: union,
difference, select, generate and map. Other operators like intersection may be defined
from these fundamental operators. Equivalence preserving transformation rules for
logical optimization of object algebra expressions are derived in [34] and [35]. While the
mapping process for the union, difference and map operators are primarily one-to-one,
the mapping for the select and generate operations is one-to-many [35]. Object
preservation means that algebra operators return objects that belong to predefined classes
in the database, and do not create new objects. Union returns objects that are in both sets
P or Q or both. Difference returns the set of objects that are in set P and not in set Q.
Select returns a subset of an input set. Generate generates objects from those in the input
sets. Map returns a set of objects resulting from each sequence application [35].

4 WEAKNESSES OF THE OBJECT-ORIENTED DATABASE
MODEL

The expectation was that object-oriented technology would bring a quantum jump to
database technology. But, in spite of the achievements of OODBs discussed above,
OODBs have not been able to make a major impact because of weaknesses still present in
OODB model and technology.

In OODBs there is a lack of basic features that users of database systems have
become accustomed to, and therefore expect. The features include, lack of
interoperability between RDBs and OODBs, minimal query optimization, lack of
standard query algebra, lack of query facilities, no support for views, security concerns,
no support for dynamic class definition changes, limited support for consistency
constraints, limited performance tuning capabilities, little support for complex objects,
limited integration with existing object-oriented programming systems, limited
performance gains, among others.

Interoperability between RDBs and OODBs

For OODBs to make a major impact on the database market, following has to be done:
1. OODBs have to be made full-fledged database systems, sufficiently compatible

with RDBs – a migration path is needed to allow the coexistence and the gradual
migration from the current products to new products;

2. Application development tools and database access tools have to be developed for
such database systems;

3. Architectures of the RDBs and OODBs have to be unified;
4. The data models of the RDBs and OODBs have to be unified [26].

WEAKNESSES OF THE OBJECT-ORIENTED DATABASE MODEL

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 35

Minimal query optimization

One of the biggest problems in OODBs is the optimization of declarative queries. The
additional complexity of the object-oriented data model (OODM) complicates the
optimization of OODBs queries [16]. This additional complexity is due to:

1. Additional data types – The user definition of new types and classes through
inheritance can both assist and thwart optimization of queries. An example of
where it helps could be a query involving the intersection of Employees and
Supervisors. If Employee is a superclass of Supervisor, the optimizer
can assume that Supervisors are a proper subset of Employees and simplify
the join to the set of Supervisors [16]. An example of where additional data
types deter optimization could involve the union of Students and
Employees, with Person being a superclass of both. If we wanted to find all
supervisors of students and employees, we would perform the union first and then
apply a supervisor() [16].

2. Changing variety of types – queries may be based on operations over collections,
but optimizations pertaining to sets (or multisets or lists, etc) need to be combined
with optimizations over the types of objects contained in the sets. An object-
oriented query optimizer must be able to apply optimizations specific to the types,
and optimizations that look at relationships between objects of different types
[28].

3. Complex objects, methods and encapsulation add to the complexity of query
processing in the OODBs. Complex objects create path expressions that
complicate query processing. The building of indices for path expressions,
especially in the face of arbitrary methods in the path complicates query
processing. This is an even harder problem if methods have side-effects. Another
problem with path expressions is that they suggest an execution order of the path
methods, which may be a very inefficient order. As an example, the path
Orders.part.name may best be evaluated right to left if there are many
orders but few parts, and vice versa if there are many parts with few orders. Also,
a path may sometimes be more efficiently processed using a Join. Consider, for
example, a query involving the path s.comp.name where s is in students. It
might be more efficient (if there are few companies, comp) to first compute the
name property for each company and store this result in a tuple. The part from
student to a company name would then involve joining students with the
set of tuples by matching the comp property of a student with the company
attribute of a tuple.

4. OODBs query languages support the use of nested structures, which may again
highly complicate the optimization process, turning it from a local problem to a
global one – requiring global knowledge of the entire query expression.

5. Object identity – when objects have identities, there is a question as to what
constitutes equality of two objects [28]. This carries over to the language where
equality operations are used in predicates and where a decision must be made

ACHIEVEMENTS AND WEAKNESS OF OBJECT-ORIENTED DATABASES

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

concerning the creation of new objects by a query. The optimizer for object-
oriented models must be able to deal with the creation of new objects and with
alternative definitions for equivalence.

Due to all the problems discussed above, optimization of object-oriented queries is
extremely hard to solve and is still in the research stage. Today’s OODBs offer rather
simple optimization strategies. The optimization of joins is also another issue that needs
more attention.

Lack of standard query algebra

Lack of query algebra standards is another major weakness of OODBs. This also impairs
query optimization. Several different formal query languages of algebras and calculi
which have been proposed for OODBs [36], [35], [17], [27] and [18]. These algebras and
calculi differ in several respects and expressibility and support for optimizing rewrite
rules. Most of these algebras are variable based, i.e. use variables for temporary results.
One OODB package, KOLA, is purely functional and variable free. In [11] the author
argues that KOLA algebra allows more powerful rule systems to be built due to its
variable freeness.

In RDBs, there is close correspondence between algebra operations and low level
primitives of the physical system[31]. The mappings between relations and files, and
tuples and records have contributed to this strong correspondence. However, in OODBs
there is no analogous, intuitive correspondence between object algebra operators and
physical system primitives. Any discussion of execution plan generation too, must first
define the low level object manipulation primitives [35].

Lack of query facilities

Most OODBs suffer from the lack of query facilities [26]. In those few systems that
provide significant query facilities, the query language is not ANSI SQL compatible. The
query facilities do not include nested sub-queries, set queries (union, intersection,
difference), aggregation functions and GROUP BY, or joins of multiple classes –
facilities fully supported in the RDBs [26].

Also, there is no object query standard, though there have been efforts to come up
with an object SQL [15]. SQL3 maybe still a few years away [26].

No support for views in OODBs

OODBs do not support views. Although there have been several proposals [1], [14], [19],
[13], [29], there is little agreement as to how a view mechanism should operate in
OODBs. The development of an object-oriented view capability is complicated by such
model features as object identity. What are the identities of the objects in a view? On the
other hand, there has also been the argument that data encapsulation and inheritance
make explicit view definitions unnecessary [15].

WEAKNESSES OF THE OBJECT-ORIENTED DATABASE MODEL

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 37

Security concerns with OODBs

While RDBs support authorization, most OODBs do not support authorization [26].
RDBs allow users to grant and revoke privileges to read or change the definitions and
tuples in relations and views [26]. If OODBs are going to expand into more business
oriented fields, this feature has to be improved.

Some OODBs require users to explicitly set and release locks. RDBs automatically
set and release locks in user processing query and update statements [26].

No support for dynamic class definition changes with OODBs

In addition to the fact that no single standard data model has yet been developed for
OODBs, most OODBs do not allow dynamic changes to the database schema, such as
adding a new attribute or method to a class, adding a new superclass to a class, dropping
a superclass from a class, adding a new class, and dropping a class. RDBs allow the user
to dynamically change the database schema using the ALTER command; a new column
may be added to a relation, a relation may be dropped, a column can sometimes be
dropped from a relation [26].

Most OODBs do not offer automatic management of class extensions either. If a
class extension is needed, the user has to define a collection for it and keep it up to date
on insertions and deletions[15].

Limited support for consistency constraints in OODBs

There are no mechanisms to declare key properties of attributes (for example, an attribute
of a class cannot be declared the primary key of the class) or uniqueness constraints,
explicit consistency constraints, pre and postconditions of methods [15]. Although all of
this could be done using methods, explicit consistency constraints would be more user
friendly, less error prone, and more easily accessible for inspection and modification.

Limited performance tuning capability in OODBs

Most of the OODBs offer limited capabilities for parameterized performance tuning [26].
RDBs allow the installer to tune system performance by providing a large number of
parameters that can be set by the system administrator. The parameters include the
number of memory buffers, the amount of free space reserved per data page for future
insertions of data, and so forth [26].

Little support for complex objects

The full functionality of complex objects is not yet fully supported. One can navigate
across the reference and code one’s own operations using it, but there are no predefined
generic operations exploiting different reference semantics. All references are to
independent objects, and the semantics of special relationships within complex objects
are hidden within the user-supplied operations [15].

ACHIEVEMENTS AND WEAKNESS OF OBJECT-ORIENTED DATABASES

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Limited integration with existing OO programming systems

It is difficult to re-write object-oriented programs for persistent data management.
Several problems arise: 1) naming conflict; 2) class hierarchies have to rewritten; 3)
OODBs tend to overwrite system operations [15].

Limited performance gain over RDBs

If all database applications required only OID lookups with database objects or memory-
pointers chasing other objects in memory, two to three orders of magnitude performance
advantage for OODBs over RDBs would be valid [26]. However, most applications that
require OID lookups also have database access and update requirements that RDBs have
been designed to meet. These requirements include bulk database loading; creation,
update, and delete of individual objects (one at a time); retrieval from a class of one or
more objects that satisfy certain search conditions; joins of more than one class;
transaction commit, and so forth. For such applications, OODBs do not have any
performance advantages over RDBs.

Other features that OODBs do not yet support

Examples of other features that OODBs do not yet support are triggers, meta data
management features [15], constraints such as UNIQUE and NULL [26].

5 CONCLUSION

Due to the weaknesses of OODBs discussed above, OODBs have not been able to keep
up with the expectations of providing all the important features that targeted OODB
application areas would like to use. The term OODB has become a misnomer for most
current OODBs. Most current OODBs are closer to being merely persistent storage
systems for some object-oriented programming language than database systems [26]. So,
though the OODM is richer than the relational data model in many respects, the OODM
has not matured enough, and to date, the weaknesses of OODB systems outweigh the
achievement of OODB systems.

CONCLUSION

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 39

REFERENCES

[1] Abiteboul, S. and Bonner, A “Objects and views,” in Proc. ACM SIGMOD Int.
Conf. On Management of Data, pp. 238-247, 1991.

[2] Atkinson, M., et. al., “The object-oriented database system manifesto,” in Proc.
Int. Conf. On Deductive and Object-Oriented Databases, 1989.

[3] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D, and Zdonik, S.
“The Object-Oriented Database System Manifesto,” in Bancilhon et. al. (eds.),
Building an Object-Oriented Database System: The Story of O2. Morgan
Kaufman, 1992.

[4] Bancilhon, F., “Object Oriented database systems,” in Proc. 7th ACM
SIGART/SIGMOD Conf., 1988.

[5] Banerjee, J., et. al., “Data model issues for object oriented applications,” ACM
Trans. On Office Information Systems, vol. 5, no. 1, Jan 1987.

[6] Banerjee, J., Kim, W., and Kim, K.C., “Queries in object oriented databases,” in
Proc. IEEE Data Engineering Conf., Feb. 1988.

[7] Beech, D., “A Foundation for evolution and relational to object databases,” in
Proc. Extended Data Base Technology, Mar. 1988.

[8] Bertino, E., Negri, M., Pelagatti, G., and Sbattella, L., “Object-Oriented Query
Languages: The Notion and the Issues,” IEEE Transactions on Knowledge and
Data Engineering, Vol. 4, No. 3, 1992.

[9] Brown, A.W., Object-Oriented Databases, Applications in Software Engineering.
New York: McGraw-Hill, 1991.

[10] Cattell, R.G.G., Object Data Management, Object-Oriented and Extended
Relational Database Systems. Reading, MA: Addison-Wesley, 1991.

[11] Cherniack, M., “Form(ers) over Function(s): The KOLA Query Algebra,”
Technical Report, Brown University, December, 1995.

[12] Cluet, S., et. al., “Reloop, An algebra based query language for an object-oriented
database system,” in Proc. 1st Int. Conf. On Deductive and Object Oriented
Databases, Dec. 1989.

[13] Cruz, I.F., DOODLE: A visual language for object-oriented databases. In Proc.
ACM SIGMOD Int. Conf. On Management of Data, pp. 71-80, 1992.

[14] Dayal, U., “Queries and views in an object-oriented data model,” in Proc. 2nd Int.
Work. On Database Programming Languages, June 1989.

[15] Dittrich, K.A., and Dittrich, K.R., “Where Object-Oriented DBMSs Should Do
Better: A Critique Based on Early Experiences,” in Modern Database Systems:

ACHIEVEMENTS AND WEAKNESS OF OBJECT-ORIENTED DATABASES

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

The Object Model, Interoperability and Beyond, pp. 238-252, Kim, W., ed., ACM
Press, Addison Wesley, 1995.

[16] Erlingsson, U., “Object-Qriented Query Optimization,” unpublished manuscript.

[17] Fegaras, L., and Maier, D., “Towards an Effective Calculus for Object Query
Languages,” ACM SIGMOD International Conference on Management of Data,
San Jose, California, May, 1995.

[18] Fegaras, L., Maier, D. and Sheard, T., “Specifying Rule-based Query Optimizers
in a Reflective Framework,” in Proc. of the 3rd International Conference on
Deductive and Object-Oriented Databases, Phoenix, Arizona, December, 1993.

[19] Heiler, S. and Zdonik, S., “Object Views: Extending the vision,” in Proc. 6th Int.
Conf. On Data Engineering, pp. 86-93, 1990.

[20] Hughes, J.G., Object-Oriented Databases. New York: Prentice –Hall, 1991.

[21] Khoshafian, S., “Insight Into Object-Oriented Databases,” Information and
Software Technology, vol. 32, no.4, 1990.

[22] Khoshafian, S. Object-Oriented Databases, New York: John Wiley & Sons, 1993.

[23] Khoshafian, S. and Copeland, G., “Object identity,” in Proc. 1st Int. Conf. On
Object-Oriented Programming Systems, Languages, and Applications, Oct. 1986.

[24] Kim, W., “A foundation for object-oriented databases”, MCC Tech. Rep., N.
ACA-ST-248-88, Aug. 1988.

[25] Kim, W., Introduction to Object-Oriented Databases. Cambridge, MA: The MIT
Press, 1991.

[26] Kim, W., “Object-Oriented Database Systems: Promises, Reality, and Future,” in
Modern Database Systems: The Object Model, Interoperability and Beyond, pp.
255-280, Kim, W., ed., ACM Press, Addison Wesley, 1995.

[27] Leung, T.W., Mitchell, G., Subramanian, B., Vance, B., Vandenberg, S.L. and
Zdonik, S.B., “The Aqua Data Model and Algebra,” Technical Report CS-93-09,
Brown University, March, 1993.

[28] Mitchell, G., Zdonik, S.B., and Dayal, U., “Object-Oriented Query Optimization –
What’s the Problem?,” Technical Report CS-91-41, Brown University, June,
1991.

[29] Rudensteiner, E.A., “Multiview: A methodology for supporting multiple views in
object-oriented databases,” in Proc. 18th Int. Conf. On Very Large Databases, pp.
187-198, 1992.

[30] Scholl, M. and Schek, H., “A relational object model,” in Abiteboul, S. and
Kanellakis, P.C., eds., in Proc. 3rd Int. Conf. On Database Theory, volume 470 of
Lecture Notes in Computer Science, pp. 89-105, Springer Verlag, 1990.

CONCLUSION

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 41

[31] Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., and Price, T.G.,
“Access path selection in a relational database management system,” in Proc.
ACM SIGMOD Int. Conf. On Management of Data, pp. 23-34, 1979.

[32] Stefik, M. and Bobrow, D.G, “Object-oriented programming: Themes and
variations,” The AI Mag., Jan 1986.

[33] Stonebraker, M., Rowe, L., Lindsay, B., Gray, J., and Carey, M. “Third-
Generation Data Base System Manifesto.” Memorandum N. UCB/ELB. M90/23,
April. The Committee for Advanced DBMS Function, University of California,
Berkeley, CA, 1990.

[34] Straube, D.D. and Ozsu, M.T., “Queries and query processing in object-oriented
database sytems,” ACM Transactions on Information Systems, vol. 8, no. 4,
pp.387-430, October, 1990.

[35] Straube, D.D. and Ozsu, M.T., “Execution Plan Generation for an Object-
Oriented Data Model,” Proceedings of the 2nd International Conference on
Deductive and Object-Oriented Databases, pp. 43, Munich, Germany, December
1991.

[36] Su, S.Y.W., Guo, M. and Lam, H., “Association Algebra: A Mathematical
Foundation for Object-Oriented Databases,” IEEE Transactions on Knowledge
and Data Engineering, vol. 5, no. 5, pp. 775, October, 1993.

[37] Zdonik, S.B. and Maier, D., eds., Readings in Object-Oriented Database Systems,
San Mateo, CA: Morgan Kauffman, 1989.

[38] Zdonik, S.B., and Wegner, P. “Language and Methodology for Object-Oriented
Database Environments” in Proc. of the Hawaii International Conference on
System Sciences, January, 1986.

About the author

Sikha Bagui is a Lecturer in the Department of Computer Science at
the University of West Florida, Pensacola, Florida. She is the co-author
of three books in databases, entitled, “Learning SQL: A Step-by-Step
Guide Using Oracle”, “Learning SQL: A Step-by-Step Guide Using
Access” by Addison Wesley, and “Database Design Using Entity
Relationship Diagrams” by CRC press. She has also published many

research articles in journals such as Pattern Recognition, Database Management, Oracle
Internals, Journal of Multimedia and Hypermedia. Her teaching interests include
Database Systems, Advanced Databases, Data Mining, and programming languages.
Email: bagui@uwf.edu.

mailto:bagui@uwf.edu

