< ≣ ▶

On two-fold orbitals

Josef Lauri (with Russell Mizzi & Raffaele Scapellato)

University of Malta, Politecnico di Milano

Symmetry vs Regularity Pilsen, 1-7 July 2018

Two-fold permutations

A two-fold permutation group of V is a subgroup Γ of $S_V \times S_V$ whose action on $V \times V$ is defined by:

$$(\alpha,\beta):(u,v)\mapsto(u^{\alpha},v^{\beta}).$$

- ∢ 🗇 🕨 ∢ 🖹

One application / motivation

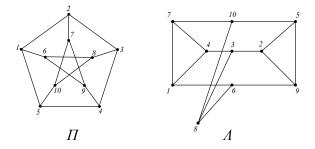


Figure: The Petersen graph and the Livio Porcu graph — they are not determined by their neighbourhoods

Why?

- • 🗇 🕨 • 🗎

One application / motivation

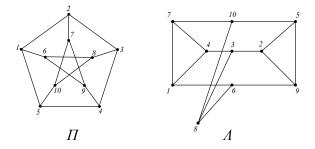


Figure: The Petersen graph and the Livio Porcu graph — they are not determined by their neighbourhoods

Why?

Two-fold isomorphisms and automorphisms

Two (mixed) graphs G and H are said to be *two-fold isomorphic* or TF-isomorphic if there exist bijections α and β from V(G) to V(H) such that (u,v) is an arc of G if and only if (u^{α},v^{β}) is an arc of H. If G = H then we say that (α,β) is a two-fold automorphism of G.

Note that we need to consider every edge $\{u,v\}$ of G as the union of the two arcs (u,v) and (v,u) since the images of these two arcs are, in general, not opposite arcs under the action of (α,β) .

Two-fold isomorphisms and automorphisms

Two (mixed) graphs G and H are said to be *two-fold isomorphic* or TF-isomorphic if there exist bijections α and β from V(G) to V(H) such that (u, v) is an arc of G if and only if (u^{α}, v^{β}) is an arc of H. If G = H then we say that (α, β) is a two-fold automorphism of G.

Note that we need to consider every edge $\{u,v\}$ of G as the union of the two arcs (u,v) and (v,u) since the images of these two arcs are, in general, not opposite arcs under the action of (α,β) .

Two-fold isomorphisms and automorphisms

Two (mixed) graphs G and H are said to be *two-fold isomorphic* or TF-isomorphic if there exist bijections α and β from V(G) to V(H) such that (u, v) is an arc of G if and only if (u^{α}, v^{β}) is an arc of H. If G = H then we say that (α, β) is a two-fold automorphism of G.

Note that we need to consider every edge $\{u,v\}$ of G as the union of the two arcs (u,v) and (v,u) since the images of these two arcs are, in general, not opposite arcs under the action of (α,β) .

$\operatorname{Aut}^{\mathrm{\tiny TF}}(G)$

If α is an automorphism of G then (α, α) can be considered to be a TF-automorphism of G.

We call those TF-automorphisms (α, β) for which $\alpha \neq \beta$ non-trivial TF-automorphisms of *G*.

The set of all TF-automorphisms of G is a group under componentwise multiplication, and we denote this group by Aut^{TF}(G).

Clearly, if we consider (α, α) to be a TF-automorphism of G, then Aut(G) is a subgroup of $Aut^{TF}(G)$ and this inclusion is strict if G has non-trivial TF-automorphisms.

個 と く ヨ と く ヨ と

$\operatorname{Aut}^{\mathrm{\tiny TF}}(G)$

If α is an automorphism of G then (α, α) can be considered to be a TF-automorphism of G.

We call those TF-automorphisms (α, β) for which $\alpha \neq \beta$ non-trivial TF-automorphisms of *G*.

The set of all TF-automorphisms of G is a group under componentwise multiplication, and we denote this group by $Aut^{TF}(G)$.

Clearly, if we consider (α, α) to be a TF-automorphism of G, then Aut(G) is a subgroup of Aut^{TF}(G) and this inclusion is strict if G has non-trivial TF-automorphisms.

$\operatorname{Aut}^{\mathrm{\tiny TF}}(G)$

If α is an automorphism of G then (α, α) can be considered to be a TF-automorphism of G.

We call those TF-automorphisms (α, β) for which $\alpha \neq \beta$ non-trivial TF-automorphisms of *G*.

The set of all TF-automorphisms of G is a group under componentwise multiplication, and we denote this group by $\operatorname{Aut}^{\operatorname{TF}}(G)$.

Clearly, if we consider (α, α) to be a TF-automorphism of G, then Aut(G) is a subgroup of $Aut^{TF}(G)$ and this inclusion is strict if G has non-trivial TF-automorphisms.

$\operatorname{Aut}^{\mathrm{\tiny TF}}(G)$

If α is an automorphism of G then (α, α) can be considered to be a TF-automorphism of G.

We call those TF-automorphisms (α, β) for which $\alpha \neq \beta$ non-trivial TF-automorphisms of *G*.

The set of all TF-automorphisms of G is a group under componentwise multiplication, and we denote this group by Aut^{TF}(G).

Clearly, if we consider (α, α) to be a TF-automorphism of G, then Aut(G) is a subgroup of $Aut^{TF}(G)$ and this inclusion is strict if G has non-trivial TF-automorphisms.

$\operatorname{Aut}^{\mathrm{\tiny TF}}(G)$

If α is an automorphism of G then (α, α) can be considered to be a TF-automorphism of G.

- We call those TF-automorphisms (α, β) for which $\alpha \neq \beta$ non-trivial TF-automorphisms of *G*.
- The set of all TF-automorphisms of G is a group under componentwise multiplication, and we denote this group by Aut^{TF}(G).
- Clearly, if we consider (α, α) to be a TF-automorphism of G, then Aut(G) is a subgroup of $Aut^{TF}(G)$ and this inclusion is strict if G has non-trivial TF-automorphisms.
- A graph which has a non-trivial TF-automorphism is said to be *unstable*.

Application / motivation

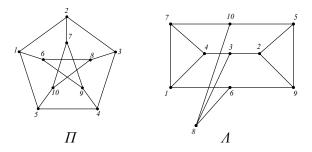


Figure: The Petersen graph and the Livio Porcu graph — they are not determined by their neighbourhoods

Why?

Because they are TF-isomorphic! And for this reason they also have the same canonical double cover.

Application / motivation

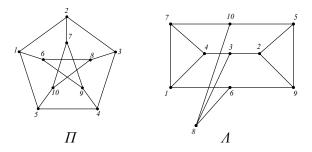


Figure: The Petersen graph and the Livio Porcu graph — they are not determined by their neighbourhoods

Why? Because they are TF-isomorphic!

And for this reason they also have the same canonical double cover.

Application / motivation

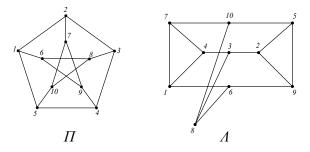


Figure: The Petersen graph and the Livio Porcu graph — they are not determined by their neighbourhoods

Why? Because they are TF-isomorphic! And for this reason they also have the same canonical double cover.

One result about neighbourhood reconstruction

Theorem

Let G be a connected bipartite graph. Then G is not reconstructible from its family of neighbourhoods iff its automorphism group has an involution which switches its colour classes but does not fix an edge.

TF-isomorphisms give an easy proof.

One result about neighbourhood reconstruction

Theorem

Let G be a connected bipartite graph. Then G is not reconstructible from its family of neighbourhoods iff its automorphism group has an involution which switches its colour classes but does not fix an edge.

TF-isomorphisms give an easy proof.

Can an asymmetric graph have non-trivial TF-automorphsms (hidden symmetries)?

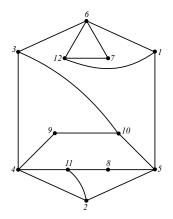
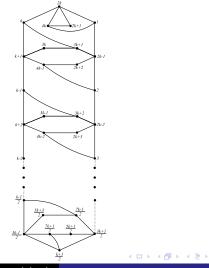


Figure: This is the smallest asymmetric graph with non-trivial TF-automorphisms

A family of asymmetric graphs with arbitrarily large $(\geq k-1)$ number of TF-automorphisms



Two-fold orbitals

Let Γ be a TF-permutation group acting on $V \times V$. A TF-orbital of Γ is an orbit of the action of Γ on $V \times V$.

The figure shows an example the two-fold orbitals of a two-fold permutation group.

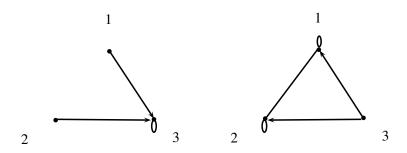


Figure: TF-orbitals of $\Gamma = \langle ((1,2,3),(1,2)) \rangle$

We know, in general, that the number of orbitals of a permutation group (Γ, V) is at least 2 and this happens only when (Γ, V) is 2-transitive.

However, unlike the usual rank, the TF-rank can be equal to 1. This is possible because TF-permutations can take arcs to loops. The following result characterizes the actions whose TF-rank is equal to 1.

TF-transitivity and Σ -transitivity

Let $\Gamma \leq S_V \times S_V$ be a two-fold permutation group acting on the set $V \times V$. We say that Γ is Σ -transitive on V if for any $u, v \in V$, there exists $(\alpha, \beta) \in \Gamma$ such that $u^{\alpha} = v^{\beta}$.

We also say that Γ is TF-transitive on V if, for all $u, v \in V$, there exists $(\alpha, \beta) \in \Gamma$ such that $u^{\alpha} = v$ and $u^{\beta} = v$.

TF-transitivity and Σ -transitivity

Let $\Gamma \leq S_V \times S_V$ be a two-fold permutation group acting on the set $V \times V$. We say that Γ is Σ -transitive on V if for any $u, v \in V$, there exists $(\alpha, \beta) \in \Gamma$ such that $u^{\alpha} = v^{\beta}$.

We also say that Γ is TF-transitive on V if, for all $u, v \in V$, there exists $(\alpha, \beta) \in \Gamma$ such that $u^{\alpha} = v$ and $u^{\beta} = v$.

Characterisation of TF-rank equal to 1

Theorem

Let $\Gamma \subseteq S_V \times S_V$ be a two-fold permutation group. Then, $(\Gamma, V \times V)$ has TF-rank equal to 1 if and only if Γ is both Σ -transitive and TF-transitive on V.

Structure constants of TF-orbitals

In general, colour graphs arising from TF-orbitals do not admit structure constants. For example,

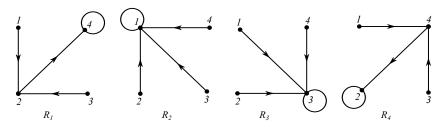


Figure: The TF-orbitals for $\Gamma = \langle (\alpha, \beta) \rangle$ where $\alpha = (1 \ 2 \ 3 \ 4)$ and $\beta = (2 \ 4)$.

- < 臣 → - 臣

Structure constants of TF-orbitals (2)

On the other hand, there exist systems of TF-orbitals that admit structure constants. For example,

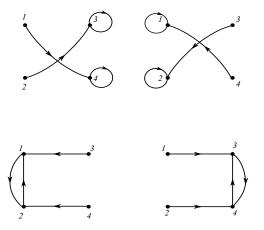


Figure: The system of TF-orbitals for $\Gamma = \langle ((1 \ 2 \ 3 \ 4), (1 \ 2)(3 \ 4)) \rangle$.

Sufficient conditions for structure constants

A two-fold permutation group Γ is said to satisfy *Property K* if, for any $x, y \in V$ and any $(\alpha, \beta) \in \Gamma$, the arcs (x, y) and (x^{β}, y^{β}) are in the same TF-orbital.

Theorem

Suppose $\Gamma \leq S_V \times S_V$ satisfies Property K. Then, given any arc (a,b) in the TF-orbital R_k , the number of vertices x such that (a,x) is in R_i and (x,b) is in R_j is independent of the choice of (a,b) in R_k . Therefore the TF-orbitals admit the definition of structure constants p_{ij}^k .

Sufficient conditions (2)

A two-fold permutation group Γ is said to satisfy *Property M* if, for any (α, β) in Γ , (β, β) is also in Γ .

Property M implies Property K but the converse does not hold in general.

The fact that Property M implies Property K makes it easier to obtain two-fold permutation groups fulfilling Property K.

Moreover, if it is also true that even (α, α) is in Γ , then the TF-orbitals are closed under taking of transpose.

A two-fold permutation group Γ is said to satisfy *Property M* if, for any (α, β) in Γ , (β, β) is also in Γ .

Property M implies Property K but the converse does not hold in general.

The fact that Property M implies Property K makes it easier to obtain two-fold permutation groups fulfilling Property K.

Moreover, if it is also true that even (α, α) is in Γ , then the TF-orbitals are closed under taking of transpose.

A two-fold permutation group Γ is said to satisfy *Property M* if, for any (α, β) in Γ , (β, β) is also in Γ .

Property M implies Property K but the converse does not hold in general.

The fact that Property M implies Property K makes it easier to obtain two-fold permutation groups fulfilling Property K.

Moreover, if it is also true that even (α, α) is in Γ , then the TF-orbitals are closed under taking of transpose.

白 ト イヨ ト イヨト

Sufficient conditions (2)

A two-fold permutation group Γ is said to satisfy *Property M* if, for any (α, β) in Γ , (β, β) is also in Γ .

Property M implies Property K but the converse does not hold in general.

The fact that Property M implies Property K makes it easier to obtain two-fold permutation groups fulfilling Property K.

Moreover, if it is also true that even (α, α) is in Γ , then the TF-orbitals are closed under taking of transpose.

A two-fold permutation group Γ is said to satisfy *Property M* if, for any (α, β) in Γ , (β, β) is also in Γ .

Property M implies Property K but the converse does not hold in general.

The fact that Property M implies Property K makes it easier to obtain two-fold permutation groups fulfilling Property K.

Moreover, if it is also true that even (α, α) is in Γ , then the TF-orbitals are closed under taking of transpose.

Directed alternating walks of length 3

Although TF-orbitals do not in general admit structure constants, it is easy to prove that an extension of the structure constants to directed alternating walks of length 3 can, in general, be defined.

Theorem

Let $\Gamma \leq S_V \times S_V$ and let R_1, R_2, \ldots, R_r be the TF-orbitals of Γ . Let *i*, *j*, *k* and *s* be any elements of $\{1, 2, \ldots, r\}$. Let (a,b) be an arc in R_s . Then the number of arcs (y,x), such that $(y,x) \in R_j$, $(a,x) \in R_i$ and $(y,b) \in R_k$ is independent of the choice of arc (a,b) in R_s .



Figure: Definition of p_{iik}^s for TF-orbitals.

This result can be can be expressed in terms of the adjacency matrices of the R_i as:

$$A_i A_j^T A_k = \Sigma_{t=1}^r p_{ijk}^s A_s.$$

Directed alternating walks of length 3

Although TF-orbitals do not in general admit structure constants, it is easy to prove that an extension of the structure constants to directed alternating walks of length 3 can, in general, be defined.

Theorem

Let $\Gamma \leq S_V \times S_V$ and let R_1, R_2, \ldots, R_r be the TF-orbitals of Γ . Let *i*, *j*, *k* and *s* be any elements of $\{1, 2, \ldots, r\}$. Let (a,b) be an arc in R_s . Then the number of arcs (y,x), such that $(y,x) \in R_j$, $(a,x) \in R_i$ and $(y,b) \in R_k$ is independent of the choice of arc (a,b) in R_s .

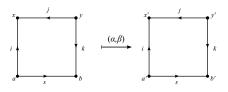


Figure: Definition of p_{iik}^s for TF-orbitals.

This result can be can be expressed in terms of the adjacency matrices of the R_i as:

$$A_i A_j^T A_k = \sum_{l=1}^r p_{ijk}^s A_s.$$

Directed alternating walks of length 3

Although TF-orbitals do not in general admit structure constants, it is easy to prove that an extension of the structure constants to directed alternating walks of length 3 can, in general, be defined.

Theorem

Let $\Gamma \leq S_V \times S_V$ and let R_1, R_2, \ldots, R_r be the TF-orbitals of Γ . Let *i*, *j*, *k* and *s* be any elements of $\{1, 2, \ldots, r\}$. Let (a,b) be an arc in R_s . Then the number of arcs (y,x), such that $(y,x) \in R_j$, $(a,x) \in R_i$ and $(y,b) \in R_k$ is independent of the choice of arc (a,b) in R_s .

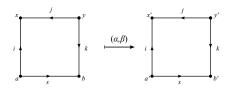


Figure: Definition of p_{iik}^s for TF-orbitals.

This result can be can be expressed in terms of the adjacency matrices of the R_i as:

$$A_i A_j^T A_k = \sum_{t=1}^r p_{ijk}^s A_s.$$

Simple application to rank 3 unstable SRGs

Alternative proof of a result of Surowski obtained by using

$$A_i A_j^T A_k = \Sigma_{t=1}^r p_{ijk}^s A_s.$$

Theorem

Let G be a rank 3 unstable strongly regular graph with parameters n, k, λ , μ . Then $\lambda = \mu$.

An example not coming from TF-orbitals (M. Klin, Novy Smokovec lectures)

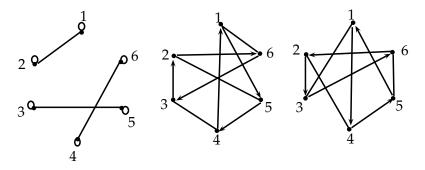


Figure: Adjacency matrices obtained by bringing together the permutation matrices of the regular action action of S_3 into three disjoint subsets and adding them. Orbitals admit structure constants.

・ロト ・回ト ・ヨト ・ヨト

æ

The corresponding adjacency matrices are

$$A_{0} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Conditions satisfied / not satisfied by these colour graphs

The space generated by their adjacency matrices is:

- **1** Closed under matrix multiplication.
- 2 Closed under SH-multiplication.
- **3** Does not contain the identity.
- 4 Might not be closed under taking of transpose.
- 5 If the colour graphs are TF-orbitals they also satisfy

$$A_i A_j^T A_k = \Sigma_{t=1}^r p_{ijk}^s A_s.$$

<ロ> (四) (四) (日) (日) (日)

æ

Thank you!