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Two-fold permutations

A two-fold permutation group of V is a subgroup Γ of SV ×SV

whose action on V ×V is defined by:

(α ,β ) : (u,v) 7→ (uα
,vβ ).
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One application / motivation
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Figure: The Petersen graph and the Livio Porcu graph — they are not
determined by their neighbourhoods

Why?
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Two-fold isomorphisms and automorphisms

Two (mixed) graphs G and H are said to be two-fold isomorphic or
TF-isomorphic if there exist bijections α and β from V(G) to V(H)
such that (u,v) is an arc of G if and only if (uα

,vβ ) is an arc of H.
If G = H then we say that (α ,β ) is a two-fold automorphism of G.

Note that we need to consider every edge {u,v} of G as the union
of the two arcs (u,v) and (v,u) since the images of these two arcs
are, in general, not opposite arcs under the action of (α ,β ).
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AutTF(G)

If α is an automorphism of G then (α ,α) can be considered to be
a TF-automorphism of G.
We call those TF-automorphisms (α ,β ) for which α 6= β

non-trivial TF-automorphisms of G.
The set of all TF-automorphisms of G is a group under
componentwise multiplication, and we denote this group by
AutTF(G).
Clearly, if we consider (α ,α) to be a TF-automorphism of G, then
Aut(G) is a subgroup of AutTF(G) and this inclusion is strict if G

has non-trivial TF-automorphisms.
A graph which has a non-trivial TF-automorphism is said to be
unstable.
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Application / motivation
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Figure: The Petersen graph and the Livio Porcu graph — they are not
determined by their neighbourhoods

Why?
Because they are TF-isomorphic!
And for this reason they also have the same canonical double cover.
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One result about neighbourhood reconstruction

Theorem

Let G be a connected bipartite graph. Then G is not

reconstructible from its family of neighbourhoods iff its

automorphism group has an involution which switches its colour

classes but does not fix an edge.

TF-isomorphisms give an easy proof.
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Can an asymmetric graph have non-trivial
TF-automorphsms (hidden symmetries)?
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Figure: This is the smallest asymmetric graph with non-trivial
TF-automorphisms
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A family of asymmetric graphs with arbitrarily large
(≥ k−1) number of TF-automorphisms
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Two-fold orbitals

Let Γ be a TF-permutation group acting on V ×V. A TF-orbital of
Γ is an orbit of the action of Γ on V ×V.

The figure shows an example the two-fold orbitals of a two-fold
permutation group.
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Figure: TF-orbitals of Γ = 〈((1,2,3),(1,2))〉
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TF-rank equal to 1

We know, in general, that the number of orbitals of a permutation
group (Γ,V) is at least 2 and this happens only when (Γ,V) is
2-transitive.
However, unlike the usual rank, the TF-rank can be equal to 1.
This is possible because TF-permutations can take arcs to loops.
The following result characterizes the actions whose TF-rank is
equal to 1.
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TF-transitivity and Σ-transitivity

Let Γ≤ SV ×SV be a two-fold permutation group acting on the set
V ×V. We say that Γ is Σ-transitive on V if for any u,v ∈ V, there
exists (α ,β ) ∈ Γ such that uα = vβ .

We also say that Γ is TF-transitive on V if, for all u,v ∈ V, there
exists (α ,β ) ∈ Γ such that uα = v and uβ = v.
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Characterisation of TF-rank equal to 1

Theorem

Let Γ⊆ SV ×SV be a two-fold permutation group. Then, (Γ,V ×V)
has TF-rank equal to 1 if and only if Γ is both Σ-transitive and

TF-transitive on V.
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Structure constants of TF-orbitals

In general, colour graphs arising from TF-orbitals do not admit
structure constants. For example,
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Figure: The TF-orbitals for Γ = 〈(α,β )〉 where α = (1 2 3 4) and
β = (2 4).
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Structure constants of TF-orbitals (2)

On the other hand, there exist systems of TF-orbitals that admit structure
constants. For example,
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Figure: The system of TF-orbitals for Γ = 〈((1 2 3 4),(1 2)(3 4))〉.
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Sufficient conditions for structure constants

A two-fold permutation group Γ is said to satisfy Property K if, for
any x,y ∈ V and any (α ,β ) ∈ Γ, the arcs (x,y) and (xβ

,yβ ) are in
the same TF-orbital.

Theorem

Suppose Γ≤ SV ×SV satisfies Property K. Then, given any arc

(a,b) in the TF-orbital Rk, the number of vertices x such that

(a,x) is in Ri and (x,b) is in Rj is independent of the choice of

(a,b) in Rk. Therefore the TF-orbitals admit the definition of

structure constants pk
ij.
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Sufficient conditions (2)

A two-fold permutation group Γ is said to satisfy Property M if, for
any (α ,β ) in Γ, (β ,β ) is also in Γ.

Property M implies Property K but the converse does not hold in
general.

The fact that Property M implies Property K makes it easier to
obtain two-fold permutation groups fulfilling Property K.

Moreover, if it is also true that even (α ,α) is in Γ, then the
TF-orbitals are closed under taking of transpose.

NOTE: It is also true that if all non-trivial TF-permutations are of

the form (α ,α−1) then the TF-orbitals are undirected graphs.
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Directed alternating walks of length 3

Although TF-orbitals do not in general admit structure constants, it is easy to prove
that an extension of the structure constants to directed alternating walks of length
3 can, in general, be defined.

Theorem

Let Γ≤ SV ×SV and let R1, R2, . . . , Rr be the TF-orbitals of Γ. Let i, j, k and s be

any elements of {1, 2, . . . , r}. Let (a,b) be an arc in Rs. Then the number of arcs

(y,x), such that (y,x) ∈ Rj, (a,x) ∈ Ri and (y,b) ∈ Rk is independent of the choice of

arc (a,b) in Rs.

i

j

k

s
a b

x y

i

j

k

a' b'

x' y'

(α,β)

s

Figure: Definition of ps
ijk for TF-orbitals.

This result can be can be expressed in terms of the adjacency matrices of the Ri as:

AiA
T
j Ak = Σr

t=1ps
ijkAs.
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Simple application to rank 3 unstable SRGs

Alternative proof of a result of Surowski obtained by using

AiA
T
j Ak = Σr

t=1ps
ijkAs.

Theorem

Let G be a rank 3 unstable strongly regular graph with parameters

n, k, λ , µ . Then λ = µ .
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An example not coming from TF-orbitals (M. Klin, Novy

Smokovec lectures)
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Figure: Adjacency matrices obtained by bringing together the
permutation matrices of the regular action action of S3 into three disjoint
subsets and adding them. Orbitals admit structure constants.
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The corresponding adjacency matrices are

A0 =

















1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0

0 0 0 1 0 1

















A1 =

















0 0 1 1 0 0

0 0 1 1 0 0

1 0 0 0 0 1

0 1 0 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

















A2 =

















0 0 0 0 1 1

0 0 0 0 1 1

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 0 0

1 0 1 0 0 0
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Conditions satisfied / not satisfied by these colour graphs

The space generated by their adjacency matrices is:

1 Closed under matrix multiplication.

2 Closed under SH-multiplication.

3 Does not contain the identity.

4 Might not be closed under taking of transpose.

5 If the colour graphs are TF-orbitals they also satisfy

AiA
T
j Ak = Σr

t=1ps
ijkAs.
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Thank you!
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