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Abstract

In the era of Web 2.0, the knowledge is the de-facto social currency in

the global network environment. Knowledge is not an accumulation of data,
but a relation-based representation of the information content, which needs
to be distilled and arranged in a semantic infrastructure to guarantee inter-
operability and sharable understanding.
In the light of this scenario, the paper introduces a semantically enhanced
document retrieval system that describes each retrieved document with an
ontological multi-grained network of the extracted conceptualization. The
system is based on two well-known latent models: Latent Semantic Anal-
ysis (LSA) and Latent Dirichlet Allocation (LDA): LSA provides a spatial
distribution of the input documents, facilitating their retrieval, thanks to an
ontological representation of their relationship network. LDA works instead
at deeper level: it drives the ontological structuring of the knowledge inside
the individual retrieved documents in terms of words, concepts and topics.
The novelty of this approach is a multi-level granulation of the knowledge:
from a document matching the query (coarse granularity), to the topics that
join documents, until to the words describing a concept into a topic (fine
granularity). The final result is a SKOS-based ontology, ad-hoc created for
a document corpus; graphically supported for the navigation, it enables the
exploration of the concepts at different granularity levels.
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1. Introduction

The Web is potentially the most huge existing source of information that

still needs to be distilled and transformed into accessible knowledge. In the
era of big data, knowledge harvesting and modeling have become a key issue
for the research avenue.
Although structured knowledge bases [1], [2] and publicly available resources
3], [4], [5] are recently catching on, there is still a huge amount of elec-
tronic information in the form of unstructured natural-language documents.
Large knowledge bases are built by mining information from data-structured
sources like Wikipedia; others cover specific domains and the activities to
keep updated the domain changes are cost-intensive.

There are still many challenges in the knowledge discovering and model-
ing, especially in natural language texts [6] that should be addressed:

e discovering new entities beyond those provided by Wikipedia;
e capturing the temporal scope of facts;

e contributing to the Web of Linked Open Data (LOD), by adding sameAs
linkage across many knowledge and data sources;

e enrich the knowledge with common sense relations;

e word disambiguation and concept identification to guarantee the right
understanding of the text in natural language;

e capturing context-based sentiments and emotions enclosed into textual
data.

Knowledge harvesting [6] is virtually a large-scale process that transforms
raw data into structured information to feed a global source, accessible by
everywhere on the Web.

In small-scale (and more realistic) approaches [7], [8], [9], [10], [11] the knowl]-
edge harvesting often regards the knowledge modeling within a limited do-
main (for example, a collection of documents, a community, an area of inter-
est) [12]. The domain knowledge modeling is described as a selection of topics
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(usually characterized by term sets) within a given collection (such collection
can be a single document, an entire document collection, or a collection of
other textual data underlying a domain) and relations between these topics.
Domain knowledge modeling is of strong interest for companies and enter-
prise business; the performance of many organizations is determined more
by their knowledge base than their real assets: an integrated, holistic view of
the organization knowledge improves the knowledge sharing in the working
flow and people interaction.

In the light of the outlined scenario, the paper introduces a framework for
supporting the knowledge harvesting and modeling in small scale processes.
Particularly, the framework accomplishes a semantically enhanced knowledge
modeling from textual resources. The extracted knowledge is automatically
coded in form of a SKOS ontology [13], that depicts a semantic multi-granular
graph (or network) whose nodes are:

e documents, connected to each other, according to to the similar con-
tent,

e topics that describe the documents at a high level abstraction,
e concepts that are connected to the topics and detail them,

e individual words or key-phrases that compound and define a concept
or a topic.

The methodologies and the techniques behind this framework are based on
two latent models: Latent Semantic Analysis (LSA) and Latent Dirichlet
Allocation (LDA) that synergically contribute to provide a query-based tool
to retrieve documents and provide an explorable structure to navigate across
all granular semantics layers. In brief, our main contributions are:

e a systematic approach to encode topic-driven knowledge into concep-
tual structure, by exploiting LDA modeling. The conceptual, graph-
based structures encode two kinds of relations: semantic relations and
grammatical relations. Particularly, semantic relations are added by us-
ing WordNet[2] and WordNet Domain,[14] which introduce new terms
and domain labels respectively. Grammatical relations come from the
textual parsing of the documents.



e a query-based model for documents retrieval. The method behind this
modeling is LSA, that outlines a latent structure, i.e., a semantic vector
space where documents are projected.

e multi-granular seamless representation of the extracted information,
by an automatically generated ontology coded in SKOS language. The
ontology collects all the informative granules. Facilities for the ontology
visualization and navigation are provided.

The remainder of this paper is organized as follows. Section 2 sketches a
brief overview of the related literature. Section 3 introduces a high-level view
of the proposed framework, by describing the theoretical aspects on which our
approach is based on. Main contribution of the paper is presented in Section
4, where the framework modeling is described. Experiments on our proposed
framework validate the performance of our modeling: the implementation of
the two latent models is individually assessed and then, a further analysis
evidences relations between the system performance. Finally, the framework
is evaluated as a semantic annotator. Conclusion closes the paper.

2. Related Work

Knowledge models have been developed in many research areas and dis-
ciplines, with various different applications: documents categorization, rela-
tional database, information structuring arranged for example, as a hierar-
chical or partially ordered graph [12]. Our review focuses on the knowledge
modelling, i.e., the process to create machine-coded knowledge, providing
a structure informative which connects the elements (often linguistic terms
that are relevant within a given collection) through reciprocal relations.
There are mainly three different even though partially overlapping research
streams that focus on this topic: Artificial Intelligence (AI), Natural Lan-
guage Processing (NLP) and Information Retrieval (IR) [12].

In the Al research, the natural imprint of knowledge is to support automated
reasoning: the role of Semantic Web (SW) as an extension of the traditional
Web, through the sharing of machine-processable information and metadata
is crucial to address this aspect. Coding (meta-) data and relations between
them into an ontology, starting from unstructured text is a necessary step to-
wards the knowledge modeling [15], [16]. Ontologies [17] and ontology-based
applications (such as OntoLearn [11]) achieve natural language processing
to extract domain-specific keywords from textual documents. Projects as
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KnowlItAll [18], DBpedia [3], Freebase [4] provide publicly available knowl-
edge resources; some others such as ConceptNet [5], Yago [19] capture com-
mon sense knowledge; then, to preserve the quality, Cyc, OpenCyc [1] and
WordNet are often built on manually compiled knowledge collection.

The knowledge modeling from natural language texts needs a clear under-
standing of the contextual meaning of the words. To address this issue, NLP
tasks produce semantic networks (or conceptual graphs) that find correlations
between terms [20], support the word sense disambiguation [21] and the text
summarization [22] . Also the named-entity recognition (NER) is crucial in
NLP tasks: FOX! [23] is an open-source framework that implements REST-
ful web services for providing users with disambiguated and linked named
entities in several RDF serialization formats. Gate? is a text processing
framework which offers a way of bridging NLP and SW by combining data-
driven (words that describe concepts) and knowledge-driven (relations that
link concepts) approaches. SHELDON [24] also represents a clear example
of a NLP and SW hybridization tool: implements several machine reading
task to extract RDF data from the text. It is based on FRED [25], a well-
equipped tool for automatically producing RDF/OWL ontologies and linked
data from text, adopting Ontology Design Patterns and Linked Data prin-
ciples, relation extraction, frame detection, automatic typing of entities and
the automatic labeling functions.

The IR area instead, focuses on discovering relevant documents by analyzing
terms frequency rather than NLP-based relations between terms. In recent
years, IR approaches are becoming more complex, trying to meet the users’
preferences and behaviour during the navigation [26]; moreover, with the
widespread of the paradigm Internet of Things (IoT), retrieval systems pro-
vide context-aware results for the user according to the users’ physical state
of the surrounding environment [27].

Nevertheless, the efficacy in retrieving documents that match a given query
needs NLP techniques. IR techniques also capture correlated terms as co-
occurrences within the same context (both topical and semantic), by access-
ing the networks of semantic relations: each further form of relatedness is
crucial for the document indexing as well as the query expansion.

The research in this domain focuses on data-driven approaches: document

Thttp://aksw.org/Projects/FOX.html
Zhttp://gate.ac.uk/.



clustering for the class identification; concepts clustering for the word dis-
crimination (instead of using lexical support to disambiguation). At the same
time, there are approaches [28], where formal ontologies encode the domain
knowledge for query expansion and entity categorization [29]. Recently, with
the widespread of Social Web and the availability of online collaborative
knowledge resources, tagging and annotation have gained tremendous pop-
ularity among web users. Particularly, many applications have focused on
semantic annotations, through data-driven analysis [30]. Research in the area
of semantic annotation is very active e and constant progress is being made.
This progress is driven by the increasing exigency to have ”intelligent” doc-
uments [31], i.e., documents which “know about” their own content in order
that automated processes can “know what to do” with them. The annota-
tion of a (web) document with well-defined, machine interpretable mark-ups
make the documents itself accessible from different sources and agents, by
ensuring actually an unambiguous, sharable meaning. Some examples are
(semi) automatic platforms like KIM [32] that provides an infrastructure for
automatic semantic annotation, indexing, and retrieval of unstructured and
semi-structured content. It extracts information based on the ontology and
a massive knowledge base. In [33] a bootstrapping system for large scale se-
mantic annotation by automatic mark-up is presented. Armadillo [34], and
others [35], [29] are systems for knowledge modeling as well as document
annotation.

Table 1 summarizes the principal frameworks and tools presented, evidenc-
ing their salient features in the Knowledge Harvesting and Modeling do-
main. Each row of the table describes a tool by means of the following six
features/aspects:

- Research subfields involved in Knowledge Harvesting and Modeling
(KHM): this feature identifies the research areas where the tools are
located, according to the methodologies, functionalities and techniques
employed. This feature evidences the synergy of overlapping areas
aimed at addressing all the knowledge management needs, by providing
a bridge of common syntax, methods, semantic structure.

- Standard Format & Ontology: standard formats are strongly required,
because they provide a bridging mechanism that allows textual re-
sources to be accessed [31] and shared easily (especially when a well-
define reusable, ontological structure is provided).



- Knowledge Learning/representation: shows the method used in ex-
tracting knowledge from row data. Unsupervised, (semi-) supervised
and automated methods represent a wide spectrum of approaches for
the knowledge harvesting and modeling. Herein the type of knowledge
representation used by the tools (i.e., entity, concept, relation extrac-
tion), as well as the quality of automation (automated or not) are
sketchily presented.

- User Interface: tools that provide a simple point of entry interface,
facilitate the interaction and the collaboration between users, which
are two key facets for reusing semantically-enriched documents

- Ontology-based Support: in addition to supporting standard ontology
formats, tools in KHM need to be able to support further ontologies,
often ad-hoc designed for modeling knowledge in specific domains. At
the same time, exploiting existing ontologies to describe own entities
in the sake of the re-use and the universal concept understanding is a
very desired requirement of the KHM.

- Semantic Annotation Support: annotating document content using se-
mantic information from domain ontologies represents a way to ensure
that annotator and annotation consumer actually share meaning [31].
Semantic annotation is not a simple textual annotation, but describes
the content as a part (individual) of a concept enriched and better de-
fined by relations in the application domain. Tools that achieve IR task
with Semantic Web technologies often carries out annotation tasks as
well.

Our framework covers all the features listed in Table 1; it was mainly
designed for the concept learning: it provides an ontological support for the
knowledge modeling as well as a user facility to graphically navigate the on-
tology and explore the concepts placed in this semantic structure. The main
novel aspect is the multi-granule representation of the extracted knowledge,
which is composed of different types of informative granules (i.e., documents,
topics, words). This review is just a non-exhaustive overview of the main ar-
eas involved in Knowledge Harvesting and Modeling. It aims at highlighting
how, especially in the big data era, the knowledge structuring is a mandatory
task to join ad-hoc methodologies and technologies, to improve the machine-
oriented knowledge understanding and guarantee a global knowledge enrich-
ment, by sharing and re-use.



Table 1: Feature Comparison with other main tools/approaches in the Knowledge Harvesting and Modeling domain

Research subfields Standard Knowledge User Ontology-based Semantic
Frameworks/Tools involved in Format Representation Interface Support Annotation
KHM & Ontology Support
Gate NLP, IE, IR RDF, Automated Yes OWLIM, OntoText Yes
Multi-paradigm OWL concept learning LOD repositories,
Search [36] plugins SESAME RDF repository
De Maio et al. [30] NLP, proprietary Automated Yes ad-hoc ontology, Yes
Conceptual Analysis RDF(S), OWL concept learning WordNet, DBpedia
Armadillo [34] IE, NER RDF(S) ’Subject - Verb - Object’ Unknown WordNet RDF(S)
pattern-based approaches fact learning FrameNet, VerbNet
web service search
KIM [32] NER, Querying proprietary NE-based Yes, KIMO RDEF(S),
Gate-based. RDF(S), OWL hierarchy with plugins SESAME RDF repository OWL
OntoLearn [11] NLP proprietary Taxonomy Unknown WordNet No
statistical approaches RDF, OWL learning FrameNet, VerbNet
KnowlItAll [18] IE, HTML rule-based Unknown No No
statistical approaches sentence extraction
SHELDON [24] NLP, proprietary FRED|25] Yes, with interactive DOLCE, WordNet, No
1E Data Visualization VerbNet, DBpedia
(infoVis?)
FOX [23] NLP proprietary NE-based Yes DBpedia No
conceptualization
Cerno [35] NLP, context-free No user-designed No WordNet, Yes
grammar conceptual model thesauri
Our NLP, IE, IR, proprietary Automated Yes, with interactive Local ontologies, RDF(S),
Framework Multi-type RDF(S), multi-granule graphical ontology LOD, WordNet, OWL,
Querying OWL, concept learning navigation DBpedia SKOS
SKOS (LODLive) WordNetDomain




3. The theoretical foundation of the framework

3.1. Framework Overview

Figure 1 shows the whole framework as a black-box, evidencing the in-
put and output. Precisely, it is composed of two main components: the
Knowldege Modeling and Augmented Information Retrieval. The Knowldege
Modeling gets as input a document collection and generates a topic-driven
knowledge structuring of the input. This component uses the LDA model,
that produces the word-topic-document relationship. The Augmented In-
formation Retrieval achieves an Information Retrieval system, that exploits
LSA model to arrange the documents in the latent space and returns relevant
documents, with respect to a given query. The overall framework generates
a semantic net that represents the content of the retrieved documents: words
and topics from each document are linked and extended by WordNet-based
semantic relations; documents with similar topics and words are linked to
each other and added to this knowledge net. At each query, the knowledge is
enriched with new semantic relationship that extends the net. A SKOS-based
ontology encodes this knowledge. The ontology provides a multi-grained rep-
resentation of the involved entities, which are listed from a coarse to a fine
granularity, as follows:

e document: the biggest entity returned by the framework, it is the result
to the query submission;

e topic: a document may contain one or more topics. Topics are described
as word collections. In general, each document is composed of one or
more topics and each topic may belong to many documents;

e word: the atomic entity of information; each word may have one or
more “sense” (i.e., meaning) according to the role that it plays in the
context of the word usage. In WordNet, each word sense is associated
to a synset, i. e., a set of synonyms and it is correlated to other words
by some semantic relations, such as synonymy, antonymy, homony, etc.

Next sections briefly introduce LDA and LSA, the two formal models
used in the framework design.
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Figure 1: A high level view of the whole framework as a black-box: only input and output
are evidenced.

3.2. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [37] attracted a considerable interest
from the statistical machine learning and natural language processing com-
munities. It is a generative probabilistic model for collections of discrete
data such as text corpora. LDA is a three-level hierarchical Bayesian model,
in which each item of a collection is represented as a finite mixture over an
underlying set of topics, whereas each topic is modeled as an infinite mixture
over an underlying set of topic probabilities. In the context of the text model-
ing, the topic probabilities provide an explicit representation of a document.
Latent Dirichlet Allocation (LDA) models documents using a Dirichlet prior
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distribution. Using this topic model, we are able to obtain a suitable Dirich-
let parameter that provides the maximum likelihood for the document set.
Formally, according to [37]:

e A word is the basic unit of discrete data, defined to be an item from a
vocabulary indexed by {1, ..., V}. We represent words using unit-basis
vectors that have a single component equal to one and all other com-
ponents equal to zero. Thus, using superscripts to denote components,
the vth word in the vocabulary is represented by a V-vector w such
that v’ =1 and w"* = 0 for u # v.

e A document is a sequence of N words denoted by w = (wy, wy, ..., wy),
where w,, is the nth word in the sequence.

e A corpusis a collection of M documents denoted by D = {w 1, wo, ..., wps }.

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a cor-
pus. The documents are represented as random mixtures over latent topics,
where each topic is characterized by a distribution over words. LDA assumes
the following generative process for each document w in a corpus D:

1. Choose N ~ Poisson() .
2. Choose 0 ~ Dir(«a).
3. For each of the N words w,:
(a) Choose a topic z, ~ Multinomial(f).

(b) Choose a word w, from p(w, | z,,8), a multinomial probability
conditioned on the topic z,.

A k-dimensional Dirichlet random variable 6 can take values in the (k - 1)-
simplex (a k-vector 6 lies in the (k - 1)-simplex if 6, > 0, Zle 0; =0), and
has the following probability density on this simplex:

weﬁl—l..ﬂzk‘l (1)
[Tizi Tew)

where the parameter « is a k-vector with components a; > 0, and where
['(z) is the Gamma function.

p( | ) =
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Given the parameters a and 3, the joint distribution of a topic mixture 6, a
set of N topics z, and a set of N words w is given by

p(0,z,w | a,B) =p(6 | o) = sznw (W | 20, B) (2)

Integrating over 6 and summing over z, we obtain the marginal distribution
of a document:

pw|a.3) = [p(6]a) <Hzpzne wn|zmﬁ)> (3)
n=1 z,

taking the product of the marginal probabilities of single documents, we
obtain the probability of a corpus:

p(D|a,pB H/ (04 ] ) (H Zp Zdn | 04)p wdn»’«’dmﬁ)) dfq (4)

n=1 zqn
The key inferential problem to use LDA is computing the posterior dis-
tribution of the hidden variables given a document:
p(t,z,w|ap)
p(w|a,pB)
this distribution is intractable to compute in general. Marginalizing over the

hidden variables to normalize the distribution, Eq. 3 can be written in terms
of the model parameters:

p(05Z|W7a7/8):

()

o) = Gres

@91) (ﬂiﬁ 0:6:)" ) (6)

a function which is intractable due to the coupling between 6 and S in the
summation over latent topics. The posterior distribution is intractable for
exact inference. One of the approximate inference algorithms for LDA is a
simple convexity-based variational algorithm, characterized by the following
variational distribution:

90,2 7.6) =q0 [ 7) [ ] a(zn | én) (7)

where the Dirichlet parameter v and the multinomial parameters (¢, ..., on)
are the free variational parameters. As detailed in [37], the values of the
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variational parameters v and ¢ are found by minimizing the Kullback-Leibler
(KL) divergence between the variational distribution and the true posterior

p0,z | w,a,p):
(7", 0%) = a?“gl(fnid)r)lD(q 0,z ]v,0) [ p(0,z]w,a,B)) (8)

)

Computing the derivatives of the KL divergence and setting them equal to
zero, we obtain the following pair of update equations:

N
n=1

where the expectation in the multinomial update can be computed as follows:

E, log(0;) | 7] = ¥ (v:) — ¥ <Z %‘) (10)

where W is the first derivative of the log ' function which is computable via
Taylor approximations.

Then, we wish to find parameters « and 5 that maximize the (marginal)
log-likelihood of the data. Given a corpus of documents D = {wy, ws, ..., wy },
the log-likelihood is defined as follows:

o, ) = logp(wa | a, B) (11)

Since, the quantity p(w | a, ) cannot be computed tractably, it is re-
placed with the approximation calculated using by variational inference, in
order to calculate the values of o and [ that maximize the log likelihood.
Iterating the steps of the variational inference algorithm until the conver-
gence of the log likelihood approximation it is possible obtain the following
variational Expectation Maximization (EM) procedure:

1. (E-step) For each document, find the optimizing values of the varia-
tional parameters {7}, ¢} : d € D}.

2. (M-step) Maximize the resulting lower bound on the log likelihood with
respect to the model parameters o and 5. This corresponds to finding
maximum likelihood estimates with expected sufficient statistics for
each document under the approximate posterior which is computed in
the E-step.

13



3.3. Latent Semantic Analysis

Latent Semantic Analysis (LSA) was first introduced in 1988 [38] and then
it succeed as a technique for improving automatic indexing and retrieval [39],
[40] also called Latent Semantic Indexing (LSI). The latent semantic struc-
ture analysis uses a matrix of terms by documents. This matrix is analyzed
by singular value decomposition (SVD) to derive a latent semantic structure
model. The matrix is decomposed into three other matrices of a very special
form by SVD. The resulting matrices contain singular vectors and singular
values. These special matrices show a breakdown of the original relationships
into linearly independent components or factors. The assumptions behind
LSI is that there is some latent structure in word usage that is partially
obscured by variability in word choice. A truncated singular value decom-
position is used to estimate the structure in word usage across documents.
Retrieval is then performed using the database of singular values and vectors
obtained from the truncated SVD.

More formally [40], given an m x n matrix A, without loss of generality,
m>n and rank(A4) = r, the SVD of A4, denoted by SVD(A), is defined as

A=UxVt (12)

where UTU = VIV = [, and ¥ = diag(oy,...,0,),0; > 0 for 1 < i <
r,o; = 0forj > r+1. The first r columns of the orthogonal matrices U and V
define the orthonormal eigenvectors associated with the r nonzero eigenvalues
of AAT and AT A, respectively. The columns of U and V are referred to as
the left and right singular vectors, respectively, and the singular values of A
are defined as the diagonal elements of 3, which are the nonnegative square
roots of the n eigenvalues of AA”.

In order to implement LSI, a matrix of terms by documents must be
constructed. The elements of the term-document matrix are the occurrences
of each word in a particular document; precisely

A = [ay] (13)

where a;; denotes the frequency in which term ¢ occurs in document 7. Since
every word does not normally appear in each document, the matrix A is
usually sparse.

For purposes of information retrieval, a user’s query must be represented
as a vector in k-dimensional space and compared to documents. A query (as
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Figure 2: The whole process, across the identification of the main steps of the two com-
ponents: the Knowldege Modeling and the Augmented Information Retrieval.

well as a document) is a set of words. For example, the user query can be
represented:

G=q U, ! (14)

where ¢ is simply the vector of words in the user’s query, multiplied by the
appropriate term weight vectors. The query vector is compared to all existing
document vectors, then the documents ranked by similarity (closeness) to
the query are returned. One common measure of similarity is the cosine
calculated between the query vector and document vector. Typically, the
z closest documents or all documents exceeding some cosine threshold are
returned to the user.

4. A closer look to the overall process

Figure 2 shows the comprehensive process overview. The Knowldege Mod-
eling and the Augmented Information Retrieval components are described
by a sequence of steps converging towards a merged output: a semantically
enhanced knowledge modeling of the content extracted by the retrieved doc-
uments. Next sections will detail the process steps, sketched in Figure 2.

4.1. Knowldege Modeling

This component is in charge of the knowledge extraction and modeling
from documents by NLP techniques. It uses the LDA model to collect the
words describing a topic in a document. Figure 3 gives a closer look to the
steps of the LDA-based component process, described as follows.
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Figure 3: Data-flow of the Knowldege Modeling component

4.1.1. Pre-processing

The typical activities of lexical analysis, such as tokenization, stop-words
removal (including numbers, punctuation and words whose length is less than
three), and singularization of plural nouns are covered by this step.
The remaining document text is mapped into Vector Space Model (VSM);
precisely, each document is represented as a vector of terms (or words)
d; = (wy;,ws; ,...,w ;) where each dimension w;; corresponds to a weight
associated with a term. In our LDA-based design, w;; is the occurrences
number of the term ¢; in the document d;. The whole document collection is
represented by a term-document matrix, as required by the Latent Dirichlet
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Allocation method.

4.1.2. Topic Extraction

This step is based on an implementation of variational EM for LDA* (see
Section 3.2), which returns a topic set; each topic is composed of a list of
words, ranked according to their probability to be relevant for the topic.

To select the most relevant words, the method for determining quartiles
has been applied. In descriptive statistics, the quartiles of a ranked set of
data values are the three points that divide the data set into four equal
groups, each group comprising a quarter of the data. In our context, the
most relevant words are found by considering the third quartile that splits
off the highest 25% of data from the lowest 75%. Thanks to the quartile
method, the topmost relevant words (whose the multinomial probability to
be relevant for that topic is the highest) can be selected, depending on each
topic. The general approach fixes an apriori number h of words for each
topic; for example, topics are usually described by printing the top-10 terms
(the 10 most probable terms) per topic [41]. Selecting the first h words for
each topic could be not accurately discriminant in the topic identification, as
stated in [42] that proposes a variant of LDA to improve the discrimination
power of the words. The A + 1-th word in a topic could be more relevant
(highest probability) than one among the first A words, in another topic.
Prefixing the top-h words (or considering a prefixed threshold) that cuts off
the words with lower value of “relevance weight” was not a good strategy
to get a clear topic description. Empirical evidence has shown that in our
approach, the quartile method provides words that are more relevant to their
own topic.

The data extracted so far provide three types of relationship: topic-word,
topic-document and document-word. These relations are stored in a knowl-
edge base; they are the edges in a high-view graph, whose nodes are topics,
words or documents. Then, the net is translated in SKOS®, an ontological
data model for sharing and linking knowledge organization systems (such as
thesauri [43], classification schemes and taxonomies); it is part of the Se-
mantic Web standards built upon RDF and RDFS. The final outcome of this
step is a SKOS-based ontology populated by topic individuals, their relevant

“http://www.cs.princeton.edu/ blei/lda-c/
Shttp://www.w3.org/2004/02 /skos/
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words and the related documents.

4.1.3. Linguistic Enrichment and Tagging

The SKOS data model is extended by identifying new linguistic point-
ers from the ontological objects to grammar elements of a linguistic resource.
This step accomplishes a kind of productive word derivational process, which
adds new linguistic expressions (word compounds, key-phrases, etc.) to the
initial topic words, in order to capture contextual, syntactic and language-
specific features. The goal is to increase the linguistic expressiveness in de-
scribing each topic by providing additional, more structured and specific
compound words that can refine context information for a better character-
ization of the topic meaning.

Raw text indeed was additionally processed by Stanford Parser®: part-of-

speech (POS) tags and grammatical relations (typed dependencies), as well
as named entities (NER) were returned.
The text and topic word (that is also in the text) are tagged with a grammat-
ical category. The topic words are furthermore analyzed with respect to the
grammatical relations with the surrounding text. These relations generate
new links between words, for the SKOS ontology and enrich the lexical se-
mantic net of the domain knowledge, built in the previous step. Specifically,
the grammatical relations represent the following typed dependencies:

e amod: adjectival modifier. An adjectival modifier of an Noun Phrase”
(NP) is any adjectival phrase that serves to modify the meaning of the
NP [44]. As an example, the amod of the phrase “soft computing” is
soft;

e nn: noun compound modifier. A noun compound modifier of an NP
is any noun that serves to modify the head noun [44]. The compound
word “knowledge modeling” has knowledge as an nn;

e prep_of: is a collapsed preposition that links a term to the preposition

of;

Shttp://nlp.stanford.edu/software/lex-parser.shtml
"Noun phrases often function as verb subjects and objects, as predicative expressions,
and as the complements of prepositions
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Pattern \ First Word \ Second Word ‘

Pattern 1 |  NN/NNs NN/NNs
Pattern 2 | NNP/NNPs | NNP/NNPs
Pattern 3 JJ NN
Pattern 4 JJ NNs
Pattern 5 JJ NNP
Pattern 6 JJ NNPs

Table 2: Extracted Phrases Patterns

e appos: appositional modifier. An appositional modifier of an NP is an
NP that appears immediately to the right of the first NP that defines or
modifies that NP. In the phrase “Natural Language Processing (NLP)”,
NLP is the appos.

In addition, the typed dependencies along with the tag categories are also
used to identify linguistic patterns in the text. Table 2 shows the extracted
patterns. They include singular and plural nouns (NN an NNs, respectively),
singular and plural proper nouns (NNP and NNPs) and adjective (JJ). As an
example, Pattern 3 is composed of two words: the first word is an adjective,
the second is a noun. These patterns capture the whole meaning of sequence
of words such as compound nouns, multiword expressions, keyphrases: they
describe atomic, well-defined concepts, by a clear identification of the sur-
rounding word context. Disambiguation and word sense identification are
even the immediate results of this task.

The remaining tagged text (i.e., verbs and individual adverbs or adjec-
tives) are discarded, because they do not generate nouns or compound nouns
in our linguistic pattern analysis. Words from these grammatical categories
need a deeper natural language process to discover implicit word dependen-
cies, or grammatical relations, that are not directly derivable by the word
sequences in a sentence structure. They could enrich the topics with further
nouns or other grammar categories for a more complete linguistic enrichment
step.

At the end of this step, each topic will be described by the original words
and the extracted compound nouns that will ensure a more fine-grained de-
scription of the topic itself. Consequently, each document will be represented
in turn, by the (original words of) topics, but also by the context-specific
word compounds. To give an example of the linguistic enrichment, Figure

19



Document 1

Simulated reality is the hypothesis that reality could be simulated—for example by compute

S ON—to a degree indistinguishable from true reality, and may in fact be such a simulation. It
could contain conscious minds which may or may not be fully aware that they are living inside a simulation.

This is quite different from the current, technologically achievable concept of virtual reality. Virtual

reality is easily distinguished from the experience of actuality; participants are never in #=:-k* ~bness shn

nature of what they experience. [...] In brain-computer interface simulations, each particii | TOPIC4
-

outside, directly connecting their brain to the simulation computer. The computer t R . .
. . . _ ) i -device -computer simulation
data to the participant, reads and responds to their desires and actions in return; in t -world —simulation computer
interact with the simulated world and receive feedback from it. [...] In a virtual-pe -computer -simulated world
everyinhabitantis a native of the simulated world. They do not have a real body in th 'is"n";:?hon -virtual reality
of the physical world. [...] _environment,” 1
Document 2 -participant -virtual reality
-head -virtual glasses
- - -glass -reali
‘ Vlrtual‘}'eaht\{glasse%rgoggles are becomingincreasingly popular in the gaming an -lg)ody reality glasses
spheres. [...] Ordinary glasses show a single image but 3D anh virtual *ealityglasses [N \

lenses which show two images, one per each eye. These images appear to give an illusion of depth which is
aparticular feature of CAVE environments. [...] This system is connected to a computer which sends signals
to adjust the images seen by the wearer as they move around their environment. Once again, this is a

particular aspect of CAVEfully immersive virtual reality [...]. Forexample, if the wearer is using virtual

reality for architectural purposes then they will be able to view a building at different angles, and walk
through or around it.

Figure 4: An example of topic enrichment: compound nouns are added to the topic, which
is split in two different specialized sub-topics

4 shows two document fragments. The documents represent similar con-
tent, described by the same topic (identified as Topic 4). The words of
the Topic 4, are individual words, returned by the LDA-based topic extrac-
tion. By the grammatical analysis, a topic enrichment is produced for each
document: document 1 is enriched with the compound nouns computer simu-
lation, simulation computer, simulated world, virtual reality also highlighted
in the document text, whereas document 2 has different compound nouns:
virtual reality, virtual glasses, reality glasses. Although the two documents
share the same topic, after the additional grammatical analysis, they are
clearly described by very context-specific word compounds.

The proposed grammatical process mainly focuses on nouns; extending the
analysis to other grammatical categories could improve its robustness, in
term of accuracy in the compound nouns extraction (by considering further
grammatical dependencies) and specialization of the topic contexts (espe-
cially when the topics share a common subset of words).
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(a) (b)
Al Artificial Intelligence EP Executive Program uunnd Sysonym
CP Computing 0S Operating System ==+ IsaKind of
SW Software — > Isapartof

——> Domain relation

Figure 5: Knowledge Map building: Further word relations are added by WordNet and
WordNet Domain.

4.1.4. Knowledge Map Building

This step achieves a complex knowledge structuring, by extending the
ontology with new relations from two external semantic resources: WordNet
and WordNet Domains.
WordNet Domains is a lexical resource created in a semi-automatic way by
augmenting WordNet synsets with domain labels. The WordNet synsets have
been annotated with at least one semantic domain label, selected from a set
of about two hundred labels structured according to a well-defined WordNet
Domain Hierarchy®.
The Domain Map Composition subtask (shown in Figure 3) uses WordNet
Domains, to assign a domain label to each word. Thus, nouns with the same
domain label are joint in a conceptual “map” with that domain as a root.
At the end of this subtask, all the nouns extracted in the previous step,
are associated with the involved domain labels and encoded in the SKOS
ontology. At the same time, WordNet suggests new relations: each noun is
linked to its own WordNet synset and if a WordNet relation exists between
two nouns, it is added to the ontology. Particularly, the following WordNet
semantic relations have been taken into account:

1. synonymy;
2. hypernymy: Y is a hypernym of X if every X is a (kind of) Y (canine
is a hypernym of dog);

8http://wndomains.fbk.eu/index.html
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3. hyponymy: Y is a hyponym of X if every Y is a (kind of) X (dog is a
hyponym of canine);

4. coordinate terms: Y is a coordinate term of X if X and Y share a
hypernym (wolf is a coordinate term of dog, and dog is a coordinate
term of wolf);

5. meronymy: Y is a meronym of X if Y is a part of X (window is a
meronym of building);

6. holonymy: Y is a holonym of X if X is a part of Y (building is a holonym
of window).

Just to give an example, let us suppose having the nouns w;=Artificial Intel-
ligence (Al), we=Software (SW), wz=Operating System (OS), wys=Executive
Program (EP), ws=Computing (CP), shown in Figure 5(a)). After the Do-
main Map Composition subtask, these words are all associated with the same
domain label d = Computer Science (CS). In Figure 5(b) indeed, a hierarchal
representation puts “Computer Science” as a root of all the selected nouns.
Then, new WordNet-based relations are added; for instance a link between
SW and OS is created since, OS is a WordNet hypernym of SW. Another
link connects OS and EP because EP is a part of (viz., a meronym) OS.
Eventually, the last link is a synonymy relation between CP and Al (see Fig-
ure 5(c)). Similarly, other relations are added enriching the remaining nouns
when a semantic relation exists.

In nutshell, each noun is semantically enriched by additional related terms
that characterize a conceptualization and, at the same time, it is connected
to a domain label that enriches the concept. All the extracted relations feed
the SKOS ontology population.

<rdf:Description rdf:about="Synset#6164496">
<rdf:type rdf:resource="http://www.w3.o0rgq/2004/02/skos/corefConcept™/>
<synset:hasType rdf:resource="SynsetfNoun™/>
<synset:offset>6164496</Synset:offset>
<Synset:label>roperating system</Synset:label>
<Synset:label>os</Synset:label>
<Synset:meronyms>supervisory program, executive program </Synset:meronyms>

<Synset:hypernyms>software, software system, software_package </Synset:hypernyms>
<Synset:domain>computer science</Synset:domain>
</rdf:Description>

Figure 6: SKOS-based statements for the noun “operating system”.

Figure 6 shows an example of a SKOS-based code for the compound noun
“operating system”. It is defined as a SKOS concept (by the rdf:type prop-

22



erty), with the identifier 6164496, which corresponds to the WordNet synset
id (usually called offset). One or more labels can appear: in this case, a label
is the term itself, whereas the other is the acronym os. Then, the grammar
category Noun is also given. The discovered WordNet relations are encoded:
Synset:meronyms and Synset:hypernyms provide the list of meronyms and
hypernyms, respectively. One of meronyms of this noun is for instance, ex-
ecutive program that is a part of an operating system. Analogously, software
system is a kind of software and it is an hypernym of operating system. A
property Synset:domain relates the noun with the domain label of WordNet
Domain computer science.

This noun enrichment produces a semantic map of connected words; it is
achieved in the WordNet-based concept refinement which is the first action
in the Refinement subtask (see Figure 3). The other task is the Domain-
based Concept Refinement: it aims at merging maps having as a root the
same domain. The process is repeated for each map built in the previous
subtask, in order to connect the greatest possible number of maps that share
domain labels and then getting larger conceptual maps.

The final output of this step (and also of the whole Knowldege Modeling
component) is a comprehensive knowledge map that provides a local concep-
tualization (nouns and compound nouns associated with document topics),
refined with external knowledge to improve the contextual knowledge rep-
resentation of the input document collection. Thanks to the SKOS-based
modeling, relationships between these involved concepts can be easily re-
trieved by means of SPARQL? queries.

4.2. Augmented Information Retrieval

Figure 2 shows also the LSA-based component process. It is a traditional
Information Retrieval (IR) process [45], where a query is submitted as an
input and a ranked list of relevant documents is returned. As stated, LSA
model builds a multidimensional space where the query and the documents
(through their vector-based representation) are projected. The documents
whose distance from query is below a given threshold are considered relevant

9SPARQL Protocol and RDF Query Language. SPARQL can be used to express queries
across diverse data sources, whether the data is stored natively as RDF or viewed as RDF.
See http://www.w3.org/ TR /rdf-sparql-query/
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Figure 7: Ontological schema describing the concepts and relations in the global knowledge
model. The concepts are all skos:Concept and some primitive SKOS relations have been
reused: skos:broader, skos:marrower, skos:narrowerTransitive and skos:broaderTransitive.
Finally, the relations named hasTopWord, hasRelatedDoc and StronglyRelatedDoc are
owl: ObjectProperty.

and returned as an output. The Documents Retrieval (see Figure 2) accom-
plishes this activity.

The second step, Knowledge Harvesting creates an ontological bridge between
the retrieved documents and the knowledge map extracted in the Knowldege
Modeling component. In other words, each document is linked to its own
topics; that in turn, are connected to the knowledge map built on the topic
words.

This fusion semantically reinforces the traditional IR activity. A document
matching a submitted query will return the following additional features:

e topics describing the document content;

e individual or compound words specializing the topics associated with
the document;

e semantic relations among words: individual relations regarding a word
(i.e., its own synonyms, meronyms, etc.) or relations between words
occurring in the same topic;

e one or more domain categories.

The final result is a SKOS ontology which enables a full exploration of
the involved participating entities.
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Figure 7 sketches the main skos:Concepts and the relations of the ontologi-
cal schema: the generic Topic concept is specialized in a more specific topic
(DocumentDrivenTopic). In turn, it is composed of some relevant Words (by
means of hasTopWord), such as simple or compound words. The document-
specific topic is associated with (hasRelatedDoc) a Document, which is re-
trieved from a Query (by means of StronglyRelatedDoc). Finally each Word
can have more generic and more specific words (by the SKOS primitive nar-
rower Transitive and broaderTransitive) and a Domain category, which is
related by means of the SKOS primitive narrowerTransitive.

Figure 8 shows a fragment of the generated ontology. The ontology visualiza-
tion is provided by LodLive!? that is a navigator of RDF resources only based
on SPARQL endpoint. It provides a simple graphical browsing of the ontol-
ogy structure: each node is an individual of a skos:Concept and an edge is
a relation between concepts. LodLive allows exploring the ontological struc-
ture by clicking on the small balls located around each node: hidden relations
can be displayed and explored by following every node. The submitted query
is “operating system” (the bottom right node in Figure 8). The figure shows
the semantic structure for a retrieved document, called comp10.txt: the doc-
ument is related (by hasTopic relation) to the topic identified as topic5;
in turn, the topic is characterized by the words program, computer system,
computer program, operating system, computer hardware. A word can be
semantically related to other words: for instance, the word software is a nar-
rower term than program, but it is broader than computer program and so
on. Finally, the figure shows that all the terms are connected to the domain
Computer Science (on the far right in the whole screen snapshot).

5. Experimental results

To provide a straightforward evaluation of the system performance, it was
necessary to analyze the performance of each system component, depending
on its own specific functionality. For this reason, the system performance
evaluation consists of the following quality and effectiveness measurements:

e topic quality: the LDA-based component supports in the identification
of a consistent and accurate number of topics. This aspect is crucial for

Ohttp://blog.lodlive.it/
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Figure 8: LodLive visualization of the knowledge structuring associated with a document,
retrieved by the query “operating system”.

the knowledge structuring: a smaller or bigger number of topics could
upset the final ontology representation of the knowledge.

effectiveness of the retrieval: the LSA-based component provides a sim-
ple way to retrieve relevant documents; traditional IR measures, such as
the recall and precision are used to evaluate the retrieval performance.

effectiveness of the retrieval with respect to the number of involved
topics: this analysis aims at providing a comprehensive performance
evaluation, based on the two main components, strongly dependent on
one another. For this reason, recall and precision are evaluated with
respect to the number of pertinent topics involved.

effectiveness of the semantic annotation: although the work present
an IR system, its goal is (also) the semantic structuring of knowledge.
Measuring the quality of the ontology, depending on the level of con-
cept refinement is not easy, but evaluate the named entities discovered
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Table 3: Datasets used in the experimentation

’ Dataset Name \ #document \ #words \ #queries ‘

CACM 3204 8340 64
MED 1033 12064 30

during the text analysis is a typical task of the semantic annotation.
Our system can work as a primary semantic annotation system, thus
the annotation accuracy is evaluated by a comparison with known an-
notation tools.

Next section will describe the datasets used in this experimentation, and
then the performance will be introduced according to the listed evaluation
measures.

5.1. Dataset Description

We validated our framework by considering the following two datasets

(Table 3).

e CACM: it is a common dataset used in early information retrieval
evaluation, composed of 3204 abstracts from the Communications of
the ACM Journal and 64 queries.

e MED: it is composed of medical abstracts from the National Library
of Medicine and comprises 1033 documents and 30 queries. It has been
widely used to evaluate information retrieval systems.

As stated in Section 4.1, the texts extracted from each corpus was prepro-
cessed, deleting stopwords, numbers, punctuation and terms with a length
less than three. The final result is in form of a term-document matrix.

5.2. LDA-based system topic quality

According to the traditional topic modeling experimentation, a manda-
tory step is to build fine-grained, high-quality topic models from domain-
specific corpora. The purpose is therefore to explore the extent to which
information collected by documents can be used to assess the topic quality.
In order to determine the adequate number of topics, we used the coherence
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and entropy measures. According to [46], the coherence is calculated as the
sum of pairwise distributional similarity. It is defined as follows:

coherence(V) = Z score(v;, vj, €) (15)

v;,v; €V

where V' is a set of words describing the topic and v;, v; are two words in V
and ¢ indicates a smoothing factor which guarantees that score returns real
numbers. The score is calculated with the UMass metric [47]:

D(UZ‘, ’Uj) + €
D(v;)

where D(v;,v;) counts the number of documents containing words v; and v,
and D(v;) counts the number of documents containing v,.
Just to give an example of the coherence and entropy trends, Figure 9 shows
the tendency for the CACM dataset. Specifically, in Figure 9(a), the average
coherence value is shown by varying the number of topics. The model reaches
a stable average after 300 topics, remaining in the range [—110, —120]. As
described in [46] the coherence entropy is also calculated by dropping the
log and € factor from each scoring function. As shown in Figure 9(b), the
entropy tendency also is quite stable after 300 topics.

A similar study has been applied on the MED dataset, discovering a trend
stabilization with 100 topics.

(16)

score(v;, vj,€) = log

5.8. LSI-based system analysis

Our framework has been analyzed as an IR system, by considering the
LSA (or more appropriately, in this specific case, LSI) component. Tradi-
tional measures to assess the information retrieval effectiveness are the preci-
sion (P) and the recall (R), that usually are applied for binary classification.
To evaluate performance average across categories, micro-average recall and
precision as well as macro average recall and precision represent the extension
of basic definition [48], [49].

Specifically, given qi,¢o, ..., qx a set of queries on a documents bench-
mark, let RetrievedDocsg,, RetrievedDocs,,, ..., Retrieved Docs,, be the cor-
responding resulting retrieved documents associated with each query ¢; (i =
1,...,k) and RelevantDocs,,, RelevantDocs,,, . .. RelevantDocs,, are the
expected relevant documents (i.e., the class of documents) for each query.
The micro average of the precision (Ppeo) and recall (Ricr0), the macro

28



coherence
-100 -80
[

a
o
T T T T T T
0 100 200 300 400 500
#opics
(a)
Z o 4
o
E 7 W
i}
S v o
C
S oo
L
o o -
o T T T T T T
0 100 200 300 400 500
#opics

(o)

Figure 9: Coherence and coherence entropy on CACM, in the topic range [10, 500]

average of precision (Puer0) and recall (Ryu0r0) are defined respectively as
follows:

B Zle | RelevantDocs,, N RetrievedDocs,, (a7)
S | | RetrievedDocs,, |

Pmicro

R _ Zle | RelevantDocs,, N RetrievedDocs,, | (18)
e Zle | RelevantDocs,, |

k .
| RelevantDocs,, N RetrievedDocsg,
Pmacro - .Z i 19
; | RetrievedDocs,, | (19)
J zk: | RelevantDocs,, N RetrievedDocs,, | (20)

— | RelevantDocs,, |

Macroaveraging gives equal weight to each class, whereas microaveraging
gives equal weight to each per-document classification decision. According
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Figure 10: Micro-averaged Recall and Precision, Macro-averaged Recall and Precision on
MED collection, with r = 100

to (17), (18), large classes dominate small classes in microaveraging. Mi-
croaveraged results provide a measure of effectiveness on the large classes
in the document collection (it may be preferred in multilabel settings). The
macroaveraged results instead, supports the effectiveness on small classes, be-
cause it gives equal weight to every class, instead of to give equal weight to
each document as in the microaveraging. Moreover, we evaluate the most rel-
evant documents in the set of topmost retrieved ones, by calculating P, Qn
and R,@Qn for each query ¢;, where n is the number of the topmost re-
trieved documents. Figure 10 shows the micro and macro averaged precision
(Pricro@n and Pp4e0@n) and micro and macro averaged recall (R, cro@n
and R,,ucr0@n) calculated on MED dataset, given 30 queries. The x-axis
represents the topmost retrieved documents by varying n from 1 up 50.
Let us notice that the tendency of micro and macro averaging of two mea-
sures are very similar; particularly the micro precision and the macro preci-
sion show an almost identical trend (variation between the two measure are
in the order of 1072). This is due to the fact that the documents are almost
equally distributed among the categories (i.e., the groups of documents which
are relevant for each query). The best averaged values of precision are ob-
tained by considering only the first few documents in the returned ranked list
of documents. Conversely the averaged value of recall improves by enlarging
the “window” of topmost retrieved documents. These results are obtained
by considering the number of dimensions (rank), » = 100 in the reduced LSI
representation (see Section 3.3).

Similarly, Figure 11 shows the tendency of micro-average and macro-
average precision and recall on the CACM dataset. The dimension r of re-
duced LSI is 800, chosen according to [50]. As described in [50], the CACM

dataset is particularly challenging for LSA: queries are formulated in natu-
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Figure 12: Micro-averaged Recall and Precision, Macro-averaged Recall and Precision on
CACM dataset (revised queries), with r = 800

ral language, close to human interpretation, rather than machine use. For
instance, queries as : “Interested in articles on robotics, motion planning par-
ticularly the geometric and combinatorial aspects. We are not interested in
the dynamics of arm motion” are not easily processable by a search system.
In this case, it is probably that also documents which deal with “dynamics
of arm motion” are retrieved.

Figure 12 shows indeed, the micro and macro averaging of recall and pre-
cision, computed after revising the original set of queries, by discarding some
simple natural language sentences that could add noise (i.e., linguistic ex-
pressions that are not directly related to the meaning of the query), in order
to make them directly machine processable. For example, expressions like
“I am interested in” are eliminated: they help the user to define the query,
but need further language processing from the search engine viewpoint. The
tendency curves of micro-average precision tends to improve, especially for
the precision that reaches values above 70%. The micro recall improvement

31



instead is minimal with respect to the recall tendency with revised queries.
The retrieval of relevant documents is tricky when the queries are expressed
in natural language, especially when they are composed of complex sentences.
The word matching achieved by LSA-component could be ineffective to re-
trieve documents: the intended meaning of the query could be not coded in
the words of the sentences explicitly. In these case, the human interpretation
is crucial to select relevant (or not) documents.

As expected, the precision is improved: a query formulation that is more
oriented to the machine processing allows retrieving more documents that
are coherent with the given query.

Comparing the micro and macro averaging of recall in Figures 11 and
12, it seems that the macro-recall tendency assumes higher values when the
number of topmost documents increases; that means that increasing the re-
trieved documents, small group of documents (classes) relevant for a certain
query get more strength; aspect that is not evident in the micro-average recall
where all the documents have the same weight. Conversely, micro precision
tendency is higher than macro-precision especially when the number of re-
trieved documents is small; this aspect is supported by the fact that retrieving
a few individual relevant documents reinforces the micro-precision, targeted
at evaluating the individual documents, whereas weakens the macro-precision
that supports the documents classes.

5.4. Analysis of effectiveness of the retrieval with respect to the discovered
topics

In the light of the performance evaluation of the individual components
that compose the whole system, this section is devoted providing a further
system evaluation in order to show conceivable relations between the IR
performance (in term of recall and precision, from the LSA component), and
the topics discovered (from the LDA component). This analysis shows the
level of description (specialization) of a topic in accurately describing the
retrieved and/or relevant documents.

As first analysis, Figure 13 shows the precision and recall, given a query
from MED collection, with respect to the number of topics involved with
respect to the number of the retrieved documents.

Let us notice that initially, the retrieved documents are effectively all the
relevant (high precision) and there is almost a 1:1 correspondence with the
topics. It seems that the number of topics increases quite linearly by increas-
ing the recall: that means a relevant document is described by a specific
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topic. Steps in the #topics curve evidences that there are some documents
with the same topic. For this query, the first 50 topmost retrieved docu-
ments are associated with 36 topics. The best recall is computed with more
than 38 documents and at least 28 topics. The recall tendency intersects
the precision at a middle point, which represents about the 57% of retrieved
documents that are relevant (precision) and, at the same time, the 57% of
relevant document that are retrieved (recall), with 20 topics, on 27 docu-
ments. This evidences once again that the topics are very specialized and
specific for each retrieved document.

Figure 14 instead shows the tendency of recall, precision and number of
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Figure 13: Recall, Precision and Topics evaluated for the query n.5: “the crossing of fatty
acids through the placental barrier. normal fatty acid levels in placenta and fetus.” from

MED collection

topics on the whole set of queries from MED dataset. Precisely, the figure
plots the average value of recall, precision and topics on all the queries. The
curves behaviour is similar: at the intersection point of recall and precision
(whose value is about 50%), the topics involved are 17, on about 35 docu-
ments retrieved. On average, there is a new topic that characterizes each two
of documents. Similar observations hold for the CACM dataset, shown in
Figure 15: the recall intersects the precision when about 20 documents have
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been retrieved and the number of topics is 14.
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Figure 14: Recall, Precision and Number of Topics evaluated on all the queries from MED
collection

5.5. A simple annotation system

Although the primary goal of our framework is an IR system, equipped
with the ontological support, it can work as a basic annotator: as described in
Section 4.1.3, the Stanford parser identifies also named entities which appear
among the words of a topic.

Although this framework was not developed specifically for the semantic
annotation, it has been tested as an annotator and compared with other typ-
ical semantic annotation platforms. The precision, recall, and F-measure are
measures often used to evaluate the effectiveness of annotation systems. A
slightly modified version of the recall and precision has been defined, to work
with words playing the role of annotation [51]. Annotation can be individ-
ual terms or compound terms. Let human_ann be the set of all annotations
provided by a human, whereas where acc_ann and inacc_ann refer to annota-
tions generated semi-automatically by a semantic annotation platform. The
recall and precision for semantic annotation could be expressed as follows:

AnnotationRecall = —-"" (21)
human_ann
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Figure 15: Recall, Precision and Number of Topics evaluated on all the queries from
CACM collection

. o acc_ann
AnnotationPrecision = : (22)
acc_ann + inacc_ann

As stated in [35], it is not really feasible to directly compare the annotation
quality of different tools because of unavailability of implementations, se-
mantic models and comparable data sets. For this purpose, an approximate
comparison was applied, by considering the author-reported performance pre-
viously summarized in Table 4 [51].

Our framework provides interesting performance, especially considering the
fact that it was not designed for the semantic annotation. In the current
version, it overcomes the performance of the third tool in the table, with
discrete values in terms of precision, recall and F-measure. In order to im-
prove the performance, a first improvement should be an extension of the
named entity recognition: in our framework, it is limited to find the named
entities that are in the term set computed for the topic modeling. The LDA
component indeed, provides only individual words, so compound named en-
tities are lost. As a future work, an enhancement of the text processing has
been taken into account, including the improvement of the named entities
recognition activity.
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Table 4: Quality performance rates for different tools.

Framework Precision | Recall | F-measure
Armadillo 91.0 74.0 87.0
KIM 86.0 82.0 84.0
Ont-O-Mat:PANKOW 65.0 28.2 24.9
SemTag 82.0 n/a n/a
Cerno 90.6 90.8 90.7
Our Framework 66.7 42.8 52.1

6. Conclusions

As the number of online web resources continues to increase, the need
of knowledge structuring is becoming a crucial theme in many approaches
concerning the Knowledge Modeling and Harvesting domain. To address this
issue, our approach provides an enhanced document retrieval approach that
helps the user to seek documents that are relevant for the content quality.

The framework modeling exploits two well-known latent models, LDA

and LSA that are often individually used in that domain; the merging of
these models represents the novelty of our contribution: a semantic net of
knowledge in form of an ontology that gathers all the document content. An
additional contribution is the run-time building of semantic net associated to
the documents retrieved by the submitted query. Our framework generates
indeed, for each retrieved document, an ontological structure that describes
the document content, at different semantic granulation: topics, concepts
and terms.
The ontological representation suits to be explored and visualized across all
the granularity levels, starting from a document matching the query (coarse
granularity), to the topic that is associated with the documents, until to the
words describing a concept into a topic (fine granularity).

In order to valide the approach, the experimentation concentrates on
showing the effectiveness of the principal components of the framework. Al-
though the framework achieves an enhanced document retrieval, the basic
IR approach has been accomplished by the LSA component. Traditional IR
measures has been used to assess the system performance, by showing the
trend of micro and macro precision and recall on the query collection. Then,
the quality of topics extracted by LDA component from the documents has
been validated by the coherence measure in the topic words. Since the two
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components feed the knowledge modeling, a study discovers the relationship
between the topics extracted and the relevant documents.

The actual contribution is the knowledge modeling supported by an ad-hoc
defined ontology, that join together all the extracted data in a comprehensive
net (also enriched by external lexical resources). Since it is easy to measure
the quality of an ontology generated, the system performance has been evalu-
ated as a semantic annotator, by a comparison with other existing annotation
systems. In nutshell, our system achieves the following tasks:

e typical search engine: returns relevant documents, matching the keyword-
based user query;

e graphical ontology navigator: retrieved documents can be explored in-
side the ontology by following semantic relations.

e knowledge model: each document is semantically connected to its own
content: the documents is split in topics, words, keyphrases, but, at
the same time, it is connected to other documents, (with) other topics,
words, etc.

e linked data: this semantic network is compliant to the LOD (Linked
Open Data)!! principles, i.e., it is build on the standard Web technolo-
gies (HTTP, RDF, URIs) can query the data on the net, draw inferences
using external vocabularies. Let us remark that our ontology is mod-
eled to connect the extracted information with external resources such
as WordNet and WordNet Domain. This aspect holds the underpinning
foundations of the linked data.

e semantic annotator: topic, words, key-phrases generated by the anal-
ysis of extracted terms as well as the WordNet-supported semantic
relations describes individual documents by semantic tagging.

A future extension is to use additional external resources such as Con-
ceptNet or BabelNet [52], in order to better individuate the topic context for
each document. To this end, also a deeper textual analysis should be taken
into account.

Uhttps://www.w3.org/standards /semanticweb/data

37



7. References

1]

C. Matuszek, J. Cabral, M. Witbrock, J. Deoliveira, An introduction to
the syntax and content of cyc, in: Proceedings of the 2006 AAAI Spring
Symposium on Formalizing and Compiling Background Knowledge and

Its Applications to Knowledge Representation and Question Answering,
2006, pp. 44-49.

G. A. Miller, Wordnet: A lexical database for english, Communications
of the ACM 38 (1995) 39-41.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives,
Dbpedia: A nucleus for a web of open data, in: Proceedings of the 6th
International The Semantic Web and 2Nd Asian Conference on Asian Se-
mantic Web Conference, ISWC’07/ASWC’07, Springer-Verlag, Berlin,
Heidelberg, 2007, pp. 722-735.

URL http://dl.acm.org/citation.cfm?id=1785162.1785216

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: A
collaboratively created graph database for structuring human knowl-
edge, in: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 08, ACM, New York, NY,
USA, 2008, pp. 1247-1250. doi:10.1145/1376616.1376746.

URL http://doi.acm.org/10.1145/1376616.1376746

R. Speer, C. Havasi, Representing general relational knowledge in con-
ceptnet 5, in: Proceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC-2012), Istanbul, Turkey,
May 23-25, 2012, 2012, pp. 3679-3686.

F. Suchanek, G. Weikum, Knowledge harvesting in the big-data era, in:
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, ACM, New York, NY, USA, 2013,
pp. 933-938. doi:10.1145/2463676.2463724.

URL http://doi.acm.org/10.1145/2463676.2463724

U. Kruschwitz, M.-D. Albakour, J. Niu, J. Leveling, N. Nanas, Y. Kim,
D. Song, M. Fasli, A. De Roeck, Moving towards Adaptive Search in
Digital Libraries, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011,
pp. 41-60. doi:10.1007/978-3-642-23160-5_4.

38



8]

[11]

[13]

[14]

[15]

X. Liu, Y. Song, S. Liu, H. Wang, Automatic taxonomy construc-
tion from keywords, in: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing, KDD 12, ACM, New York, NY, USA, 2012, pp. 1433-1441.
doi:10.1145/2339530.2339754.

URL http://doi.acm.org/10.1145/2339530.2339754

J. Diederich, W.-T. Balke, et al., Automatically created concept graphs
using descriptive keywords in the medical domain, Methods of informa-
tion in medicine 47 (3) (2008) 241-250.

L. Yuan, Y. Ge, F. Yin, Q. J. Wu, A Rapid Learning Approach for the
Knowledge Modeling of Radiation Therapy Plan, Springer International
Publishing, Cham, 2015, pp. 1492-1494. doi:10.1007/978-3-319-19387-
8.362.

R. Navigli, P. Velardi, A. Cucchiarelli, F. Neri, Quantitative and quali-
tative evaluation of the ontolearn ontology learning system, in: Proceed-
ings of the 20th International Conference on Computational Linguistics,
COLING ’04, Association for Computational Linguistics, Stroudsburg,
PA, USA, 2004. doi:10.3115/1220355.1220505.

URL http://dx.doi.org/10.3115/1220355. 1220505

M. Clark, Y. Kim, U. Kruschwitz, D. Song, D. Albakour, S. Dignum,
U. C. Beresi, M. Fasli, A. De Roeck, Automatically structuring domain
knowledge from text: An overview of current research, Inf. Process.
Manage. 48 (3) (2012) 552-568. doi:10.1016/j.ipm.2011.07.002.

URL http://dx.doi.org/10.1016/j.ipm.2011.07.002

A. Miles, B. Matthews, M. Wilson, D. Brickley, Skos core: Simple knowl-
edge organisation for the web, in: Proceedings of the 2005 International
Conference on Dublin Core and Metadata Applications: Vocabularies in
Practice, DCMI "05, Dublin Core Metadata Initiative, 2005, pp. 1:1-1:9.
URL http://dl.acm.org/citation.cfm?id=1383465. 1383467

B. Magnini, G. Cavagli, Integrating subject field codes into wordnet,
2000, pp. 1413-1418.

R. Navigli, P. Velardi, From glossaries to ontologies: Extracting se-
mantic structure from textual definitions, in: Proceedings of the 2008

39



[16]

[19]

[20]

[21]

[22]

Conference on Ontology Learning and Population: Bridging the Gap Be-
tween Text and Knowledge, IOS Press, Amsterdam, The Netherlands,
The Netherlands, 2008, pp. 71-87.

URL http://dl.acm.org/citation.cfm?id=1563823.1563830

J. Yao, V. V. Raghavan, 7Z. Wu, Web information fusion:
A review of the state of the art, Information Fusion 9 (4)
(2008) 446 — 449, special Issue on Web Information Fusion.
doi:http://dx.doi.org/10.1016/j.inffus.2008.05.002.

S. Staab, R. Studer, Handbook on Ontologies, 2nd Edition, Springer
Publishing Company, Incorporated, 2009.

A. Fader, S. Soderland, O. Etzioni, Identifying relations for open in-
formation extraction, in: Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 11, Association
for Computational Linguistics, Stroudsburg, PA, USA, 2011, pp. 1535—
1545.

URL http://dl.acm.org/citation.cfm?id=2145432.2145596

F. M. Suchanek, G. Kasneci, G. Weikum, Yago: A core of semantic
knowledge, in: Proceedings of the 16th International Conference on
World Wide Web, WWW 07, ACM, New York, NY, USA, 2007, pp.
697-706.

Z. Kozareva, E. Hovy, A semi-supervised method to learn and construct
taxonomies using the web, in: Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, EMNLP 10, As-
sociation for Computational Linguistics, Stroudsburg, PA, USA, 2010,
pp. 1110-1118.

URL http://dl.acm.org/citation.cfm?id=1870658.1870766

R. Navigli, Word sense disambiguation: A survey, ACM Comput. Surv.
41 (2) (2009) 10:1-10:69. doi:10.1145/1459352.1459355.
URL http://doi.acm.org/10.1145/1459352.1459355

G. Erkan, D. R. Radev, Lexrank: Graph-based lexical centrality as
salience in text summarization, J. Artif. Int. Res. 22 (1) (2004) 457—
479.

URL http://dl.acm.org/citation.cfm?id=1622487.1622501

40



23]

[24]

[25]

[20]

[27]

28]

[29]

R. Speck, A.-C. N. Ngomo, Named entity recognition using fox, in: Pro-
ceedings of the 2014 International Conference on Posters &#38; Demon-
strations Track - Volume 1272, ISWC-PD’14, CEUR-WS.org, Aachen,
Germany, Germany, 2014, pp. 85-88.

URL http://dl.acm.org/citation.cfm?id=2878453.2878475

D. Reforgiato Recupero, A. G. Nuzzolese, S. Consoli, V. Presutti,
M. Mongiovi, S. Peroni, Extracting knowledge from text using shel-
don, a semantic holistic framework for linked ontology data, in: Pro-
ceedings of the 24th International Conference on World Wide Web,
WWW 15 Companion, ACM, New York, NY, USA, 2015, pp. 235-
238. do0i:10.1145/2740908.2742842.

URL http://doi.acm.org/10.1145/2740908. 2742842

V. Presutti, F. Draicchio, A. Gangemi, Knowledge Extraction Based on
Discourse Representation Theory and Linguistic Frames, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 114-129. doi:10.1007/978-3-
642-33876-2_12.

V. Loia, W. Pedrycz, S. Senatore, M. 1. Sessa, Web navigation support
by means of proximity-driven assistant agents, Journal of the Associ-
ation for Information Science and Technology 57 (4) (2006) 515-527.
d0i:10.1002/asi.20306.

URL http://dx.doi.org/10.1002/asi.20306

F. Zhao, Z. Sun, H. Jin, Topic-centric and semantic-aware retrieval
system for internet of things, Information Fusion 23 (2015) 33 — 42.
doi:http://dx.doi.org/10.1016/j.inffus.2014.01.001.

J. Bhogal, A. Macfarlane, P. Smith, A review of ontology based query
expansion, Information Processing & Management 43 (4) (2007) 866 —
886. doi:http://dx.doi.org/10.1016/j.ipm.2006.09.003.

P. Cimiano, S. Handschuh, S. Staab, Towards the self-annotating web,
in: Proceedings of the 13th International Conference on World Wide
Web, WWW ’04, ACM, New York, NY, USA, 2004, pp. 462-471.
doi:10.1145/988672.988735.

URL http://doi.acm.org/10.1145/988672.988735

41



[30]

[31]

[32]

[33]

[34]

[35]

C. De Maio, G. Fenza, M. Gallo, V. Loia, S. Senatore, Formal and
relational concept analysis for fuzzy-based automatic semantic annota-
tion, Applied Intelligence 40 (1) (2014) 154-177. doi:10.1007/s10489-
013-0451-7.

URL http://dx.doi.org/10.1007/s10489-013-0451-7

V. Uren, P. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta,
F. Ciravegna, Semantic annotation for knowledge management: Re-
quirements and a survey of the state of the art, Web Semant. 4 (1)
(2006) 14-28. doi:10.1016/j.websem.2005.10.002.

URL http://dx.doi.org/10.1016/j.websem.2005.10.002

B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, M. Gora-
nov, KIM — Semantic Annotation Platform, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003, pp. 834-849. doi:10.1007/978-3-540-39718-
2.53.

S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Ka-
nungo, K. S. McCurley, S. Rajagopalan, A. Tomkins, J. A. Tomlin,
J. Y. Zien, A case for automated large-scale semantic annotation, Web
Semantics: Science, Services and Agents on the World Wide Web 1 (1)
(2003) 115 — 132. doi:http://dx.doi.org/10.1016/j.websem.2003.07.006.

F. Ciravegna, S. Chapman, A. Dingli, Y. Wilks, Learning to harvest
information for the semantic web, in: C. Bussler, J. Davies, D. Fensel,
R. Studer (Eds.), The Semantic Web: Research and Applications, Vol.
3053 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2004, pp. 312-326. doi:10.1007/978 — 3 — 540 — 25956 — 592.

N. Kiyavitskaya, N. Zeni, J. R. Cordy, L. Mich, J. Mylopoulos,
Cerno: Light-weight tool support for semantic annotation of tex-
tual documents, Data & Knowledge Engineering 68 (12) (2009) 1470
— 1492, including Special Section: 21st {IEEE} International Sym-
posium on Computer-Based Medical Systems (IEEE {CBMS} 2008)
Seven selected and extended papers on Biomedical Data Mining.
doi:http://dx.doi.org/10.1016 /j.datak.2009.07.012.

V. Tablan, K. Bontcheva, I. Roberts, H. Cunningham, Mmir: An
open-source semantic search framework for interactive information seek-
ing and discovery, Web Semantics: Science, Services and Agents

42



[37]

[38]

[42]

on the World Wide Web 30 (2015) 52 — 68, semantic Search.
doi:http://dx.doi.org/10.1016 /j.websem.2014.10.002.

D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, the
Journal of machine Learning research 3 (2003) 993-1022.

S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, R. Harsh-
man, Using latent semantic analysis to improve access to textual infor-
mation, in: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 88, ACM, New York, NY, USA, 1988, pp.
281-285. doi:10.1145/57167.57214.

URL http://doi.acm.org/10.1145/57167.57214

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harsh-
man, Indexing by latent semantic analysis, Journal of the American
Society for Information Science 41 (6) (1990) 391-407.

M. W. Berry, S. T. Dumais, G. W. O’Brien, Using linear algebra for
intelligent information retrieval, STAM review 37 (4) (1995) 573-595.

J. H. Lau, D. Newman, S. Karimi, T. Baldwin, Best topic word selection
for topic labelling, in: Proceedings of the 23rd International Conference
on Computational Linguistics: Posters, COLING ’10, Association for
Computational Linguistics, Stroudsburg, PA, USA, 2010, pp. 605-613.
URL http://dl.acm.org/citation.cfm?id=1944566.1944635

Y. Zhuang, H. Gao, F. Wu, S. Tang, Y. Zhang, 7. Zhang,
Probabilistic word selection via topic modeling, IEEE Transactions
on Knowledge and Data Engineering 27 (6) (2015) 1643-1655.
doi:10.1109/TKDE.2014.2377727.

T. Sabbah, A. Selamat, M. Ashraf, T. Herawan, Effect of thesaurus size
on schema matching quality, Knowledge-Based Systems 71 (2014) 211 —
226. doi:http://dx.doi.org/10.1016/j.knosys.2014.08.002.

M. D. Marneffe, C. D. Manning, Stanford typed dependencies manual
(2008).

R. A. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

43



[46]

[48]

[49]

[50]

[51]

[52]

K. Stevens, P. Kegelmeyer, D. Andrzejewski, D. Buttler, Exploring
topic coherence over many models and many topics, in: Proceedings of
the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, EMNLP-
CoNLL ’12, Association for Computational Linguistics, Stroudsburg,
PA, USA, 2012, pp. 952-961.

URL http://dl.acm.org/citation.cfm?id=2390948.2391052

D. Mimno, H. M. Wallach, E. Talley, M. Leenders, A. McCallum, Opti-
mizing semantic coherence in topic models, in: Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, EMNLP
11, Association for Computational Linguistics, Stroudsburg, PA, USA,
2011, pp. 262-272.

URL http://dl.acm.org/citation.cfm?id=2145432.2145462

Y. Yang, An evaluation of statistical approaches to text categorization,
Information retrieval 1 (1-2) (1999) 69-90.

J. J. Rocchio, Evaluation viewpoint in document retrieval, Information
Storage and Retrieval, Report ISR-9, to the National Science Founda-
tion, Section XXI, Harvard Computation Laboratory.

F. A. Gonzélez, J. C. Caicedo, Quantum latent semantic analysis, in:
Advances in Information Retrieval Theory, Springer, 2011, pp. 52-63.

L. Reeve, H. Han, Survey of semantic annotation platforms, in:
Proceedings of the 2005 ACM Symposium on Applied Comput-
ing, SAC ’05, ACM, New York, NY, USA, 2005, pp. 1634-1638.
doi:10.1145/1066677.1067049.

URL http://doi.acm.org/10.1145/1066677.1067049

R. Navigli, S. P. Ponzetto, BabelNet: The automatic construction, eval-
uation and application of a wide-coverage multilingual semantic net-
work, Artificial Intelligence 193 (2012) 217-250.

44





