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Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3
with a single Dirac cone on the surface
Haijun Zhang1, Chao-Xing Liu2, Xiao-Liang Qi3, Xi Dai1, Zhong Fang1 and Shou-Cheng Zhang3*
Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such
systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to
scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of
topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So
far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we
present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3,
Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not.
These topological insulators have robust and simple surface states consisting of a single Dirac cone at the 0 point. In addition,
we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room
temperature. We further present a simple and unified continuum model that captures the salient topological features of this
class of materials.

Recently, the subject of time-reversal-invariant topological
insulators has attracted great attention in condensed-matter
physics1–12. Topological insulators in two or three dimensions

have insulating energy gaps in the bulk, and gapless edge or
surface states on the sample boundary that are protected by
time-reversal symmetry. The surface states of a three-dimensional
(3D) topological insulator consist of an odd number of massless
Dirac cones, with a single Dirac cone being the simplest case.
The existence of an odd number of massless Dirac cones on the
surface is ensured by the Z2 topological invariant7–9 of the bulk.
Furthermore, owing to the Kramers theorem, no time-reversal-
invariant perturbation can open up an insulating gap at the Dirac
point on the surface. However, a topological insulator can become
fully insulating both in the bulk and on the surface if a time-
reversal-breaking perturbation is introduced on the surface. In
this case, the electromagnetic response of three-dimensional (3D)
topological insulators is described by the topological θ term of
the form Sθ = (θ/2π)(α/2π)

∫
d3x dt E ·B, where E and B are

the conventional electromagnetic fields and α is the fine-structure
constant10. θ = 0 describes a conventional insulator, whereas θ =π
describes topological insulators. Such a physically measurable and
topologically non-trivial response originates from the odd number
of Dirac fermions on the surface of a topological insulator.

Soon after the theoretical prediction5, the 2D topological
insulator exhibiting the quantum spin Hall effect was experimen-
tally observed in HgTe quantum wells6. The electronic states of the
2D HgTe quantum wells are well described by a 2+1-dimensional
Dirac equation where the mass term is continuously tunable by
the thickness of the quantum well. Beyond a critical thickness,
the Dirac mass term of the 2D quantum well changes sign from
being positive to negative, and a pair of gapless helical edge states
appears inside the bulk energy gap. This microscopic mechanism
for obtaining topological insulators by inverting the bulk Dirac
gap spectrum can also be generalized to other 2D and 3D sys-
tems. The guiding principle is to search for insulators where the

1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, 2Center for
Advanced Study, Tsinghua University, Beijing 100084, China, 3Department of Physics, McCullough Building, Stanford University, Stanford, California
94305-4045, USA. *e-mail: sczhang@stanford.edu.

Quintuple
layer

B

B

C

A

C

A

C

t1

t2 t3

z

x

y

Se1’

Se1

Bi1

Se2

Bi1’

Se1’

Se1

x

y

Se2

Bi

Se1

A site
B site
C site

a b

c

Figure 1 | Crystal structure. a, Crystal structure of Bi2Se3 with three
primitive lattice vectors denoted as t1,2,3. A quintuple layer with
Se1–Bi1–Se2–Bi1′–Se1′ is indicated by the red square. b, Top view along
the z-direction. The triangle lattice in one quintuple layer has three different
positions, denoted as A, B and C. c, Side view of the quintuple layer
structure. Along the z-direction, the stacking order of Se and Bi atomic
layers is ···–C(Se1′)–A(Se1)–B(Bi1)–C(Se2)–A(Bi1′)–B(Se1′)–C(Se1)–···.
The Se1 (Bi1) layer can be related to the Se1′ (Bi1′) layer by an inversion
operation in which the Se2 atoms have the role of inversion centres.

conduction and the valence bands have the opposite parity, and
a ‘band inversion’ occurs when the strength of some parameter,
say the spin–orbit coupling (SOC), is tuned. For systems with
inversion symmetry, a method based on the parity eigenvalues of
band states at time-reversal-invariant points can be applied13. On
the basis of this analysis, the BixSb1−x alloy has been predicted
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Figure 2 | Band structure, Brillouin zone and parity eigenvalues. a,b, Band structure for Bi2Se3 without (a) and with (b) SOC. The dashed line indicates
the Fermi level. c, Brillouin zone for Bi2Se3 with space group R3m. The four inequivalent time-reversal-invariant points are 0(0,0,0), L(π,0,0), F(π,π,0)
and Z(π,π,π). The blue hexagon shows the 2D Brillouin zone of the projected (1, 1, 1) surface, in which the high-symmetry k points 0, K and M are labelled.
d, The parity of the band at the 0 point for the four materials Sb2Te3, Sb2Se3, Bi2Se3 and Bi2Te3. Here, we show the parities of fourteen occupied bands,
including five s bands and nine p bands, and the lowest unoccupied band. The product of the parities for the fourteen occupied bands is given in brackets on
the right of each row.

to be a topological insulator for a small range of x , and recently,
surface states with an odd number of crossings at the Fermi energy
have been observed in angle-resolved photoemission spectroscopy
(ARPES) experiments12.

As BixSb1−x is an alloy with random substitutional disorder,
its electronic structures and dispersion relations are only defined
within the mean field, or the coherent potential approximation.
Its surface states are also extremely complex, with as many as
five or possibly more dispersion branches, which are not easily
describable by simple theoretical models. Alloys also tend to have
impurity bands inside the nominal bulk energy gap, which could
overlap with the surface states. Given the importance of topological
insulators as new states of quantum matter, it is important to
search for material systems that are stoichiometric crystals with
well-defined electronic structures, preferably with simple surface
states, and describable by simple theoretical models. Here, we
focus on layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3
and Bi2Se3. Our theoretical calculations predict that Sb2Te3, Bi2Te3
and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. Most
importantly, our theory predicts that Bi2Se3 has a topologically
non-trivial energy gap of 0.3 eV, larger than the energy scale of
room temperature. The topological surface states for these crystals
are extremely simple, described by a single gapless Dirac cone
at the k = 0 0 point in the surface Brilloiun zone. We also
propose a simple and unified continuum model that captures
the salient topological features of this class of materials. In this

precise sense, this class of 3D topological insulators shares the
great simplicity of the 2D topological insulators realized in the
HgTe quantum wells.

Band structure and parity analysis
Bi2Se3, Bi2Te3, Sb2Te3 and Sb2Se3 share the same rhombohedral
crystal structure with the space group D5

3d (R3̄m) with five atoms
in one unit cell. We take Bi2Se3 as an example and show its
crystal structure in Fig. 1a, which has layered structures with a
triangle lattice within one layer. It has a trigonal axis (three-fold
rotation symmetry), defined as the z axis, a binary axis (two-fold
rotation symmetry), defined as the x axis, and a bisectrix axis
(in the reflection plane), defined as the y axis. The material
consists of five-atom layers arranged along the z-direction, known
as quintuple layers. Each quintuple layer consists of five atoms
with two equivalent Se atoms (denoted as Se1 and Se1′ in Fig. 1c),
two equivalent Bi atoms (denoted as Bi1 and Bi1′ in Fig. 1c)
and a third Se atom (denoted as Se2 in Fig. 1c). The coupling
is strong between two atomic layers within one quintuple layer
but much weaker, predominantly of the van der Waals type,
between two quintuple layers. The primitive lattice vectors t1,2,3
and rhombohedral unit cells are shown in Fig. 1a. The Se2 site has
the role of an inversion centre and under an inversion operation,
Bi1 is changed to Bi1′ and Se1 is changed to Se1′. The existence of
inversion symmetry enables us to construct eigenstates with definite
parity for this system.
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Figure 3 | Band sequence. a, Schematic diagram of the evolution from the atomic px,y,z orbitals of Bi and Se into the conduction and valence bands of
Bi2Se3 at the 0 point. The three different stages (I), (II) and (III) represent the effect of turning on chemical bonding, crystal-field splitting and SOC,
respectively (see text). The blue dashed line represents the Fermi energy. b, The energy levels |P1+z 〉 and |P2−z 〉 of Bi2Se3 at the 0 point versus an artificially
rescaled atomic SOC λ(Bi)= xλ0(Bi)= 1.25x eV,λ(Se)= xλ0(Se)=0.22x eV (see text). A level crossing occurs between these two states at x= xc'0.6.

Ab initio calculations for Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3 are
carried out in the framework of the Perdew–Burke–Ernzerhof-
type14 generalized gradient approximation of the density functional
theory. The BSTATE package15 with the plane-wave pseudo-
potential method is used with a k-point grid taken as 10×10×10
and the kinetic energy cutoff fixed to 340 eV. For Sb2Te3, Bi2Te3
and Bi2Se3, the lattice constants are chosen from experiments,
whereas for Sb2Se3, the lattice parameters are optimized in
the self-consistent calculation for rhombohedral crystal structure
(a=4.076Å, c=29.830Å), owing to the lack of experimental data.

Our results are consistent with the previous calculations16,17. In
particular, we note that Bi2Se3 has an energy gap of about 0.3 eV,
which agrees well with the experimental data (about 0.2–0.3 eV;
refs 18, 19). In the following, we take the band structure of Bi2Se3
as an example. Figure 2a and b show the band structure of Bi2Se3
without and with SOC, respectively. By comparing the two figure
parts, one can see clearly that the only qualitative change induced
by turning on SOC is an anti-crossing feature around the 0 point,
which thus indicates an inversion between the conduction band
and valence band due to SOC effects, suggesting that Bi2Se3 is a
topological insulator. To firmly establish the topological nature
of this material, we follow the method proposed by Fu and
Kane13. Thus, we calculate the product of the parities of the Bloch
wavefunction for the occupied bands at all time-reversal-invariant
momenta 0,F ,L,Z in the Brillouin zone. As expected, we find
that at the 0 point, the parity of one occupied band is changed
on turning on SOC, whereas the parity remains unchanged for
all occupied bands at the other momenta F ,L,Z . As the system
without SOC is guaranteed to be a trivial insulator, we conclude
that Bi2Se3 is a strong topological insulator. The same calculation
is carried out for the other three materials, from which we find that
Sb2Te3 and Bi2Te3 are also strong topological insulators, and Sb2Se3
is a trivial insulator. The parity eigenvalues of the highest 14 bands
below the Fermi level and the first conduction band at the 0 point
are listed in Fig. 2d. From this table we can see that the product
of parities of occupied bands at the 0 point changes from the
trivial material Sb2Se3 to the three non-trivial materials, owing to an
exchange of the highest occupied state and the lowest unoccupied
state. This agrees with our earlier analysis that an inversion between
the conduction band and valence band occurs at the0 point.

To get a better understanding of the inversion and the parity
exchange, we start from the atomic energy levels and consider the
effect of crystal-field splitting and SOC on the energy eigenvalues

at the 0 point. This is summarized schematically in three stages
(I), (II) and (III) in Fig. 3a. As the states near the Fermi surface
are mainly coming from p orbitals, we will neglect the effect of s
orbitals and start from the atomic p orbitals of Bi (6s26p3) and Se
(4s24p4). In stage (I), we consider the chemical bonding between Bi
and Se atoms within a quintuple layer, which is the largest energy
scale in the current problem. First we can recombine the orbitals
in a single unit cell according to their parity, which results in three
states (two odd, one even) from each Se p orbital and two states
(one odd, one even) from each Bi p orbital. The formation of
chemical bonding hybridizes the states on Bi and Se atoms, thus
pushing down all of the Se states and lifting up all of the Bi states. In
Fig. 3a, these five hybridized states are labelled as |P1±x,y,z 〉, |P2

±

x,y,z 〉

and |P0−x,y,z 〉, where the superscripts +,− stand for the parity of
the corresponding states. In stage (II), we consider the effect of
the crystal-field splitting between different p orbitals. According
to the point-group symmetry, the pz orbital is split from the px
and py orbitals whereas the last two remain degenerate. After this
splitting, the energy levels closest to the Fermi energy turn out to
be the pz levels |P1+z 〉 and |P2

−

z 〉. In the last stage (III), we take
into account the effect of SOC. The atomic SOC Hamiltonian is
given by Hso = λl ·S, with l,S being the orbital and spin angular
momentum, and λ is the SOC parameter. The SOC Hamiltonian
mixes spin and orbital angular momenta while preserving the total
angular momentum, which thus leads to a level repulsion between
|P1+z ,↑〉 and |P1

+

x+iy ,↓〉, and similar combinations. Consequently,
the |P1+z ,↑ (↓)〉 state is pushed down by the SOC effect and the
|P2−z ,↑ (↓)〉 state is pushed up. If the SOC is large enough (λ>λc),
the order of these two levels is reversed. To see this inversion process
explicitly, we also calculate the energy levels |P1+z 〉 and |P2

−

z 〉 for
a model Hamiltonian of Bi2Se3 with artificially rescaled atomic
SOC parameters λ(Bi) = xλ0(Bi), λ(Se) = xλ0(Se), as shown in
Fig. 3b. Here, λ0(Bi)=1.25 eV and λ0(Se)=0.22 eV are the realistic
values of Bi and Se atomic SOC parameters, respectively20. From
Fig. 3b, one can see clearly that a level crossing occurs between |P1+z 〉
and |P2−z 〉 when the SOC is about 60% of the realistic value. As
these two levels have opposite parity, the inversion between them
drives the system into a topological insulator phase. Therefore,
the mechanism for the 3D topological insulator in this system is
exactly analogous to the mechanism in the 2D topological insulator
HgTe. In summary, through the analysis above we find that Bi2Se3
is topologically non-trivial due to the inversion between two pz
orbitals with opposite parity at the 0 point. Similar analyses can
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Figure 4 | Surface states. a–d, Energy and momentum dependence of the LDOS for Sb2Se3 (a), Sb2Te3 (b), Bi2Se3 (c) and Bi2Te3 (d) on the [111] surface.
Here, the warmer colours represent higher LDOS. The red regions indicate bulk energy bands and the blue regions indicate bulk energy gaps. The surface
states can be clearly seen around the 0 point as red lines dispersing in the bulk gap for Sb2Te3, Bi2Se3 and Bi2Te3. No surface state exists for Sb2Se3.

be carried out on the other three materials, from which we see that
Sb2Te3 and Bi2Te3 are qualitatively the same as Bi2Se3, whereas the
SOCof Sb2Te3 is not strong enough to induce such an inversion.

Topological surface states
The existence of topological surface states is one of the most
important properties of the topological insulators. To see the
topological features of the four systems explicitly, we calculate the
surface states of these four systems on the basis of an ab initio
calculation. First we construct the maximally localized Wannier
function (MLWF) from the ab initio calculation using the method
developed by Marzari and co-workers21,22. We divide the semi-
infinite system into a surface slab with finite thickness and the
remaining part as the bulk. The MLWF hopping parameters for the
bulk part can be constructed from the bulk ab initio calculation, and
the ones for the surface slab can be constructed from the ab initio
calculation of the slab, in which the surface correction to the lattice
constants and band structure have been considered self-consistently
and the chemical potential is determined by the charge neutrality
condition.With these bulk and surfaceMLWFhopping parameters,
we use an iterative method23,24 to obtain the surface Green’s
function of the semi-infinite system. The imaginary part of the
surface Green’s function is the local density of states (LDOS), from
which we can obtain the dispersion of the surface states. The surface
LDOSon the [111] surface for all four systems is shown in Fig. 4. For
Sb2Te3, Bi2Se3 andBi2Te3, one can clearly see the topological surface
states that form a single Dirac cone at the 0 point. In comparison,
Sb2Se3 has no surface state and is a topologically trivial insulator.
Thus, the surface-state calculation agrees well with the bulk parity
analysis, and confirms conclusively the topologically non-trivial
nature of the three materials. For Bi2Se3, the Fermi velocity of the
topological surface states is vF' 5.0×105 ms−1, which is similar to
that of the other two materials.

Low-energy effective model
As the topological nature is determined by the physics near the 0
point, it is possible to write down a simple effective Hamiltonian

to characterize the low-energy long-wavelength properties of
the system. Starting from the four low-lying states |P1+z ,↑ (↓)〉
and |P2−z ,↑ (↓)〉 at the 0 point, such a Hamiltonian can be
constructed by the theory of invariants25 for the finite wave
vector k. On the basis of the symmetries of the system, the
generic form of the 4× 4 effective Hamiltonian can be written
down up to the order of O(k2), and the tunable parameters in
the Hamiltonian can be obtained by fitting the band structure
of our ab initio calculation. The important symmetries of the
system are time-reversal symmetry T , inversion symmetry I and
three-fold rotation symmetry C3 along the z axis. In the basis of
(|P1+z ,↑〉, |P2

−

z ,↑〉, |P1
+

z ,↓〉, |P2
−

z ,↓〉), the representation of the
symmetry operations is given by T =K · iσ y

⊗ I2×2, I = I2×2⊗ τ3
andC3= exp(i(π/3)σ z

⊗I2×2), where K is the complex conjugation
operator, σ x,y,z and τ x,y,z denote the Pauli matrices in the spin and
orbital space, respectively. By requiring these three symmetries and
keeping only the terms up to quadratic order in k, we obtain the
following generic form of the effective Hamiltonian:

H (k) = ε0(k)I4×4+

M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0
0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)


+ o(k2) (1)

with k± = kx ± iky , ε0(k)= C+D1k2z +D2k2⊥ and M(k)=M −B1
k2z − B2k2⊥. By fitting the energy spectrum of the effective
Hamiltonian with that of the ab initio calculation, the parameters
in the effective model can be determined. For Bi2Se3, our fitting
leads to M = 0.28 eV, A1 = 2.2 eVÅ, A2 = 4.1 eVÅ, B1 = 10 eVÅ2,
B2= 56.6 eVÅ2, C =−0.0068 eV, D1= 1.3 eVÅ2, D2= 19.6 eVÅ2.
Except for the identity term ε0(k), the Hamiltonian (1) is
nothing but the 3D Dirac model with uniaxial anisotropy along
the z-direction and k-dependent mass terms. From the fact

NATURE PHYSICS | VOL 5 | JUNE 2009 | www.nature.com/naturephysics 441
© 2009 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys1270
http://www.nature.com/naturephysics


ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1270

M ,B1,B2 > 0, we can see that the order of the bands |T1+z ,↑ (↓)〉
and |T2−z ,↑ (↓)〉 is inverted around k= 0 compared with large k,
which correctly characterizes the topologically non-trivial nature
of the system. Such an effective Dirac model can be used for
further theoretical study of the Bi2Se3 system, as long as the
low-energy properties are considered. For example, as one of the
most important low-energy properties of the topological insulators,
the topological surface states can be obtained from diagonalizing
the effective Hamiltonian equation (1) with an open boundary
condition, with the same method used in the study of the
2D quantum spin Hall insulator26. For a surface perpendicular
to the z-direction (that is, the [111] direction), kx ,ky are still
good quantum numbers but kz is not. By substituting −i∂z for
kz in equation (1), one can write down the 1D Schrödinger
equations for the wavefunctions ψkx ,ky (z). For kx = ky = 0, there
are two renormalizable surface-state solutions on the half infinite
space z > 0, denoted by |ψ0↑〉, |ψ0↓〉. By projecting the bulk
Hamiltonian (1) onto the subspace of these two surface states, to the
leading order of kx ,ky weobtain the following surfaceHamiltonian

Hsurf (kx ,ky)=
( 0 A2k−
A2k+ 0

)
(2)

in the basis of |ψ0↑〉, |ψ0↓〉. Here, the surface-state wavefunction
|ψ0↑(↓)〉 is a superposition of the |P1+z ,↑ (↓)〉 and |P2

+

z ,↑ (↓)〉 states,
respectively. For A2= 4.1 eVÅ obtained from the fitting, the Fermi
velocity of the surface states is given by vF=A2/~' 6.2×105 ms−1,
which agrees reasonably well with the ab initio results shown
in Fig. 4c. In summary, the effective model of the surface
states equation (2) characterizes the key features of the topological
surface states, and can be used in the future to study the surface-state
properties of the Bi2Se3 family of topological insulators.

The topological surface states can be directly verified by various
experimental techniques, such as ARPES and scanning tunnelling
microscopy. In recent years, evidence of surface states has been
observed for Bi2Se3 and Bi2Te3 in ARPES (ref. 27) and scanning
tunnelling microscopy28 experiments. In particular, the surface
states of Bi2Te3 observed in ref. 27 had a similar dispersion to
what we obtained in Fig. 4d, which were also shown to be quite
stable and robust, regardless of photon exposure and temperature.
Near the completion of this work, we became aware of the ARPES
experiment29 on Bi2Se3, which measures a Dirac cone near the
0 point of the surface Brilloiun zone. These experimental results
support the main conclusion of our theoretical work. Moreover,
the 3D topological insulators are predicted to exhibit the universal
topological magneto-electric effect10 when the surface is coated
with a thin magnetic film. Compared with the Bi1−xSbx alloy, the
surface states of the Bi2Se3 family of topological insulators contain
only a single Fermi pocket, making it easier to open up a gap
on the surface by magnetization and to observe the topological
Faraday/Kerr rotation10 and image magnetic monopole effect30.
If observed, such effects would be an unambiguous experimental
signature of the non-trivial topology of the electronic properties.
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