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Ecosystem drivers of marine fisheries 
production

Marine fisheries, which provide an important
source of protein for human consumption worldwide
(Garcia & Rosenberg 2010), take place within the
larger context of marine ecosystems. The sustainabil-
ity of fisheries resources is inextricably linked with
the sustainability of ecosystem processes (Sherman
1994, Pikitch et al. 2004, Link 2010). Therefore,
under standing the linkages between ecosystem pro-
cesses and fisheries production is critical to the effec-

tive management of marine fisheries resources. The
unifying theme for the MEPS Theme Section (TS)
‘Comparative analysis of marine fisheries production’
is that ecosystem processes can be organized into a
‘triad of drivers’: (1) exploitative, (2) biophysical, and
(3) trophodynamic, supporting fisheries  production
(See Fig. 1 in Link et al. 2012, this TS). What, how-
ever,  is the extent to which each of these drivers con-
trol fisheries production across marine eco  systems?
To address this question in the TS, we adopted a com -
parative approach using a standardized production -
modeling framework.
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ABSTRACT: This paper introduces the MEPS Theme Section (TS) ‘Comparative Analysis of
Marine Fisheries Production’. The unifying theme of the studies in the TS is the relative influence
of a ‘triad of drivers’ — fishing, trophodynamic, and environmental — on fisheries production. The
studies were developed during 2 international workshops held in 2010 and 2011, which assem-
bled a database of fisheries, trophodynamic, and environmental time series from 13 northern
hemisphere marine ecosystems, and applied a common production-modeling approach to this
data. The studies encompass empirical examinations of the datasets, production models fitted to
the data at multiple levels of organization from single species to full ecosystems, and simulation
studies examining the impacts of climate effects and alternative management strategies on fish-
eries production. The body of work presented in the TS demonstrates that using both production
modeling and the comparative approach together makes rapid progress towards ecosystem-based
fishery management, whether the aim is a better understanding of the ecosystem or the provision
of operational management advice.

KEY WORDS:  Marine fisheries · Production models · Comparative approach · Ecosystem based
fishery management
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Production modeling for a  comparative approach

Many multispecies or ecosystem models have been
developed over the last few decades, and several
reviews are available (e.g. Plagányi 2007, Townsend
et al. 2008). They range from extended single species
models to multispecies minimum realistic models,
and from food web models to whole ecosystem mod-
els with age and spatial structure. All models have
strengths and weaknesses: simplicity may entail
missing key processes, whereas complexity requires
more data, time and resources. For a comparative
exercise such as this, production models (also called
biomass-dynamics models) were selected because of
their simple data requirements and the flexibility to
apply them at different scales of space, time and spe-
cies aggregation.

Production models have a long history of use in
ecology and fisheries science (Graham 1935, Schaefer
1954, Pella & Tomlinson 1969, Ricker 1975, Hilborn &
Walters 1992). Although many current single species
stock assessments used to advise fisheries managers
employ more complex age-structured population dy-
namics models, the simple production model can pro-
vide important information for  ecosystem- based fish-
eries management (EBFM; see e.g. Browman &
Stergiou 2004, 2005, Link 2010). Production models
require only the basic data inputs of catch and bio-
mass, and so are applicable for incidentally caught,
relatively data-poor non-target species as well as
data-rich commercial target species. Production mod-
els can be applied at multiple levels of organization,
from single species to functional groups to ecosystems,
simply by summing the appropriate biomass and
catch time series. Importantly, biological reference
points (BRPs) currently used for fisheries manage-
ment, such as maximum sustainable yield (MSY), can
be derived directly from production models. There-
fore, production models are capable of providing
BRPs for non-target species, for functional groups,
and for whole ecosystems; BRPs that are not estimable
from the age-structured single species stock assess-
ment models applied to commercial target species.

The simplicity of the production-modeling ap -
proach, combined with the general availability of
necessary input data, forms an ideal framework for
comparative analysis of marine ecosystems. The
comparative ap proach to ecosystem analysis is an
effective way to examine the underlying drivers of
ecosystem structure and productivity, given that
direct marine ecosystem-scale experimentation is
usually impractical, and replicate experimentation
near impossible (Mu raws ki et al. 2010). Previous

work on marine ecosystems of the northeast Pacific,
northwest Atlantic and northeast Atlantic demon-
strates the power of the comparative approach for
revealing common trends as well as structural differ-
ences critical to both ecosystem understanding and
management (Drinkwater et al. 2009, Gaichas et al.
2009, Link et al. 2009, Me grey et al. 2009a,b, Mueter
et al. 2009). In this MEPS TS, we extend this work,
using the standardized  production-modeling frame-
work, which allows for direct comparisons of BRPs
and other model-derived quantities of interest across
ecosystems.

Workshops

Two international workshops focusing on annual
surplus production-modeling were held in May of
2010 and 2011 in Woods Hole, Massachusetts, USA
(Link et al. 2010). These workshops, jointly funded by
the US Comparative Analysis of Marine Ecosystem
Organization (CAMEO), the Norwegian Research
Council (NRC), and the Fishery and Oceans Canada
Ecosystem Research Initiative (ERI), extended previ-
ous comparative work, including many of the same
ecosystems (Megrey et al. 2009c), but with focus on
the common surplus production-modeling frame-
work. Our late colleague and friend Bernard Megrey
was instrumental in developing the production-
 modeling approach for these workshops, in fostering
the international collaboration, and in enthusiasti-
cally promoting the comparative approach to marine
ecosystem analysis. We dedicate the TS to him (Mok-
sness et al. 2012).

At the May 2010 workshop, biomass and catch time
series data were compiled for 13 Northern Hemi-
sphere ecosystems ranging from the northeast Pa ci fic
to the northwest and northeast Atlantic (See Fig. 2 in
Link et al. 2012; see also Fu et al. 2012, their Table 1,
and Bundy et al. 2012, their Tables 1 & A1). In addi-
tion, time series for environmental covariates (e.g.
sea surface temperature, the North Atlantic Oscilla-
tion), and trophodynamic covariates (e.g. primary
production, predator biomass, diet ma tric es) were
assembled for each ecosystem (Bundy et al. 2012,
their Tables 2 & A2, Fu et al. 2012, their Table 2). The
standardized database built for this project during
the first workshop provided the foundation for the
comparative analyses presented in this TS. The data-
base, with over 70 000 records and including 466 bio-
logical and 162 environmental time series across the
13 ecosystems, is itself a significant contribution to
EBFM. At the workshop, experts from each ecosys-



Gaichas et al.: Introduction to theme section on marine fisheries production 161

tem identified key environmental covariates and
mechanisms for testing, and also assigned species to
appropriate aggregate groups (e.g. pelagic vs. ben-
thic feeder, large vs. small size category) for cross-
system comparisons. Standardization and quality
control of the database was completed simultane-
ously with initial production model development
between workshops.

During the May 2011 workshop, several working
groups applied the production models to the data
from all of the ecosystems: working groups focused
on comparing ecosystems by evaluating empirical
data, single species production models, full ecosys-
tem production models, and production models
applied at intermediate aggregation levels for habi-
tat, size, feeding functional group, and taxonomic
categories. Comparisons were primarily across eco-
systems, but also among modeling approaches,
aggregation methods, driver types (i.e. fishing, bio-
physical, trophodynamic) and driver scales (i.e.
basin, local).

Results

The comparative modeling and empirical work
conducted by workshop attendees and presented in
this TS identify emergent trends and common pat-
terns governing fishery productivity in northern
hemisphere temperate marine ecosystems. Two
papers examine the rich time series data assembled
in the database empirically (Fu et al. 2012, Pranovi et
al. 2012). Using multivariate approaches, Fu et al.
(2012) compared temporal variability in ecosystem
indicators derived from biomass or catch data across
the ecosystems, finding that catch-based indicators
showed consistent trends primarily within ocean
basins. Structural equation modeling related the
triad of drivers to both biomass- and catch-based
ecosystem indicators, revealing that biophysical driv-
ers tended to influence biomass-based indicators,
exploitative drivers influenced catch-based indica-
tors, and that trophodynamic drivers had some influ-
ence across both biomass- and catch-based indica-
tors (Fu et al. 2012). A potential new ecosystem
indicator is presented by Pranovi et al. (2012) who
examine cumulative biomass curves by trophic level
and their changes through time in all of the ecosys-
tems. Changes in the inflection point and slope of the
curves may be used as indicators of community sta-
tus, with some ecosystems showing trophic stability
over time, and others substantial structural changes
(Pranovi et al. 2012).

Three studies presented in this TS fit production
models to the data from as many of the 13 ecosystems
as possible, at various levels of aggregation (Bundy et
al. 2012, Holsman et al. 2012, Lucey et al. 2012). All
compared a production-modeling approach (i.e. a
simple linear regression and/or a dynamic model)
with a null model of constant surplus production. Hols -
man et al. (2012) applied models at the single species
level of organization, comparing both cod and herring
production across ecosystems. Lucey et al. (2012) ap-
plied models at intermediate levels of organization,
including habitat-based groups (i.e. demersal and
pelagic), size-based groups (i.e. small, medium, and
large average adult size), and trophic functional
groups (i.e. planktivores, zoopivores—shrimp- feeders,
piscivores, and benthivores). Bundy et al. (2012) ap-
plied models at the full system level. In nearly all
cases, a production-modeling approach provided bet-
ter fits to the data than the null model across all levels
of aggregation. A striking result of all 3 studies was
the general similarity of estimated BRPs across eco-
systems at each level of organization, a result high-
lighted in a synthesis paper (Link et al. 2012). Two of
these studies also explored whether including sys-
tem-specific environmental covariates would improve
model fits; their results support the hypothesis that
environmental covariates affect fisheries production
at both the single species and full ecosystem levels
(Bundy et al. 2012, Holsman et al. 2012).

Four other contributions focus on fisheries produc-
tion and management implications, either in particu-
lar regions or at a larger scale. Two papers use simu-
lation modeling to address the influence of the triad
of drivers on BRPs in 1 or 2 representative ecosystems
(Gaichas et al. 2012, Gamble & Link 2012), and 1
study compares the results of fitted production mod-
els at the system and single species level within a sin-
gle ecosystem, the Gulf of Maine (Fogarty et al.
2012). Finally, a synthesis paper examines the impli-
cations for EBFM across all of the studies (Link et al.
2012). Simulation modeling was conducted using
MS-PROD, a multispecies production model incorpo-
rating both competitive and predatory species inter-
actions (Gamble & Link 2009). Gaichas et al. (2012)
used MS-PROD, parameterized for two 10-species
communities based on Georges Bank and the Gulf of
Alaska, as an operating model within a management
strategy evaluation (MSE) framework to determine
how best to structure aggregate species complexes to
achieve the dual objectives of maximizing yield and
maintaining biodiversity. Gamble & Link (2012) para-
meterized MS-PROD for the wider northeast US con-
tinental shelf ecosystem, to examine the potential
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effects of climate change on BRPs. Moving from sim-
ulation to model fitting for operational management
advice, Fogarty et al. (2012) used the Gulf of Maine
ecosystem as a case study comparing the results of a
system-level aggregate production model with a set
of single species production models, as well as the
results of single species stock assessments. That
study, as well as the overall synthesis, reiterates that
the sum of single species BRPs exceeds any aggre-
gate BRP for the ecosystem (Fogarty et al. 2012, Link
et al. 2012), an important overall finding for EBFM.

In summary, the body of work presented in this TS
demonstrates that using both production modeling
and the comparative approach together makes valu-
able and rapid progress towards EBFM, whether the
aim is a better understanding of the ecosystem, or the
provision of operational management advice. The
breadth and depth of analyses presented here (which
were achieved within a 2-yr timeframe) highlight the
utility of relatively simple models combined with
long-term time series maintained by the participat-
ing international institutions. This body of work also
highlights the benefits of collaborative projects
where the total profit to be gained is much greater
than the sum of the parts (contrasting with findings
reported here that multispecies MSY is generally less
than the sum of single species MSYs). We expect that
this approach will be useful in other areas of the
world, especially where data may be limiting but
EBFM is equally as important.
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The MEPS Theme Section on ‘Comparative Analy-
sis of Marine Fisheries Production’ is dedicated to the
memory of Dr. Bernard Megrey, whose untimely
death in October 2010 significantly set back fisheries
science in general, and in particular, the art and sci-
ence of marine ecosystem comparisons. In addition to
comparative ecosystem studies, Bern contrib uted sig-
nificantly to wide-ranging areas of fisheries science,
including ecosystem modeling, population dynamics,
and stock assessments. Much of this article is derived
from recent tributes from Ecosystem Studies of Sub-
arctic Seas (ESSAS), the North Pacific Marine Sci-
ence Organization (PICES) and the Alaska Fisheries
Science Center (AFSC), but we also emphasize his
pivotal role behind much of the work in this Theme
Section.

Bern began his career with the NOAA National
Marine Fisheries Service at the AFSC in Seattle,
where he developed the first stock assessment for the
walleye pollock fishery, which was emerging in the
Gulf of Alaska at the time. His work enabled timely
forecasts of abundance and biomass to be made to
the North Pacific Fishery Management Council. It
required innovative analyses of the very short time
series that were then available. He subsequently
took on the task of integrating assessment data from
fishery and research vessels into a more complete
assessment that could be used to forecast stock size
and composition. Bern was then assigned to the
 Fisheries Oceanography Coordinated Investigations
(FOCI) program where he developed recruitment
prediction models. His Gulf of Alaska recruitment

© Inter-Research 2012 · www.int-res.com*Corresponding author. Email: jason.link@noaa.gov
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ABSTRACT: The MEPS Theme Section on ‘Comparative Analysis of Marine Fisheries Production’
is dedicated to Dr. Bernard Megrey. Dr. Megrey was well known for comparative studies of
ecosystems, but his contributions to science were far broader. His pioneering of comparative
marine ecosystem studies began long before they achieved a high profile in the field. He played a
leading role in a number of international projects comparing marine ecosystems in northern hemi-
sphere countries, and championed the use of simple but robust models for this purpose. He was
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additional countries and their associated marine ecosystems. The resulting manuscripts are pre-
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pletion of this and related workshops and ultimately the works in this Theme Section.
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prediction model for walleye pollock is one of the few
that incorporate both environmental and biological
data and that is based on an underlying mechanistic
model. Additionally, he helped to implement a series
of individual-based models at the AFSC and in other
venues, some of which are still in use today.

As a co-chairman of the MODEL Task Team of the
PICES/GLOBEC Climate Change and Carrying Ca-
pacity (CCCC) Program, Bern was instrumental in
the development of the PICES-NEMURO (North Pa-
cific Ecosystem Model for Understanding Regional
Oceanography) model. With his leadership, the NE-
MURO model became an open source public model
used by researchers worldwide. His scientific insights
were essential for the development of NEMURO, but
it was his guidance of the NEMURO ‘Mafia’, that led
to its success in providing a better understanding of
marine ecosystems (Kishi et al. 2007). More recently,
he was engaged in several national and international
efforts to develop integrated end-to-end fisheries
ecosystem models.

Bern worked tirelessly for several international
organizations, most notably AFS (American Fisheries
Society), ICES, GLOBEC (Global Ocean Ecosystem
Dynamics) (via ESSAS) and PICES. He served terms
as President of the AFS International Fisheries and
Computer User sections. The AFS recognized Bern’s
lifetime achievement in 2009 with the Oscar Elton
Sette Award for sustained excellence in marine fish-
ery biology through research, teaching, and/or ad min -
istration. Posthumously, Bern was given a Woos ter
Award in 2011 by PICES for his career of sustained
excellence in research, teaching, and administration
of North Pacific marine science.

Bern was a member of the editorial board of the
ICES Journal of Marine Science from 2001 to 2007
and was a member of the ICES Working Group on
Data and Information Management. He suggested
new Theme Sessions for the Annual Science Confer-
ence and regularly presented cutting-edge science
there. He was an inaugural member of ESSAS and
became the driving force as co-chair of the ESSAS
Working Group on Modeling Ecosystem Responses.
There, he played a leading role in the development
of the End-to-End model based on the NEMURO
modeling system. Bern was on the ESSAS Scientific
Steering Committee (SSC) and was an enthusiastic
supporter of the ESSAS goal of using the compara-
tive approach to gain scientific insights.

Bern also chaired the Technical Committee on
Data Exchange (TCODE), led the Marine Ecosystem
Model Inter-comparison Project and was a member
of the Science Board of PICES. PICES recently recog-

nized his achievements with the 2009 PICES Ocean
Monitoring Service Award (jointly awarded to S.A.
Macklin) for his work in coordinating, organizing
and combining the member countries’ meta-data-
bases for the North Pacific. Bern worked hard to pro-
mote cooperation between ESSAS, AFS, PICES and
ICES, particularly in bridging the divide between
Pacific and Atlantic perspectives of how the oceans
and fisheries functioned among those groups. Just
prior to his death, Bern served as the lead liaison for
fisheries issues in the US Mississippi Canyon 252
Command Center in Washington, DC, in response to
the oil well blow-out in the Gulf of Mexico.

Bern pioneered marine fishery ecosystem com -
parative works before these became high profile
(Mu raw ski et al. 2010), often by simply contrasting
common datasets and simpler models (e.g. Hunt &
Megrey 2005, Megrey et al. 2005). Always a big fan
of large, international group projects, he was heavily
involved in the studies comparing marine ecosystems
of Norway and the United States (MENU, endorsed
by ESSAS). He helped to organize a MENU Work-
shop held in Bergen in 2007, led the push to get ICES
to sponsor a theme session on ‘Comparative marine
ecosystem structure and function: descriptors and
characteristics’ to help highlight the MENU work, co-
chaired this session in 2007 in Helsinki, Finland, and
was the lead editor of the resulting special volume in
Progress in Oceanography (Megrey et al. 2009a,
2009b). Continuing from this work, he helped to or -
ganize a trinational workshop on stock production
modeling involving the USA, Canada and Norway in
Woods Hole in 2010 (Link et al. 2010). The workshop
resulted in over 15 presentations at global meetings
as varied as AFS, ICES, PICES, ESSAS or IMBER. In
this context, he championed the use of simple but
robust models to compare ecosystems (e.g. Richards
& Megrey 1994, Megrey et al. 2005, Mueter & Meg -
rey 2006). A follow-up workshop was held in Woods
Hole in 2011, the Surplus Production Modelling
Workshop, ex panded to include additional countries
and their associated marine ecosystems, as well as a
broader range of modeling approaches. The resul-
tant manuscripts from that workshop are presented
in this Theme Section.

Bern’s global network of colleagues, which he
readily shared with others, was of great benefit to the
entire marine fisheries ecology community. Of partic-
ular note was Bern’s concern for young scientists get-
ting established in the field. Remembering his days
as a struggling student, he very much appreciated
the value of travel grants for students to test the
waters in various international forums. He provided
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significant personal donations to support such efforts,
and his family established a memorial fund to sup-
port the travel and participation of students in joint
ICES/PICES activities such as the Early Career Sci-
entists Conferences). He readily encouraged junior
scientists; for many he was their first established col-
laborator, and he always treated them as respected
equals, irrespective of his high standing and decades
of experience — an attitude that will be much missed
and that warrants emulating. Bern had a reputation
for ‘getting it done’, and his scientific productivity —
as measured not only in his numerous publications,
but in his many other endeavours as well—was
exemplary. 

Bern had many friends and colleagues in the scien-
tific world, but his first love was his family. He leaves
behind his wife, Ronnette, sons Christopher and
Nicholas, daughter Sarah, mother Anna Marie Meg -
rey, brothers Joseph Megrey, Robert Megrey and
David Megrey, and sister, Catherine Megrey. Friends
and family around the world will miss Bernard’s
gentle spirit, his smile, and his contagious laughter. 

Bern was excellent at bringing together people
from disparate backgrounds. It is highly unlikely that
the degree of cohesiveness among scientists from so
many different perspectives would have been as
strong as it was, thus facilitating such productive
workshops and international collaborations, without
people trusting that Bern was doing the right thing
and involving the right people. That comfort and
ease of interaction facilitated numerous follow up
workshops and ongoing collaborations.

Bern had the analytical gravitas to speak authorita-
tively. Without being authoritative or pedantic, his
depth and breadth of knowledge were very reassur-
ing to the many very different people he collaborated
with. Our decision to use production models, often
subject to much debate in fisheries science (Mohn
1980, Ludwig & Walters 1985, 1989, NRC 1998, Punt
2003, Mangel 2006), was bolstered by the positive
aspects that Bern readily noted and so well articu-
lated (cf. Mueter & Megrey 2006, Link et al. 2010).
The potential to compare useful, readily available
information, across multiple ecosystems, across mul-
tiple drivers, and across multiple levels of biological
hierarchy, to both help better understand the funda-
mentals of how marine ecosystems functioned and in
ways that could be of practical use for living marine

resource management, was decisive for Bern. He will
be sorely missed, but the foundations he laid, and
upon which we build with these models and compar-
isons, will ensure that his influence continues.
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INTRODUCTION

Living marine resources, particularly those tar-
geted by fisheries, are affected by a triad of drivers:
anthropogenic (fisheries), trophodynamic and envi-
ronmental processes. The interactions of these multi-

ple drivers are complex and are often manifested in
nonlinear responses of ecosystems to perturbation
(e.g. Hare & Mantua 2000, Scheffer & Carpenter 2003,
Steele 2004). These responses put greater demands
on management systems for living marine resources,
creating a need for more holistic ap proaches that
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incorporate multiple species in the ecosystem models
and account for multiple drivers. The evaluation of
new management systems must also move beyond
single-species oriented evaluation based solely on
performance of commercial fisheries to become more
comprehensive. In an ecosystem context, measures
of ‘success’ of management strategies beyond the
human dimension of benefits and trade-offs should
be included to evaluate the ability to maintain eco-
system stability and resistance to perturbation, and to
maintain ecosystem structure and functioning and
sustainability of resource potential (Shin et al.
2010b). These types of measures, known as eco-
system indicators, have received increasing attention
in recent years (e.g. Cury & Christensen 2005, Shin &
Shannon 2010, Shin et al. 2010a,b).

Ecosystem indicators are generally accepted as
tools for evaluating ecosystem status and trends (e.g.
Shin & Shannon 2010, Shin et al. 2010a,b), identify-
ing key ecosystem processes (e.g. Ojaveer & Eero
2011), serving as signals that something is happening
beyond what is actually measured (NRC 2000), and
assessing the impacts of human activities and climate
forcing (e.g. Coll et al. 2010, Link et al. 2010b,
Ojaveer & Eero 2011). Hundreds of potential eco-
system indicators exist, including environmental,
species-based, size-based, trophodynamic and inte-
grated indicators (Cury & Christensen 2005). For
example, indicators available for the Northeast US
Continental shelf ecosystem include 26 biotic state
indicators, 25 indicators of climate and physical envi-
ronmental change and 18 indicators of human-driven
pressure on the ecosystem (Ecosystem Assessment
Program 2009). Similarly, information on 59 physical,
biological and ecological status and trend indicators
and 14 ecosystem-based management indicators are
available for US marine ecosystems off Alaska (Zador
2011). For a particular study, a suite of indicators
needs to be selected to reflect human activities, eco-
system components and ecosystem attributes (e.g.
Jennings 2005, Piet et al. 2008). In this study, we
select a suite of indicators to compare ecosystem
responses to a triad of external drivers across 9 north-
ern hemisphere ecosystems. The suite of indicators is
derived from standard fisheries-independent survey
data and fisheries-dependent catch data (e.g. Pauly
& Christensen 1995, Christensen 2000, Cury & Chris-
tensen 2005, Shin et al. 2010a,b). The triad of drivers
considered encompasses fisheries exploitation, tro -
pho dynamic interactions and local- and basin-scale
environmental factors.

Our objective is to infer cause−effect relationships
by examining linkages between the suite of indictors

and the triad of drivers. Multiple regression analysis
is often applied in this type of investigation (Carras-
cal et al. 2009), which works well as long as the pre-
dictor variables are fairly few and uncorrelated. For
instance, Blanchard et al. (2005) used multiple linear
regression to relate ecosystem indicators to fishing
and temperature drivers. However, the traditional
regression approach poses problems when it comes
to handling multivariate predictor variables that are
correlated and have redundancies. To overcome this
problem, researchers often preselect a few predictor
variables that are independent based on expert
knowledge; however, this process can unknowingly
screen out potentially important predictor variables.
Another limitation of the traditional regression
approach is that it does not allow multiple response
variables to be considered at the same time. Just as
body condition can be measured in several ways, and
health should be assessed as a combination of the
several measurements, marine ecosystem condition
and health should be investigated using a combina-
tion of indicators that reflect different aspects of the
ecosystem structure and functioning (Link 2005,
2010). A more inclusive practice is to use multivariate
reduction methods such as principal component
analysis to derive independent principal compo-
nents, which are then used in subsequent multiple
regression analyses (Wold et al. 2001). However, the
derived principal components maximize the covaria-
tion among the predictor variables independent of
the variation in the response variables and thus they
are not likely to be the good predictors for the
response variables.

In this study, the ecosystem indicators and the triad
of drivers were explored as response and predictor
variables, respectively, using partial least squares
(PLS) regression, an ideal statistical tool for inferring
probable cause−effect interactions between res -
ponse and predictor variables that overcomes the
limitations of the traditional regression approach
stated above. Although the application of PLS re -
gression in ecological studies has been uncommon
(Carrascal et al. 2009), there is great potential for the
use of PLS regression given its properties, and there
are a few recent applications of this approach in the
field of marine fishery science (e.g. Wells et al. 2008,
Friedland et al. 2012). Because marine ecosystems
are inherently complex, adopting a comparative
approach will expedite the understanding of factors
that affect fisheries production (Link et al. 2010a); in
particular, comparisons of ecosystem indicators
across different ecosystems advance the understand-
ing of ecosystem structure, functioning and state
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(Coll et al. 2010, Shannon et al. 2010, Shin et al.
2010b). Such indicator-based comparisons allow con-
trasts in the structure and functioning of the eco-
systems related to their intrinsic features and ex -
ploitation history to be developed (Coll et al. 2006).
Through multivariate and comparative analysis, we
aim to explore the effects of common drivers on eco-
system indicators at the basin scale, compare the rel-
ative influence within the triad of drivers among eco-
systems and explore the connections between fishing
and environmental variability.

MATERIALS AND METHODS

Ecosystems and data sets

The 9 northern hemisphere ecosystems we ex -
plored are the eastern Bering Sea, Gulf of Alaska and
Hecate Strait in the Pacific Ocean, and the  Barents/
Norwegian Seas, southern Gulf of St. Lawrence, east-
ern Scotian Shelf, western Scotian Shelf, Gulf of
Maine and Georges Bank in the Atlantic Ocean (see
Fig. 2 in Link et al. 2012, this Theme Section). These
ecosystems have varied species composition, fishery
exploitation histories and environmental influences.
A summary of key characteristics of these ecosystems
is listed in the supplement (www.int-res. com/ articles/
suppl/ m459 p169_supp.pdf). In order to calculate in-
dicators, annual survey biomass and catch time series
for the period from 1984 to 2006 were compiled for
the 9 ecosystems. The number of species that pro-
vided time series data in each ecosystem is given in
Table 1. Each species within an ecosystem was then
assigned to a specific ecological group based on habi-
tat (demersal and pelagic), feeding guild (planktivore,
zoopivore (shrimp and/or euphausiid eater), benthi-
vore, piscivore and omnivore), or taxonomic grouping
(clupeid, elasmobranch, pleuronectid, gadoid, Se-
bastes, invertebrates, forage fish and mammals). The
trophic level for each species was also obtained either
from Ecopath models, if available, or from Fishbase
(Froese & Pauly 2011). The trophodynamic and envi-
ronmental drivers for each system used as predictors
in the PLS regression were selected by regional ex-
perts who were asked to identify those regional and
basin-scale variables that are generally considered to
be important drivers of productivity in a given eco-
system (Bundy et al. 2012, Table S2 in their sup -
plement). Available biotic and abiotic time series data
compiled for each system included abundance
indices of zooplankton and important top-level preda-
tors, water temperature, stratification, large-scale cli-

mate indices and freshwater discharge (Table 1). All
the biomass, catch and trophodynamic and environ-
mental drivers were compiled into a common data-
base for use in this and other comparative studies of
fishery production (Link et al. 2010a).

Ecosystem response indicators

Many ecosystem indicators have been proposed to
describe ecosystem status and detect fishing effects
on ecosystems (e.g. Fulton et al. 2005, Jennings 2005,
Link 2005). Here we have focused on a few common
ecological indicators derived from survey biomass
and catch data, following to some extent the ap -
proach of the IndiSeas Project (Shin et al. 2010a).
Annual data points from these time series were used
as response variables in PLS regression.

We explored 2 common biomass-based indicators:
total biomass (B) to indicate ecosystem status, and
proportion of predatory fish (%predB) to measure
functional diversity of fish in the community and
reflect the potential effects of fishing on the function-
ing of marine food webs (Shin et al. 2010a). In addi-
tion, the demersal-to-pelagic fish biomass ratio (D/P)
was calculated as an indicator of the processes lead-
ing to demersal or pelagic energy pathways (Coll et
al. 2010). Biomasses of clupeids (Bclupeid) and gadoids
(Bgadoid) were used as 2 indicators reflecting temporal
dynamics of these 2 fish groups, which are repre-
sented in all of the ecosystems we compared. We also
calculated the mean trophic level of the community
(mTLco) based on trophic levels (TL) of all species
with available biomass time series, weighted by
annual species-specific biomass, to reflect the struc-
ture of the community.

For catch-based time series indicators, exploitation
rate (denoted as F ’) was calculated as the ratio of
total catch to total biomass in each year aggregated
over the same set of species. In addition, we used 3
other commonly used catch-based quantities as re-
sponse indicators: the mean trophic level of the catch
(mTLc), primary production required to sustain fish-
eries (Pauly & Christensen 1995) and the fishing-in-
balance index (Christensen 2000). The mean trophic
level of the catch is calculated as the weighted aver-
age trophic level of all species included in the catch
data, thereby reflecting the fishing strategy in terms
of its species selection (Christensen & Walters 2004).
The primary production required (PPR) indicator is
an estimate of the amount of primary production re-
quired to support fishery catch. PPR expresses the
full ecosystem ‘cost’ of fisheries and is given by:

http://www.int-res.com/articles/suppl/m459p169_supp.pdf
http://www.int-res.com/articles/suppl/m459p169_supp.pdf
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Table 1. Number of species in biomass and catch data and trophodynamic and environmental drivers available in 9 ecosystems

No. species Trophodynamic and environment drivers

In
biomass

In 
catch

1 2 3 4 5 6 7

Eastern Bering Sea

58 14 Bcope:
abundance

index of
copepods

sSST:
summer
average

surface water
temperature

ice: 
ice cover 

index

ONI: 
oceanic Niño

index

NPI: 
North Pacific

index

ALPI:
Aleutian low

pressure
index

PDO: 
Pacific

Decadal
Oscillation

Gulf of Alaska

42 22 sSST: 
summer
average

surface water
temperature

discharge:
April

 fresh water
 discharge

ONI: oceanic
Niño index

NPI: North
Pacific index

ALPI: 
Aleutian low

pressure index

PDO: 
Pacific

Decadal
Oscillation

Hecate Strait

30 25 Bafl: 
biomass index
of arrowtooth

flounder
Atheresthes

stomias

wSST: 
winter

average
surface water
temperature

wSSH: 
winter sea

surface height

ONI: 
oceanic Niño

index

NPI: 
North Pacific

index

ALPI:
Aleutian low

pressure
index

PDO: 
Pacific

Decadal
Oscillation

Barents/Norwegian seas

8 11 Bzoo:
abundance

index of
zooplankton

Bseal: 
biomass index

of harp seal
Phoca

groenlandica

BS_SST:
annual average
 surface water

 temperature in
Barents Sea

NS_SST: 
annual average
surface water

 temperature in
 Nor wegian Sea

ice: 
ice cover 

index

NAO: 
North Atlantic

Oscillation
index

Southern Gulf of St. Lawrence

36 29 Bszoo:
abundance

index of small
zooplankton

Blzoo:
abundance

index of large
zooplankton

Bseal: 
biomass index

of grey seal
Halichoerus

grypus

SST: 
annual average
surface water
temperature

90mT: 
fall average

water
 temperature
at 60−120 m

Eastern Scotian Shelf

42 74 Bseal:
biomass index

of grey seal

SST: annual
average

surface water
temperature

sBT: 
summer average
water tempera-
ture at bottom

50mT: 
annual average
water tempera-

ture at 50 m

100mT: 
annual average
water tempera-
ture at 100 m

strat: 
index of

stratification

Western Scotian Shelf

33 29 SST: 
annual
average

surface  water
temperature

sBT: 
summer

average water
temperature at

bottom

50mT: 
annual average
water tempera-

ture at 50 m

100mT: 
annual average
water tempera-
ture at 100 m

strat: 
index of

stratification

BoFstrat:
index of

stratification,
Bay of Fundy

Gulf of Maine

27 25 Bzoo:
abundance

index of
zooplankton

SST: 
average

annual surface
temperature

NAO: 
North Atlantic

Oscillation

AMO: 
Atlantic

Multidecadal
Oscillation

Georges Bank

28 26 Bzoo:
abundance

index of
zooplankton

SST: 
average

annual surface
temperature

NAO: 
North Atlantic

Oscillation

AMO: 
Atlantic

Multidecadal
Oscillation
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where Yi is the catch of a given species (or group) i,
TLi is the trophic level of the species i and factor 1/9
is the average conversion coefficient from wet weight
to grams of carbon. The constant term TE is the mean
energy-transfer efficiency between trophic levels,
and the average TE value of 14 for temperate shelves
and seas (Libralato et al. 2008) was used for each eco-
system. For comparative purposes, the PPR for each
system was scaled by dividing by primary production
(P1) estimated from Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) data (Behrenfeld & Falkowski
1997) and averaged over the period from 1998 to
2008, to obtain the percent of primary production
required (%PPR = PPR/P1). For a given %PPR, a fish-
ery with higher TL would have less impact than a
fishery with a lower TL owing to the much lower
catch; however, for a given TL, a lower %PPR would
have less impact than one with a higher %PPR, since
the removals would be higher (Tudela et al. 2005).

The fishing-in-balance (FIB) index describes the
changes in the primary production required by fish-
eries over time relative to the initial year (Chris-
tensen 2000), and is formulated as:

where Yit is the catch of species i during the year t,
Yi0 is the catch of species i during the year at the start
of a time series and TE and TL are as defined above.
The indicator FIB is intended to capture changes in
fishing strategies and their impact on system produc-
tivity: a positive FIB index indicates that the fishery
has expanded and/or bottom-up effects are occur-
ring, and there is more catch than expected; a nega-
tive FIB index indicates it is likely that the fishing
impact is so high that the ecosystem function is
impaired and the ecosystem is less productive owing
to excessive fishery removals (Christensen 2000).

Ecosystem drivers

We used a suite of drivers (fisheries, tropho -
dynamic and environmental) as predictor variables.
Fisheries drivers were all derived from catch time
series for each ecosystem, but we examined fishing
in the ecosystem context at the level of comparable
aggregate groups based on feeding guilds rather
than single species. In a few cases we combined
related guilds further (e.g. planktivores and zoo -

pivores) to avoid zero values in some ecosystems.
Therefore, our fishing drivers included catch in
weight and percentage of total catch for 3 combina-
tions of different feeding guilds: planktivores and
zoopivores (PZ, %PZ), piscivores and omnivores
(PiO, %PiO) and benthivores, piscivores and omni-
vores (BPiO, %BPiO). These fishery drivers were
considered for each ecosystem as they reflect alter-
native fishing strategies as well as relative abun-
dance of different feeding guild groups over time.

Trophodynamic drivers included time series gener-
ally related to prey and predators of fished species to
examine potential bottom-up and top-down effects
on fisheries production. A number of studies have
reported positive relationships between fish produc-
tion and primary production (Ware & Thomson 2005,
Chassot et al. 2007, Sherman et al. 2009), although
the effectiveness of primary production as a predictor
of fishery catch is reduced at the global scale (Fried-
land et al. 2012). Friedland et al. (2012) found signifi-
cant correlations between mesozooplankton produc-
tivity and fisheries yields. Accordingly, we evaluated
ecosystem-specific biomass indices of zooplankton
and/or top-level predators as trophodynamic drivers
for 7 out of the 9 ecosystems in our analyses (see
Table 1 for descriptions of each index).

Environmental drivers generally represented some
form of thermal or broad-scale oceanographic fea-
tures considered to be influential in each ecosystem.
We included some measure of sea surface tempera-
ture (SST) for all ecosystems, although winter, sum-
mer or annual SST indices were applied in different
ecosystems. Broad-scale climate indices were ap -
plied where appropriate to specific ecosystems, in -
cluding the North Pacific Index (NPI) and Pacific
Decadal Oscillation (PDO) in the Pacific Ocean, and
the North Atlantic Oscillation (NAO) and Atlantic
Multidecadal Oscillation (AMO) in the Atlantic Oce -
an (Table 1). Additional environmental variables
such as stratification, freshwater discharge and sea
ice cover were considered important locally and
were therefore included for specific ecosystems, sim-
ilar to Bundy et al. (2012, their Table S2). Having a
different set of trophodynamic and environmental
drivers for each ecosystem was appropriate for our
statistical analyses, as we analyzed each ecosystem’s
indicators and drivers independently.

Statistical analyses

PLS regression is essentially a dimension reduc-
tion technique that extracts a few latent variables

PPR
1
9
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called X-scores from predictor matrix X (size:
n × m) that maximize the explained variance in the
response matrix Y (size: n × p). The X-scores,
denoted by matrix T (size: n × l, where l is the
number of components), are linear combinations of
the matrix X with coefficient matrix W* (size:
m × l), i.e.

T = XW* (1)

The X-scores are predictors of X and also Y (Eqs. 2
& 3 below); i.e. both X and Y are assumed to be, at
least partly (aside from residuals), modeled by the
same latent variables:

X = TP  + E (2)

and

Y = TQ  + F (3)

where P and Q are matrices of coefficients (loadings)
with the dimensions of m × l and p × l, respectively,
and E and F are residual matrices. For multivariate Y
(p > 1), they are the combinations of the correspond-
ing Y-scores (denoted by U with size: n × l) and the
loading matrix Q along with a residual matrix G:

Y = UQ  + G (4)

Because T = XW*, from Eq. (1), Eq. (3) can be
rewritten as:

Y = XW*Q  + F = XB + F (5)

where B is the coefficient matrix of PLS regression.
All calculations were implemented for each eco-

system independently using packages ‘pls’, ‘plspm’,
and ‘mixOmics’ in R (R Development Core Team
2011) for the entire period from 1984 to 2006, a
period when both biomass and catch data were
available for all ecosystems. Before applying PLS
regression, the predictor drivers and ecosystem
response indicators were normalized (mean = 0,
SD = 1) by applying a Z-transformation. For the PLS
regression, the first step is to determine the optimal
number of components by testing the predictive sig-
nificance of models with different numbers of com-
ponents. The root mean squared errors of prediction
(RMSEPs) of each ecosystem response indicator
were estimated through leave-one-out cross-valida-
tion. In addition, the residuals of the ecosystem
response indicators were examined for autocorrela-
tions. Once the optimal number of components was
determined, the estimates of the regression coeffi-
cient of predictor drivers were corrected based on
bootstrapped CIs with the coefficient set to zero if
the CI contained zero.

RESULTS

Ecosystem response indicator trends

Biomass-based ecosystem indicators showed some
similar trends across ecosystems and also high-
lighted some key dynamics within ecosystems. Dur-
ing the period 1984 to 2006, total biomass of the
eastern Bering Sea and the eastern and western
Scotian Shelf showed slight declines due to the
reduction of gadoid biomass in the eastern Bering
Sea and eastern Scotian Shelf and clupeid biomass
in the western Scotian Shelf. In contrast, the total
biomass of the Barents/Norwegian Seas and Gulf of
Maine in creased steadily due to the increase of
gadoid biomass and particularly clupeid biomass
(Fig. 1). Despite the slight increase of total biomass,
the Gulf of Maine experienced a dramatic decline in
the proportion of predatory biomass and in the
mean trophic level in the community, implying that
the community has become more dominated by spe-
cies at lower trophic levels. In contrast, the Gulf of
Alaska experienced steady increases in the propor-
tion of predator biomass, mean trophic level of the
community and the demersal-to-pelagic biomass
ratio, despite the fact that total biomass showed no
increase over the entire period, indicating increased
dominance of higher trophic level species in this
ecosystem.

Trends in catch-based ecosystem indicators were
more variable across ecosystems, but showed consis-
tency within ecosystems. The overall exploitation
rate for the eastern Scotian Shelf declined after the
early 1990s, and the exploitation rate in the Gulf of
Maine decreased over the entire study period. The
exploitation rate in the Barents/Norwegian Seas
declined in the late 1980s and was stable afterwards
(~0.15 yr−1), but there were no clear consistent trends
in exploitation rate in the other ecosystems (Fig. 2).
The fishing-in-balance indices for southern Gulf of
St. Lawrence, eastern Scotian Shelf, western Scotian
Shelf, Gulf of Maine and Georges Bank were all neg-
ative, indicating high fishing impact. In particular,
the fishing-in-balance index of the eastern Scotian
Shelf showed a dramatic decline in the early 1990s,
suggesting a possible decrease in ecosystem produc-
tivity. In contrast, the fishing-in-balance indices for
the eastern Bering Sea and Gulf of Alaska were ‘bal-
anced’, while those of the Barents/Norwegian Seas
and Hecate Strait gave positive values with slightly
increasing trends. The trajectories of mean trophic
level of the catch and the percent primary production
required to sustain fisheries were similar to those of
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the fishing-in-balance index for each ecosystem. The
increasing trend of mean trophic level of the catch in
Hecate Strait reflected a fishery targeting higher
trophic level species and reduced Pacific herring
Clupea pallasi abundance and catches. The dramatic
reduction of mean trophic level of the catch in the
eastern Scotian Shelf after the early 1990s indicated
a shift in fishery strategies that targeted lower
trophic level species.

PLS regression diagnostics

The first step in PLS regression is to determine the
number of significant components, which indicates

the complexity of the model and of the system. Ide-
ally, much variation in the data should be explained
with few components. Plots of RMSEPs as a function
of the number of components showed that RMSEPs
were generally minimized at 1 to 3 components for
the majority of the indicators (plots not shown). The
goodness of fit of PLS regression is given by the
cumulative percent of variance explained (R2), and R2

was generally significant for the predictor drivers as
well as for the majority of response indicators in most
of the ecosystems (Fig. 3). There were a few excep-
tions to this general result for certain ecosystem
response indicators. Mean trophic level of commu-
nity had consistently low R2 in all but 2 ecosystems,
suggesting that alternative predictor drivers should
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Fig. 1. Trajectories of 6 biomass-based response indicators — total biomass (B, t km−2), percent of predatory biomass (%predB),
demersal-to-pelagic biomass ratio (D/P), mean trophic level of community (mTLco), biomass of clupeid (t km−2) and biomass of
gadoid (t km−2) — for the period from 1984 to 2006 in 9 ecosystems: the Barents Sea and Norwegian Sea (BSNS), eastern Bering
Sea (EBS), Gulf of Alaska (GOA), Hecate Strait (HS), southern Gulf of St. Lawrence (sGOSL), eastern Scotian Shelf (ESS),
western Scotian Shelf (WSS), Gulf of Maine (GOM) and Georges Bank (GB). Total biomass and biomass of gadoids for eastern 

Bering Sea were scaled down from original values by half for better presentation
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be identified and included in the model to address
changes in ecosystem community structure. On the
other hand, the percent of predatory biomass and
demersal-to-pelagic biomass ratio indicators were
well modeled with rather high R2 using 3 components
in all but one ecosystem. The catch-based indicators,
fishing-in-balance and percent primary production
required to sustain fisheries, had high R2 at the first
component for all but 2 ecosystems, indicating great
explanatory capacity of the first component for these
2 indicators.

The residuals of the ecosystem response indicators
were analyzed for autocorrelations, and results
showed that the majority of response indicators did
not have significant autocorrelation (<0.3, plots not

shown) in all but 2 ecosystems. To address the auto-
correlations in these 2 ecosystems, the eastern Bering
Sea and the Gulf of Alaska, the predictor driver matrix
was expanded to include variables with time lags of 1
and 3 yr, respectively. As a result, much smaller RM-
SEPs, higher R2, and nonsignificant autocorrelations
in the indicator residuals were achieved for the east-
ern Bering Sea. However, the addition of lagged pre-
dictors did not render smaller RMSEPs or lower auto-
correlations for the Gulf of Alaska. Instead, the
addition of transformed catch (inverse) and environ-
mental data (squared) resulted in much reduced RM-
SEPs and autocorrelations. For comparison purposes,
we only focused on results based on the current (un-
lagged, normalized) predictor arrays.
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Relative importance of the triad of drivers

The coefficients obtained from PLS regression pro-
vide important information on the relative impact
(either positive, negative, or none) of each predictor
driver on each ecosystem response indicator (results
shown in Table 2). The nonzero coefficients show
that all of the ecosystems responded to both fisheries
and environmental drivers, and all but one res -
ponded to available trophodynamic drivers as well.
In general, fisheries drivers had the most widespread
effect, producing the highest and the most numerous
nonzero coefficients in relation to ecosystem res -
ponse indicators across all systems. However, envi-
ronmental and trophodynamic drivers were also im -
portant to key ecosystem response variables across
systems, and some results for biomass-based indica-
tors were surprising. It was particularly striking that
in 4 out of the 9 ecosystems (eastern Bering Sea, Gulf
of Alaska, southern Gulf of St. Lawrence and western

Scotian Shelf), total biomass was not related to any of
the fisheries drivers, and in Georges Bank and the
Gulf of Maine, total biomass was related only to the
percent of piscivores and omnivores in the catch
among fisheries drivers. In 3 out of the 9 ecosystems
(Barents/ Norwegian Seas, southern Gulf of St. Law -
rence and Georges Bank), biomass of gadoids was
affected by both fisheries and environmental drivers;
while in other ecosystems, this indicator was influ-
enced by fisheries and trophodynamic drivers (Gulf
of Alaska, Hecate Strait, eastern Scotian Shelf and
western Scotian Shelf), by environmental drivers
(Gulf of Maine) or not at all (eastern Bering Sea).

Fisheries drivers had the most influence on the
catch-based indicators across ecosystems, according
to the magnitudes of PLS regression coefficients
(Table 2). Of the fisheries drivers, 2 absolute catch
indices and 1 catch proportion index appeared most
influential across ecosystem response variables and
ecosystems: catch of benthivores, piscivores and
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Fig. 3. Percent variance explained
by the first 3 components (shown
as a stacked histogram, with the
first component shown as the
darkest shaded bar and the third
component as the lightest shaded
bar) in overall predictor variables
(X) from the PLS analyses and
each ecosystem response indica-
tor: total biomass (B), percent of
predatory biomass (%predB),
 demersal-to-pelagic bio mass ratio
(D/P), mean trophic level of com-
munity (mTLco), biomass of clu-
peids (Bclupeid), biomass of gadoids
(Bgadoid), exploitation rate (F ’),
fishing in balance (FIB), mean
trophic level of catch (mTLc) and
percent of primary production re-
quired to sustain fisheries (%PPR)
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System                          Fisheries driver                   Trophodynamic driver                      Environmental driver

Eastern Bering Sea
Indicator    %PZ   %PiO %BPiO    PZ       PiO     BPiO     Bcope                               sSST       ice        ONI    NPI    ALPI   PDO

B                     0          0          0          0          0           0            0                                     0           0            0        0         0         0
%predB         0        0.56        0          0          0           0            0                                     0           0            0        0         0         0
D/P                 0        0.25        0          0          0           0            0                                  0.13         0            0        0      −0.19      0
mTLco            0          0          0          0          0           0           0.4                                   0           0            0        0         0         0
Bclupeid         −0.26       0          0          0        0.26        0            0                                     0           0            0        0         0         0
Bgadoid             0          0          0          0          0           0            0                                     0           0            0        0         0         0
F’                  0.18     0.29        0          0       −0.18       0            0                                  0.16         0            0        0         0         0
FIB                 0        0.84        0          0          0           0            0                                     0           0            0        0         0         0
mTLc           0.18        0          0          0       −0.18   −0.18        0                                  0.14         0            0        0         0         0
%PPR             0        0.93        0        0.26        0        0.37         0                                     0           0            0        0         0         0

Gulf of Alaska
Indicator      %PZ    %PiO %BPiO    PZ       PiO     BPiO                                               sSST discharge  ONI    NPI    ALPI   PDO

B                     0          0          0          0          0           0                                                0.63         0            0        0         0         0
%predB      −0.13       0        0.14     0.13     0.13     0.12                                                0           0            0        0         0         0
D/P             −0.11       0        0.12     0.12     0.11     0.11                                                0           0            0        0         0         0
mTLco        −0.13       0        0.14     0.13     0.13     0.12                                                0           0            0        0         0         0
Bclupeid          0.11        0       −0.12   −0.12   −0.11   −0.12                                               0           0            0        0         0         0
Bgadoid           0.19        0        −0.2    −0.19   −0.19       0                                                   0           0            0        0         0         0
F’                    0        0.54        0          0          0           0                                                   0           0            0        0         0         0
FIB                 0          0          0        0.31        0        0.33                                                0           0            0        0         0         0
mTLc          −0.17   −0.17    0.18     0.14     0.17     0.13                                                0           0            0        0         0         0
%PPR             0        0.81        0        0.46        0         0.5                                                 0           0            0        0         0         0

Hecate Strait    
Indicator      %PZ   %PiO %BPiO    PZ       PiO     BPiO                              Bafl        wSST   wSSH     ONI    NPI    ALPI   PDO

B                     0        0.64    −0.37       0          0           0                                   0            0.54         0            0        0         0         0
%predB       −0.1        0        0.11      0.1       0.1       0.09                              0.14            0           0            0        0         0       0.06
D/P                 0          0          0          0          0           0                                0.76            0           0            0        0         0         0
mTLco            0          0          0          0          0           0                                0.55            0           0            0        0         0         0
Bclupeid          0.12     0.11    −0.14   −0.12   −0.12   −0.11                            −0.11          0           0            0        0         0         0
Bgadoid           0.08     0.07     −0.1    −0.09   −0.08   −0.07                            −0.08          0           0            0        0         0         0
F’                    0          0          0        0.61        0           0                                   0              0           0            0        0         0         0
FIB              −0.13       0        0.13     0.16     0.13     0.17                              0.11            0         0.05         0        0         0         0
mTLc          −0.16   −0.13    0.16     0.15     0.16     0.15                              0.12            0           0            0        0         0         0
%PPR             0        0.44     0.18     0.52        0        0.51                                0              0           0            0        0         0         0

Barents/Norwegian Seas
Indicator      %PZ   %PiO %BPiO    PZ       PiO     BPiO      Bzoo               Bseal      BS_SST NS_SST   ice   NS_NAO

B                  0.13     0.14     −0.1        0          0        0.18       0.09                0.19         0.14      0.26        0           0
%predB         0          0          0          0         0.7         0            0                     0              0           0           0           0
D/P                 0          0          0          0        0.69        0            0                     0              0           0           0           0
mTLco            0          0          0          0          0           0         −0.4                  0           −0.36       0           0           0
Bclupeid             0        0.15        0          0          0        0.34       0.21                  0              0           0           0           0
Bgadoid           0.26     0.22        0          0          0        0.18         0                     0              0         0.49        0           0
F’                    0          0          0          0          0           0        −0.14              −0.12       −0.17    −0.19       0           0
FIB               0.18     0.21    −0.13    0.15        0           0            0                  0.17            0         0.18      0.13        0
mTLc              0          0          0          0          0           0            0                     0              0         0.18        0           0
%PPR             0         0.7         0          0          0        0.21         0                 −0.25          0         0.46        0           0

Table 2. Corrected coefficients of predictor drivers in relation to ecosystem response indicators including total biomass (B),
percent of predatory biomass (%predB), demersal-to-pelagic biomass ratio (D/P), mean trophic level of community (mTLco),
biomass of clupeids (Bclupeid), biomass of gadoids (Bgadoid), exploitation rate (F ’), fishing-in-balance index (FIB), mean trophic
level of catch (mTLc) and percent of primary production required to fisheries (%PPR) for the 9 ecosystems. The predictor dri-
vers for fisheries include percentage and weight of total catch for 3 combinations of different feeding guilds: planktivores and
zoo pivores (%PZ, PZ), piscivores and omnivores (%PiO, PiO) and benthivores, piscivores and omnivores (%BPiO, BPiO); for 

trophodynamic and environmental drivers, refer to Table 1 for full names. Nonzero values indicate significance
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System                          Fisheries driver                 Trophodynamic driver                    Environmental driver

Southern Gulf of St. Lawrence
Indicator     %PZ   %PiO %BPiO    PZ       PiO     BPiO     Bcope                               sSST    ice      ONI      NPI   ALPI     PDO

B                     0          0          0          0          0           0            0       0.24       0              0       0.2
%predB         0          0          0        0.23        0           0            0         0      −0.31       −0.32     0
D/P                 0          0        0.13     0.14        0        0.12         0      −0.11  −0.17       −0.17   −0.1
mTLco            0          0          0          0          0           0            0         0          0           −0.49     0
Bclupeid             0          0          0          0          0        0.58         0         0       1.09            0         0
Bgadoid             0          0          0         0.2         0        0.22         0         0      −0.28          0      0.32
F’                    0          0          0          0          0           0            0      −0.18      0           −0.14     0
FIB              −0.05    0.31     0.21     0.25     0.05     0.21         0         0      −0.25          0         0
mTLc          −0.12       0        0.17     0.17     0.12     0.16       0.08       0      −0.17       −0.11     0
%PPR         −0.06    0.38     0.24     0.31     0.06     0.27         0         0          0              0         0

Eastern Scotian Shelf
Indicator     %PZ   %PiO %BPiO    PZ       PiO     BPiO                             Bseal         SST    sBT    50mT  100mT strat

B                     0        0.24        0        0.24        0        0.32                                0              0         0          0           0        0
%predB         0       −0.13   −0.10   −0.11       0       −0.10                             0.14         0.09    0.00        0           0        0
D/P                 0       −0.34       0          0          0           0                                0.36            0         0          0           0        0
mTLco            0          0          0          0          0           0                                   0              0         0          0           0        0
Bclupeid             0          0          0          0          0           0                                   0              0         0          0        0.15  −0.11
Bgadoid             0          0          0        0.29        0        0.27                                0              0         0          0           0        0
F’                    0        0.18     0.18     0.18        0        0.18                             −0.16          0         0          0           0     −0.08
FIB                 0        0.21     0.20     0.21        0        0.20                             −0.19          0         0          0           0        0
mTLc              0        0.18     0.17     0.17        0        0.15                             −0.19          0         0          0           0        0
%PPR             0        0.37        0        0.27        0        0.29                                0              0         0          0           0        0

Western Scotian Shelf
Indicator      %PZ   %PiO %BPiO    PZ       PiO     BPiO                                               SST    sBT    50mT  100mT strat   BoFstrat

B                     0          0          0          0          0           0                                                   0         0          0           0        0           0
%predB       −0.1    −0.13       0       −0.13     0.1     −0.13                                               0         0          0           0        0           0
D/P                 0       −0.39       0          0          0           0                                                   0         0          0           0        0           0
mTLco        −0.06   −0.08       0       −0.07    0.06    −0.07                                               0         0          0           0        0           0
Bclupeid          0.14     0.19        0        0.17    −0.15    0.18                                                0         0          0           0     −0.13       0
Bgadoid             0          0          0        0.37        0        0.41                                                0         0          0           0        0           0
F’                  0.14     0.14        0        0.11    −0.14     0.1                                                 0         0          0           0        0           0
FIB                 0        0.36        0        0.34        0        0.32                                                0         0          0           0        0           0
mTLc            0.2      0.19     0.13     0.21    −0.19    0.16                                                0         0          0           0        0           0
%PPR          0.16     0.25        0        0.24    −0.16    0.25                                                0         0          0           0     −0.07       0

Gulf of Maine
Indicator     %PZ   %PiO %BPiO    PZ       PiO     BPiO     Bzoo                               SST   NAO   AMO

B                     0        0.18        0          0          0           0            0                                     0         0          0
%predB         0          0          0          0          0        0.43         0                                     0         0       −0.42
D/P             −0.13       0        0.09      0.1      0.13     0.15         0                                     0         0       −0.13
mTLco        −0.15   −0.17    0.12        0        0.15        0            0                                     0         0          0
Bclupeid          0.18     0.16    −0.16       0       −0.18       0            0                                     0         0        0.15
Bgadoid             0          0          0          0          0           0            0                                  0.39      0          0
F’                    0          0          0        0.24        0        0.24         0                                     0         0       −0.26
FIB              −0.12       0        0.14     0.18     0.12     0.17         0                                     0         0       −0.17
mTLc          −0.17   −0.16    0.17      0.1      0.17      0.1          0                                     0         0       −0.13
%PPR             0          0          0        0.33        0        0.31         0                                    0         0       −0.31

Georges Bank
Indicator      %PZ   %PiO %BPiO    PZ       PiO     BPiO      Bzoo                                 SST   NAO   AMO

B                     0        0.88        0          0          0           0            0                                  0.58   −0.31       0
%predB      −0.19   −0.18    0.14      0.1      0.19     0.11         0                                     0         0          0
D/P             −0.41       0          0          0        0.41        0            0                                     0         0          0
mTLco        −0.18   −0.21       0          0        0.18        0        −0.06                                 0         0          0
Bclupeid          0.24     0.24    −0.21       0       −0.24       0            0                                     0         0          0
Bgadoid          −0.19   −0.28   −0.11    −0.2     0.19        0            0                                     0         0         0.3
F’                    0          0          0        0.18        0           0            0                                  −0.2    0.19    −0.22
FIB                 0          0        0.25     0.33        0        0.34         0                                     0         0          0
mTLc              0          0         0.9         0          0           0            0                                     0         0          0
%PPR             0        0.19        0        0.64        0        0.41         0                                    0         0          0

Table 2 (continued)
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omnivores; catch of planktivores and zoopivores; and
the proportion of piscivores and omnivores in the
catch. The percent primary production required to
sustain fisheries was always affected by at least 2 of
these fisheries drivers, and it was most closely related
to the percent of piscivores and omnivores in the
catch for 6 out of the 9 ecosystems (Barents/Norwe-
gian Seas, eastern Bering Sea, Gulf of Alaska, east-
ern Scotian Shelf, western Scotian Shelf and south-
ern Gulf of St. Lawrence). The same set of drivers
was also most influential on the fishing-in-balance
index, although individual driver effects were mixed.
The percent of piscivores and omnivores in the catch
influenced this index most in the Barents/Norwegian
Seas, eastern Bering Sea, western Scotian Shelf and
southern Gulf of St. Lawrence, but the same driver
had no influence on the fisheries-in-balance index
for another 4 ecosystems (Hecate Strait, Gulf of
Alaska, Georges Bank and Gulf of Maine) where the
absolute catch of benthivores, piscivores and omni-
vores was most relevant. In 4 systems (Gulf of Alaska,
Hecate Strait, western Scotian Shelf and Gulf of
Maine), mean trophic level of catch was affected by
all of the fisheries drivers, whereas in Barents/Nor-
wegian Seas, there were no apparent fisheries effects
on this index.

Environmental drivers, particularly temperature-
related independent variables (e.g. SST) were also
im portant across all ecosystems, with high coeffi-
cients in relation to biomass-based ecosystem
response indicators. In particular, total biomass (i.e.
Barents/ Norwegian Seas, Gulf of Alaska, Hecate
Strait, southern Gulf of St. Lawrence and Georges
Bank), biomass of gadoids (i.e. Barents/Norwegian
Seas, southern Gulf of St. Lawrence, Georges Bank
and Gulf of Maine), biomass of clupeids (eastern
Scotian Shelf, western Scotian Shelf and Gulf of
Maine) and percent of predatory biomass (eastern
Scotian Shelf, southern Gulf of St. Lawrence and
Gulf of Maine) appeared to be at least partially envi-
ronmentally driven.

Although trophodynamic driver time series were
unavailable in several ecosystems, and less numer-
ous across all ecosystems than fisheries or environ-
mental drivers, we note that their coefficients are of
similar magnitude to the other drivers in all of the
cases where they could be included. Trophodynamic
drivers had the highest coefficients in relation to
mean trophic level in the community (Barents/ 
Norwegian Seas, eastern Bering Sea and Georges
Bank), demersal-to-pelagic biomass ratio (Hecate
Strait and eastern Scotian Shelf) and biomass of clu-
peids (southern Gulf of St. Lawrence).

DISCUSSION

This is the first application of PLS regression for
modeling the relationships between ecosystem indi-
cators and the triad of drivers: fisheries, tropho -
dynamic and environmental. The results of our PLS
regression modeling have provided important
insights into the relative importance of the triad of
drivers affecting the dynamics of ecosystem indica-
tors, outlined here and detailed below. First, the full
triad of drivers needs to be considered to understand
fishery production — across 9 diverse northern hemi-
sphere ecosystems, none were influenced by only a
single driver type. We found that fishing is an im -
portant driver across all ecosystems, that environ-
mental drivers are often more important to ecosystem
biomass indicators than fishing drivers and that
trophodynamic drivers can be very influential in indi-
vidual ecosystems, despite a general lack of time
series data for this type of driver. Within individual
ecosystems, the relative importance of the triad of
drivers is context dependent. This work clearly illus-
trates the value of long-term ecological time series
combined with the comparative approach in ecologi-
cal investigations.

Empirical evidence that the triad of drivers
 influence fisheries production

It is clear from our results that fisheries, tropho -
dynamic and environmental drivers shape critical as-
pects of fishery production. Across 9 ecosystems
spanning the north Pacific and Atlantic ocean basins
from subarctic to temperate regions, all showed evi-
dence that multiple classes of drivers influence eco-
system responses. While this result may seem
intuitive from an ecological standpoint, fisheries pro-
duction investigations have often focused on a single
driver type, most often either fishing or the environ-
ment. This dichotomy was illustrated most famously
for single-species production in the  Thompson−
Burkenroad debate of the 1950s, where Thompson
maintained that changes in Pacific halibut Hippo -
glossus stenolepis populations were directly attribut-
able to changes in fishing, while Burkenroad argued
that ‘natural causes’ drove population dynamics (Bev-
erton & Holt 1957, Skud 1975). Al though most current
arguments regarding drivers of production are not
this extreme, it is still common to have environmental
and fisheries effects on population and ecosystem
productivity studied separately (e.g. Link 2010: most
standard stock assessments ignore environment/
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 trophodynamics while biology/ eco logy investigations
ignore fishing). Based on our results and those of
many others (e.g. Blanchard et al. 2010, Shannon et
al. 2010, Shin et al. 2010a,b, Link et al. 2010b), these
lines of investigation should be integrated.

The importance of fishing as a driver of exploited
marine ecosystem dynamics is not surprising, but our
results show fishing within the context of a full suite
of drivers. While fisheries drivers had the most con-
sistent influence on the catch-based ecosystem indi-
cators across all ecosystems, with clear influence on
biomass-based indicators in many systems, the coef-
ficients were often of a similar magnitude to those
estimated for environmental or trophodynamic dri-
vers on the same indicators, suggesting a similar
level of influence. However, the influence of fishing
was not always observed at the full-ecosystem level:
in 4 out of the 9 ecosystems, total biomass was not
related to any of the fisheries drivers (in 2 of those
systems, it was unrelated to any of the drivers). While
some of these results may arise from differences
among ecosystems in the availability of time series
for constructing ecosystem response variables, the
general implication that fisheries are important but
not exclusive drivers of production remains clear.

Despite the clear importance of fisheries as drivers
of ecosystem productivity, our results demonstrate
that environmental drivers may be even more influ-
ential on ecosystem attributes related to biomass.
While some environmental drivers showed little in -
fluence on the ecosystem response indicators (partic-
ularly for the ONI and NPI indices in the Pacific eco-
systems), high (>0.3) coefficients showed the strong
influence of SST on one or more biomass-based indi-
cators for 6 of the 9 systems. This result suggests that
climate-driven changes in SST may have important
ecosystem-level effects, reinforcing the need to mon-
itor environmental as well as fishery drivers in as -
sessing marine ecosystems.

Trophodynamic drivers were clearly important in
affecting ecosystems, exhibiting some of the highest
influence on ecosystem response indicators in sev-
eral systems. Apex predator time series showed par-
ticularly high influence over both biomass and catch-
based ecosystem indicators in 3 of the 4 ecosystems
where they were included. Although zooplankton
time series were rare, when available, they showed
an influence on ecosystem response similar to that of
fisheries. These results suggest that further work to
assemble time series representing major bottom-up
and top-down trophodynamic drivers in a wider
range of ecosystems will result in better understand-
ing of ecosystem productivity. Further, improving the

availability of trophodynamic drivers, including bio-
mass of mesozooplankton and top-level predators,
may improve our ability to explain changes in the
mean trophic level of the community, an indicator
that is regarded as important (Libralato et al. 2008,
Shin et al. 2010a), but was largely unexplained in our
analysis.

Context dependence of driver importance

While there were similarities across ecosystems
with respect to the general importance of all 3 driver
types, it was clear from our results that contiguous
ecosystems may not always respond synchronously
to common drivers, regardless of driver type. This
suggests that the relative importance of the triad of
drivers will be context dependent, with local histories
modulating broad-scale, basin-level drivers, and
with key trophodynamic and environmental drivers
likely to be system specific. Some basin-scale pat-
terns were apparent from our results, probably
owing to some common ecosystem context across the
ecosystems, with potential implications for fisheries
management. For example, the negative and declin-
ing trends in the fishing-in-balance indices of the
eastern Atlantic ecosystems in the 1990s provided a
warning that the functioning of these ecosystems had
been impaired by the impacts of fishing. The reduc-
tion of mean trophic level of catch in these 6 eco-
systems highlighted an additional concern that the
fishing patterns had ‘fished down the foodweb’,
which can indicate the loss of higher trophic level
species, with consequent impacts on the ecosystem
vulnerability (Pauly & Watson 2005, Bundy et al.
2009). Fortunately, the similarly decreasing trend in
percent of primary production required to sustain
fisheries indicated that more cautious fisheries man-
agement strategies have operated in the last decade.

Our results for the remaining ecosystems further
de monstrate the context dependence of driver im -
portance. In the Pacific Ocean, ecosystems either
showed balanced (i.e. eastern Bering Sea and Gulf of
Alaska) or a positive and slightly increasing trend
(Hecate Strait) in the fishing-in-balance indices. The
increasing trend of mean trophic level of the catch in
Hecate Strait indicates that higher trophic level spe-
cies are being targeted, since catches of Pacific her-
ring declined and no longer comprise the majority of
the commercially caught fish, resulting in exploita-
tion that is more balanced across trophic levels. In
the Barents/Norwegian Seas, the fishing-in-balance
index started to increase after 1990 indicating fishery
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expansion in the last 2 decades; Atlantic herring Clu-
pea harengus in the Norwegian Sea had recovered
and the fishery increased to take advantage of this
increased productivity (Holst et al. 2002). Also of note
is that our analysis suggests the presence of lags in
the response of ecosystems to changes in the inten-
sity of any of the drivers. For example fishing activity
has been reduced on the eastern Scotian Shelf, yet
dramatic reductions of mean trophic level of the
catch along with other indicators such as total bio-
mass and percent primary production required in
the eastern Scotian Shelf were still observed (Bundy
et al. 2005).

Overall, comparisons of 10 indicators across 9
northern hemisphere ecosystems indicated that dif-
ferent ecosystem indicators responded to the triad of
drivers differently, and it may be necessary to further
include more ecosystem-specific indicators in order
to better understand the different impacts from
 multiple drivers (see below). Each of the triad of dri-
vers was important for all ecosystems; however, the
relative importance of each driver and the indicators
they most affected varied among ecosystems, rein-
forcing the finding that an examination of a suite of
indicators and drivers is required. Further analyses
like PLS regression modeling and exploration is
 warranted for each ecosystem in order to identify
additional driver variables and improve model pre-
dictive ability.

Implications for ecosystem-based management

Marine ecosystems are inherently complex, influ-
enced by a triad of fisheries, trophodynamic and en -
vironmental drivers, and such complexity requires
that the management of marine fisheries adopt a
more holistic approach. Correspondingly, ecosystem-
based fisheries management (EBFM) has been advo-
cated to account for both fishing and environmental
processes, in conjunction with species interactions
when formulating fisheries management advice (e.g.
Pikitch et al. 2004, Sissenwine & Murawski 2004,
Link 2010). To support the implementation of EBFM,
it is important to develop and monitor indicators to
assess ecosystem status and the effectiveness of man-
agement strategies (Cury & Christensen 2005, Shin
et al. 2010b). Further, a standardized set of eco-
system indicators that can be applied across eco-
systems may be desirable as a basis for EBFM (e.g.
Shin et al. 2010b). Travers et al. (2006) showed that
indicators did not always vary as predicted from first
principles because of indirect effects of fishing on the

different components of the ecosystem. Conse-
quently, the fishing configuration (species targeted,
fishing intensity) and the type of community should
be incorporated into the development and evaluation
of ecosystem indicators.

Our results suggest that EBFM should focus on con-
sidering the effects of fishing on ecosystem indicators
as a standard approach across ecosystems, while
component-specific ecosystem indicators should be
tailored to individual ecosystems. We ex plored eco-
logically oriented, component-specific indicators,
such as biomass of gadoids, biomass of clupeids and
the demersal-to-pelagic biomass ratio in addition to
the commonly used integrative indicators such as
total biomass, mean trophic level in the catch, mean
trophic level in the community, fishing in balance and
percent of primary production re quired to sustain
fisheries. Likewise, we examined component-specific
fisheries drivers including the catch and catch per-
centages of certain aggregate groups (e.g. catch and
catch percentage of planktivores and zoopivores). We
found that the component-specific biomass indicators
were sensitive to the suite of drivers in some eco-
systems, but were not universally sensitive indicators
across all ecosystems. However, component-specific
fisheries drivers did produce significant responses
across ecosystems and ecosystem indicators.

Although our main focus was a comparison across
ecosystems, EBFM is implemented within particular
ecosystems such that further augmentation of the
standardized indicator approach and the drivers con-
sidered may be necessary. For example, we limited
anthropogenic drivers to fishing only, since fishing
has been recognized as the predominant factor influ-
encing ecosystem dynamics on a global scale (e.g.
Jackson et al. 2001, Pauly et al. 2002). While fishing
was clearly influential across ecosystems, on a re -
gional scale, other anthropogenic impacts, such as
coastal development and urbanization, pollution or
other human uses, should be included as drivers
when appropriate for regional EBFM applications,
along with any additional ecosystem response indi-
cators appropriate to these drivers.

Finally, this work again shows the importance of
developing and maintaining time series for EBFM
related not just to fished species but to their key
predators and prey and to key environmental drivers
that are relevant to each ecosystem. Our convincing
empirical evidence for the importance of the triad of
drivers to fishery production is based on the long-
term scientific monitoring efforts of multiple agen-
cies and institutions across a variety of regions. How-
ever, even with this data set it was difficult to explain
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some proposed universal ecosystem indicators such
as trophic level of the community because time series
on zooplankton and apex predators were not avail-
able in all ecosystems. For EBFM to be successful,
maintenance of current ecological data sets is critical.
In addition, as key ecosystem indicators are identi-
fied, testing the relationships between these indica-
tors and available driving time series may identify
new monitoring necessary to support EBFM.

CONCLUSIONS

It is crucial to search for empirical correlations
between ecosystem indicators and drivers in the pro-
cess of EBFM where appropriate indicators have to
be selected and applied rigorously, although doing so
has largely been neglected (Daan 2005). Through
PLS regression modeling of the relationships be -
tween ecosystem indicators and the triad of fisheries,
trophodynamic and environmental drivers, we iden-
tified common themes shared by all the ecosystems
studied in terms of the relative importance of the
triad of drivers. These common themes were: (1) en -
viron mental drivers, particularly temperature-re -
lated independent indicators (e.g. SST), affected all
systems, as found by Bundy et al. (2012), and were
most related to one of 3 biomass indicators; (2)
trophodynamic drivers were related to measures of
biotic community structure; (3) the fisheries drivers
(as would be expected) tended to be most related to
the catch-based indicators, yet had no impact on total
system biomass in 4 out of the 9 ecosystems. These
results suggest that a suite of both standardized and
ecosystem-specific indicators are be needed to
reflect the different impacts from fisheries, tropho -
dynamic and environmental drivers regardless of
the ecosystem being investigated.
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INTRODUCTION

Implementation of ecosystem-based fisheries man-
agement (EBFM) requires information pertaining to
the structure and function of the biotic communities
within an ecosystem. To use such information, met-
rics representative of key processes are required, as

is establishing thresholds for them from which man-
agement actions can be triggered. There is a growing
body of work on indicators germane to fishing pres-
sures and responses (Degnbol & Jarre 2004, Cury &
Christensen 2005, Link 2005, Rice & Rochet 2005,
Bundy et al. 2010, Coll et al. 2010, Link et al. 2010a)
as well as the establishment of indicators and thresh-
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olds that delineate ecosystem overfishing (EOF;
Tudela et al. 2005, Coll et al. 2008, 2010, Libralato et
al. 2008, Link et al. 2010a, Shin et al. 2010a). Useful
properties of such indicators include being respon-
sive to variation in a diversity of specific pressures
including anthropogenic (e.g. exploitation pressure),
environmental (e.g. climate), and trophodynamic
(ecological interactions). This ‘triad’ of drivers (Link
et al. 2012, this Theme Section [TS]) can significantly
impact the production of fisheries in an ecosystem,
and developing suites of metrics that would indicate
when such production was being altered is valuable.

Among this triad of drivers, 2 are external to a sys-
tem (anthropogenic and environmental) and can
have a strong influence over the third driver, the
trophodynamic features of an ecosystem. Often these
impacts result from changes to the structure of biotic
communities in an ecosystem. Examining modifica-
tions in ecological processes induced by structural
changes, as caused by these external perturbations,
requires caution because of the inherent uncertainty,
long feedback times, and nonlinearity of ecosystem
responses to external perturbations (Holling et al.
1995). A comparative approach is needed to establish
what are normal and what are extreme fluctuations in
marine ecosystems, and to establish ranges of thresh-
olds in response to these fluctuations such that they
are useful for EBFM (Piatt et al. 2007, Murawski et al.
2009, Link et al. 2010b). Ideally, such a comparative
approach should encompass a multi-species, multi-
region, and multi-trophic level set of conditions.

Since Odum & Heald (1975) described fractional
trophic levels (TLs), the use of an energetic context
for evaluating ecosystem function has been widely
developed. Trophodynamic studies have elucidated
important responses in marine ecosystem function-
ing as community structure has been altered (e.g.
Pitcher & Cochrane 2002, Coll et al. 2010, Shannon et
al. 2010, Shin et al. 2010b). Many of these papers
have specifically examined such re sponses with
respect to the impacts of fishing, serving as first
attempts to delineate EOF (e.g. Pauly et al. 2000,
Gascuel et al. 2005, 2008, Coll et al. 2008, Libralato et
al. 2008). These trophodynamic measures show
notable promise of being robust EOF measures that
capture changes to the dynamics of the major pro-
cesses constituting ecosystem function.

In this trophodynamic context, accumulation of
biomass has been documented for many marine food
webs, with the middle TLs exhibiting the largest
increase in cumulative biomass for a system (Gascuel
et al. 2005, Link et al. 2009a). Changes to this accu-
mulation may reflect shifts in ecosystem structure

and function, as well as represent important consid-
erations for management thresholds. How robust and
consistent this accumulation of biomass is as a gen-
eral feature of marine ecosystems is unknown. Here
we compared such cumulative biomass curves across
TLs for a range of northern hemisphere temperate
and boreal ecosystems. Our objectives were to eva -
luate the consistency of this suspected pattern across
different ecosystems and, if the pattern held, to
 ex amine those broad-scale factors that most influ-
ence temporal shifts in the cumulative biomass−TL
(cumB–TL) curves.

MATERIALS AND METHODS

Ecosystems and data sets

The key characteristics of the 10 compared ecosys-
tems, in terms of type of system, main changes over
the time, and key environmental factors, are listed in
Table 1, along with their abbreviations, and a map of
their location is given in Fig. 2 of Link et al. (2012).
Annual biomass for each species is contained in the
CAMEO database (Link et al. 2010b), and the species
included in the calculation for each ecosystem are
listed in Table 2. It is worth noting that for some
ecosystems, the database comprises not just fish spe-
cies, but also different groups of invertebrates. Bio-
mass estimates were ob tained from stock assess-
ments when available or from research surveys.
Stock assessment estimates of biomass typically cor-
responded to the exploitable portion of total biomass,
assuming knife-edge re cruitment. Swept-area esti-
mates of survey biomass were expanded to the total
area of the ecosystem and were corrected for catcha-
bility when possible (for major details, refer to Link et
al. 2010b).

Trophic spectra

The trophic spectra analysis, i.e. the distribution of
an ecological property, such as biomass, along TLs,
has been proposed as an indicator to assess the effect
of fishing activities on the ecosystem structure (Gas-
cuel et al. 2005). Studying the trophic structure of fish
communities (but also of taxonomically larger bio -
logical communities) involves species aggregation
based on trophic similarities (Bozec et al. 2005). As
highlighted by Libralato & Solidoro (2010), a possible
critical issue in the trophic spectra analysis is related
to the method used to distribute the biomass value of
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each species/group over a continuum of TLs. Due to
variability in species diet that generally changes dur-
ing life history (e.g. Jennings et al. 2002a) and the

lack of dietary information for many fish species, the
trophic position of a species is better characterized by
a range of fractional TLs rather than a single value.

Table 1. Key characteristics of 10 ecosystems; for references about ecosystem changes over time and key environmental influences,
see Fu et al. (2012, this Theme Section, their supplementary material). References reported here refer to EwE models.TL: trophic level

EBS: Eastern Bering Sea,
USA (Aydin et al. 2007)

Transitional between Arctic and sub Arctic

Downwelling

Temperate-boreal

A majority of commercial fishery tonnage
depends on walleye pollock production, which
in turn is hypothesized to be closely tied to
climate and sea ice dynamics. A recent stretch
of anomalously warm years with early ice
retreat resulted in low zooplankton biomass
and poor pollock production 2001−2005, while
cooler years with late ice retreat 2007−2010
resulted in higher zooplankton biomass,
improved pollock production.

This region is influenced by the El Niño-
Southern Oscillation (ENSO) and the Arctic
Oscillation. These climate drivers com-
bined with local conditions influence the
timing of ice formation and retreat on the
Bering Sea shelf, which is critical to setting
up conditions for biological productivity
across most TLs. Warm conditions associ-
ated with early ice retreat and late water
column stratification favor later zooplank-
ton blooms and more pelagic production,
while in cold years with late ice retreat,
stratification happens immediately,
promoting blooms that sink to the benthic
energy food web.

Ecosystem (Source) Important changes Key environmental influences

GOA: Gulf of Alaska
(Aydin et al. 2007)

Large-scale groundfish and crab fishing began
in 1960; groundfish fishing continues to the
present, while crab and shrimp fisheries
declined around 1980 and never recovered. 
A major change in community composition at
multiple TLs was observed around 1977 and
has been attributed to a climate regime shift.
However, physical mechanisms driving
dynamics have proven elusive in the GOA.
 Arrowtooth flounder populations have
increased since the 1960s, while pollock
peaked and declined in that time.

The Pacific Decadal Oscillation is an
atmosphere–ocean pattern observed
across the North Pacific and linked to
zooplankton and salmon productivity in the
oceanic GOA. Local weather patterns are
also influenced by ENSO. Locally varying
conditions lead to complex and dynamic
influences in various regions of the
continental shelf.

HS: Hecate Strait, Canada
(Ainsworth et al. 2002)

Groundfish fisheries were introduced in the
1970s. Most groundfish species of limited
commercial value that are caught primarily as
bycatch in groundfish fisheries showed an
increasing trend over the entire time series
with an approximate 4-fold increase in biomass.
Two other groups (12 groundfish species)
showed an initial period of increase, followed
by a decline to the late 1990s, and an increase
in the early 2000s. A final group that included
Pacific cod and spiny dogfish showed a
downward trend throughout the time series.
Trends in biomass of commercially important
groundfish species generally correspond to
trends in fishing effort and a continuing
increase in primary and secondary production.

Enrichment: wind-driven upwelling
(weakening downwelling), estuarine flow
of FW runoff, tidal and wind mixing.
Initiation: shallow banks limit depth of
mixing (localized effect). Southerly winds
dominate in winter; conversely, in summer,
relaxation of downwelling winds produces
a surface offshore flow and a deep 
onshore flow.

NL: Newfoundland &
Labrador 
(Pitcher et al. 2002)

The 1985−1993 fish collapses led to a fishing
moratorium in 1992. At the same time, other
fisheries (notably crab) are experiencing record
yields.

Characterized by a wide and relatively
shallow continental shelf transected in
places by deeper trenches. Ocean circula-
tion is dominated by the southerly flowing
and cold Labrador current and its interac-
tion with the warm Gulf Stream.
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SGOSL: Southern Gulf of
Saint Lawrence
(Morissette et al. 2003)

Since the 1950s, exploitation of groundfish has
been intense. In the early 1990s, the cod stock
collapsed, other groundfish species experi-
enced serious declines, and the ecosystem
switched from one dominated by demersal fish
to one dominated by forage species such as
sand lance, herring, and invertebrates such as
shrimp, snow crab, and clams. There have been
significant fishing impacts with decreases in
fish size, TL, and proportion of predatory fish.

The Gulf of St. Lawrence is considered an
inland sea. With a drainage basin that
includes the Great Lakes, the gulf receives
more than half of the freshwater inputs
from the Atlantic coast of North America.
The SGOSL has the farthest regular annual
extension of sea ice in the north Atlantic
during winter, yet largely the warmest
surface water temperatures in Atlantic
Canada during the summer.                 

ESS: Eastern Scotian Shelf
(Bundy 2005)

Temperate
In the early 1990s, the cod stock collapsed,
other groundfish species experienced serious
declines, and the ecosystem switched from one
dominated by demersal fish to one dominated
by forage species such as sand lance, herring,
and invertebrates such as shrimp, snow crab,
and clams. In addition, the grey seal population
increased exponentially since the early 1970s.
There have been significant fishing impacts
with decreases in fish size, TL, and proportion
of predatory fish.

The hydrographic environment of the
Scotian Shelf is governed largely by its
location near the confluence of 3 major
currents, a Shelf current, which brings cool
fresh water primarily from the Gulf of St.
Lawrence; the Labrador Current, which
brings cold fresh water from the north
along the edge of the shelf; and the Gulf
Stream, which brings warm salty water
from the south. Shelf bottom is also an
important factor affecting the hydrographic
environment.

WSS: Western Scotian Shelf
(Araújo & Bundy 2011)

This system has seen changes in species
composition, with reductions in the biomass of
groundfish and flatfish and increases in some
invertebrates. These changes have been
accompanied by reductions in mean weight
and length at age for some key commercial
stock. These changes are not as severe as those
observed on the ESS.

The WSS is subject to a similar hydro-
graphic environment to the ESS. However,
it is more subject to the influence of the
Gulf Stream, which brings warm salty
water from the south.

GB: Georges Bank
(Link et al. 2006, 2008)

The system changed from one dominated by
flatfish and gadids to one dominated by small
pelagics and elasmobranchs. Also, the commu-
nity shifted from demersal to pelagic. The
major perturbations were the arrival and
subsequent departure of the distant water
(international) fleets with an estimated 50%
decline in fish biomass during this time period;
and the 200 mile (~320 km) limit extended
jurisdiction in 1977 combined with moderniza-
tion and increased capacity of the domestic
fleet-reducing groundfish to historically low
levels. Recently there has also been a docu-
mented shift in some fish populations, likely
due to change in temperature. Zooplankton
composition shifted between the 1980s and
1990s coinciding with a major change in
surface layer salinity.

Offshore upwelling along the shelf−slope
break, vigorous tidal mixing, and the
generally clockwise pattern of its currents
concentrates nutrients on GB, making it
highly productive. Periods of stratification
can occur seasonally and in localized areas,
which can temporarily interrupt the
nutrient cycle.

GOM: Gulf of Maine
(Link et al. 2006, 2008)

As in GB above Movement of deep slope water into the
GOM through the northeast channel which
carries a steady supply of nutrients, which
is interrupted by summer stratification.
Nutrient-poor Labrador Shelf water is
occasionally transported from the north by
intense negative North Atlantic Oscillation
(NAO), and intrusion of fresh water from
ice melting in the Gulf of St. Lawrence and
Arctic has recently occurred.

Table 1 (continued)

Ecosystem (Source) Important changes Key environmental influences



Pranovi et al.: Trophic determinants of biomass accumulation 189

BSNS: Barents Sea/
Norwegian Sea 
(Gaichas et al. 2009, 
Skaret & Pitcher 2012)

Upwelling
The herring stock collapsed in the late 1960s
and did not recover fully until the 1990s. 
There have been 3 collapses of the capelin
stock (1985, 1993, 2003), all followed by a rapid
recovery of the stock. There was increased
abundance of pelagic fish in the Norwegian
Sea from 1995 to 2006 concurring with an
increase in water temperature.             

The NAO determines the inflow strength
of Atlantic water, which affects the water
temperature and salinity. This affects the
amount of ice in the Barents Sea.

Table 1 (continued)

Ecosystem (Source) Important changes Key environmental influences

                                                EBS   GOA    HS                                                     NL    SGOSL    ESS    WSS    GOM    GB   BSNS

Pacific Ocean                                                               Atlantic Ocean                                                                                              
Alaska plaice                            X        X                     Aesop shrimp                       X                                                                      
Alaska skate                             X                                Alewife                                             X           X                                            
Arrowtooth flounder                X        X        X          American lobster                              X           X        X                                 
Atka mackerel                          X        X                     American plaice                  X          X           X                     X        X         
Big skate                                               X                     Arctic cod                             X                                                                      
Bivalves (NS)                            X                                Atlantic argentine                                          X                                            
Bocaccio                                                           X          Atlantic butterfish                                                                 X        X         
Copepods (NS)                         X                                Atlantic cod                          X          X           X        X          X        X        X
Crabs other (NS)                       X                                Atlantic hagfish                                             X        X                                 
Crustaceans other (NS)            X                                Atlantic halibut                    X          X           X                     X        X         
Curlfin sole                                                      X          Atlantic herring                   X          X                      X          X        X        X
Dover sole                                 X        X        X          Atlantic mackerel                                          X        X          X        X        X
Dusky rockfish                          X        X                     Atlantic redfishes (NS)        X          X           X        X          X        X         
English sole                                                     X          Atlantic tomcod                                                         X                                 
Eulachon                                   X        X        X          Atlantic wolffish                  X          X                                   X        X         
Fish other (NS)                          X                                Barndoor skate                                                          X                                 
Flathead sole                             X        X        X          Blue hake                             X                                                                      
Forage fishes other (NS)          X        X                     Blue whiting                                                                                                X
Gelatinous filter feeders (NS)  X                                Common alligatorfish         X                                                                      
Greenlings (NS)                        X        X                     Common grenadier             X                                                                      
Grenadiers (NS)                                   X                     Cunner                                              X                                                          
Hermit crabs (NS)                     X                                Cusk                                                               X        X                                 
Kamchatka flounder                 X                                Daubed shanny                   X                                                                      
King crab                                   X                                Fourline snakeblenny         X                                                                      
Large sculpins (NS)                  X        X                     Fourspot flounder                                                                  X        X         
Lingcod                                                            X          Goosefish                                                        X        X          X        X         
Longnose skate                                    X                     Greenland cod                                 X                                                          
Northern rock sole                   X        X                     Haddock                               X          X           X         X          X        X        X
Northern rockfish                     X        X                     Halibut                                                                       X                                 
Pacific cod                                 X        X        X          Jonah crab                                                      X                                            
Pacific halibut                           X        X        X          Longfin hake                        X          X                                                          
Pacific herring                          X        X        X          Longfin squid                                                                         X        X         
Pacific ocean perch                  X        X                     Longhorn sculpin                             X                                                          
Pacific salmon                           X        X                     Longnose eel                        X                                                                      
Pacific sand lance                     X        X                     Lumpfish                              X                       X        X                                 
Pacific sanddab                                               X          Lumpfishes (NS)                  X                                                                      
Pandalid shrimps (NS)             X        X                     Marlin-spike grenadier                   X                                                          
Octopuses (NS)                         X        X                     Northern alligatorfish         X                                                                      
Petrale sole                                                      X          Northern prawn                   X                                                                      
Quillback rockfish                                          X          Northern sand lance           X                                               X        X         

Table 2. Species included in each ecosystem (abbreviations as in Table 1). NS: species not specified



Mar Ecol Prog Ser 459: 185–201, 2012

Here we assumed that the probability distribution of
TLs is normal with the mean being set at the species-
specific mean TL and coefficient of variation (CV)
being set arbitrarily at 0.1. The mean TL for each spe-
cies in each ecosystem was obtained either from Eco-
path models, if available (Table 1), or from FishBase
(Froese & Pauly 2011). The TL distribution was trun-
cated within an arbitrary range of ±0.7 and then

scaled by the sum before it was multiplied by the
species- and year-specific biomass (see the previous
description of data) to distribute the biomass over the
range of TLs. For each year from 1984 to 2007, the
biomass at each TL interval (0.1) was aggregated
over all species to obtain a system biomass−TL spec-
trum from which absolute cumB–TL curves were
obtained. These curves were used to obtain a first
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                                                EBS   GOA    HS                                                     NL    SGOSL    ESS    WSS    GOM    GB   BSNS

Rex sole                                     X        X        X          Ocean pout                                                     X        X          X        X         
Rougheye rockfish                   X        X                     Offshore hake                                                X                                            
Sablefish                                    X        X        X          Perciformes                                      X                                                          
Salmon shark                                       X                     Pollock                                                            X        X          X        X         
Sand sole                                                         X          Rainbow smelt                                  X                                                          
Sculpins other (NS)                  X        X                     Red hake                                                        X        X          X        X         
Scyphozoid jellies (NS)            X                                Rock crab                                          X           X                                            
Sebastes other (NS)                            X                     Roughhead grenadier         X                                                                      
Sharpchin rockfish                              X                     Roundnose grenadier          X                                                                      
Shortraker rockfish                              X                     Saithe                                                                                                           X
Shortspine thornyhead                        X                     Scorpaeniformes                              X                                                          
Silvergray rockfish                                          X          Sculpin                                                            X        X                                 
Sleeper shark                            X        X                     Sculpins (NS)                       X                                                                      
Slender sole                                                     X          Scup                                                                                        X        X         
Southern rock sole                               X        X          Sea raven                             X          X                                                          
Spotted ratfish                                                 X          Shad                                                                X                                            
Tanner crab                               X                                Shortfin squid                                   X                                   X        X         
Walleye pollock                        X        X        X          Shorthorn sculpin                            X                                                          
Yellowfin sole                           X        X                     Silver hake                                                     X        X          X        X         
Yellowtail rockfish                                          X          Small pelagics                                                           X                                 
                                                                                      Smooth dogfish                                                                                 X         
                                                                                      Snake blenny                       X                                                                      
                                                                                      Stone crab                                                      X                                            
                                                                                      Summer flounder                                                                   X        X         
                                                                                      Thorny skate                        X                                                                      
                                                                                      Threebeard rockling (NS)  X                                                                      
                                                                                      Threespine stickleback                   X                                                          
                                                                                      Toad crabs (NS)                                X                                                          
                                                                                      White hake                           X          X           X        X          X        X         
                                                                                      Windowpane                                                  X                     X        X         

                                                                                      Winter flounder                                X           X                     X        X         
                                                                                      Witch flounder                     X          X           X                     X        X         
                                                                                      Wolffishes (NS)                    X                       X        X                                 
                                                                                      Yellowtail flounder                          X           X                     X        X         

Both oceans                                                                                                                                                                                         
Butter sole                                                       X          Butter sole                                                                                                    X
Capelin                                      X        X                     Capelin                                 X          X                                                          
Eelpouts (NS)                            X        X                     Eelpouts (NS)                       X          X                                                          
Flatfishes (NS)                          X        X                     Flatfishes (NS)                                                           X                                 
Greenland halibut                    X                                Greenland halibut               X          X           X                                           X
Shrimps (NS)                             X                                Shrimps (NS)                                    X                                                          
Skates (NS)                               X        X        X          Skates (NS)                                       X           X        X          X        X         
Snails (NS)                                X                                Snails (NS)                           X                                                                      
Snow crab                                 X                                Snow crab                            X          X           X                                            
Spiny dogfish                                       X        X          Spiny dogfish                                   X           X        X          X        X         
Squids (NS)                               X        X                     Squids (NS)                                                    X        X                                 

Table 2 (continued)



Pranovi et al.: Trophic determinants of biomass accumulation

description of trophic structure modifications in each
system through time.

Analysis

Temporal variations of the total  biomass and its dis-
tribution among the different TLs within each system
was tested by using a Kolmogorov-Smirnov test
applied to the absolute curves, allowing us to per-
form a preliminary assessment of possible modifica-
tions in the general curve shape.

In order to improve the comparative analysis,
within and among different ecosystems, the raw data
were then fitted according to a 4-parameter logistic
nonlinear regression model, with the form:

(1)

where A and D are the minimum and maximum
asymptotes (here set to 0 and 1, respectively); B is the
slope factor/steepness of the curve; and C is the
inflection point in terms of TL. The parameters B and
C were determined as nonlinear weighted least-
squares estimates of the parameters of the nonlinear
model (Bates & Chambers 1992).

Possible relationships between the temporal trends
of curve parameters (B and C) and external drivers,
such as environmental variables including latitude,
sea surface temperature (SST), Pacific Decadal Oscil-
lation (PDO), Siberian/Alaskan Index (SAI), Arctic
Oscillation (AO), Atlantic Multidecadal Oscillation
(AMO), North Atlantic Oscillation (NAO), chloro-
phyll a (chl a) and its flux (in terms of sum of anom-
alies over the year), and fishing pressure, as total
catches, were investigated by means of generalized
additive models (GAMs; Hastie & Tibshirani 1990).
All drivers are represented by a complete time series
(1984−2007), except for the shorter chl a/flux time
series (1998−2007). Analyses were carried out for all
systems combined and for each individual system
independently.

GAMs represent a collection of nonparametric and
semi-parametric regression techniques for exploring
relationships between response and predictor vari-
ables, having greater flexibility for drawing out the
long-term nonlinear trends than chain or linear mod-
eling methods. Indeed, some predictors can be mod-
eled non-parametrically, using a cubic spline as the
smoothing function, in addition to linear and polyno-
mial terms, allowing the response shape to be fully
determined by the data.

The following additive formulation was used:

Y = a + s1 (V1) +…+ sn(Vn) + ε (2)

where a is the intercept, s is the thin-plate smoothing
spline function (Wood 2003), V1…Vn are the predic-
tors, and ε is the random error. Calculations were car-
ried out using the MGCV package (Wood 2006) in
R v 2.13 (R Development Core Team 2011).

The strength of the link between curve parameters
and external drivers was assessed by quantifying the
probability density distribution of the correlation
coefficients obtained by bootstrap resampling. This
analysis involved a random pairwise sampling with
replacement where each time series was resampled
5000 times. The number of elements in each boot-
strap sample equals the number of elements in the
original dataset. The probability density distribution
of the corresponding correlation coefficients was
then computed using nonparametric kernel smooth-
ing (Casini et al. 2010).

RESULTS

The absolute cumB–TL curves for each system are
reported in Fig. 1. The analysis of temporal trends of
the total biomass highlighted different patterns in
different regions (Table 3), but, in spite of different
characteristics of each system, a consistent pattern
both in terms of geographical areas and latitudes
emerged. The Pacific systems (EBS, GOA, HS)
showed a decreasing total biomass trend over time,
though less pronounced in the Gulf of Alaska (GOA).
The western Atlantic systems (GB, GOM, WSS, ESS,
SGOSL, NL) showed different patterns in relation to
latitude, with a decreasing biomass in the higher lat-
itude systems (WSS, ESS, SGOSL, NL) and either an
increasing or a fluctuating pattern in the lower ones
(GB, GOM). The eastern Atlantic system (BSNS)
showed a consistently increasing pattern. In all sys-
tems, with the ex ception of the GOA, differences
between the ex tremes of the curves were statistically
significant (Kolmogorov-Smirnov test; Table 3), con-
firming a modification of the curve shape during the
period analyzed.

In order to better describe the observed temporal
trends, steepness (B) and TL inflection points (C) of
each curve were estimated (Figs. 2 & 3). Differences
highlighted in the absolute curve analyses were also
reflected in the analyses of steepness and inflection
point parameters of the relative curves, as can be
seen for the within-system estimates of the standard
deviation of B (Table 4).

Biomasses =
+ ( )

+A D

TL
C

D
B

–

1

191



Mar Ecol Prog Ser 459: 185–201, 2012192

Fig. 1. Absolute cumulative biomass−trophic level curves. Ecosystem abbreviations as in Table 1
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The time series of B and C allowed for the explo-
ration of the role that external drivers, such as envi-
ronmental parameters and fishing pressure, have on
the TL of systems. The analysis of all systems com-
bined (both without and with the chl a, which is rep-
resented by a shorter time series) highlighted that
SST, latitude, chl a (when considered), and fishery
(landings) all played an important role in shaping the
cumB–TL curves, whereas the other atmospheric
parameters had minimal to no influence (Figs. 4 to 7;
Table 5). Latitude and fishery showed contrasting
effects: increasing latitude decreased the steepness
of the cumB–TL curve and the inflection point to shift
towards higher TL, whereas increasing fishing pres-
sure resulted in an increase of the steepness and a
reduction of the TL inflection point, as would be
expected. In contrast, chl a and SST positively
affected both parameters. The general pattern holds
when ecosystems were analyzed individually except
that SST was replaced by regional atmospheric

indices (Table 6); the AMO and PDO, often coupled
with the fishing pressure, were significantly corre-
lated with the curve parameters.

DISCUSSION

We assert that the results shown here represent a
fundamental feature of marine ecosystems. In either
absolute or relative curves, the accumulation of bio-
mass is a consistent feature across a wide range of
ecosystems characterized by distinctive taxa and as
influenced by distinct drivers. This is consistent with
prior studies that have examined size spectra (Jen-
nings et al. 2002b, Piet & Jennings 2005) or food web
model outputs (Link et al. 2009a, Pranovi & Link
2009). That we consistently observed a sigmoidal
relationship, with the highest accumulation of bio-
masses at middle TLs, is not a trivial finding. The
resultant pattern was robust both in terms of the
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Ecosystem               Trend                  Kolmogorov-Smirnov test      Notes
                                                                           p (years)

EBS                     Decreasing                   <0.005 (1986−2007)           2007 the lowest value
GOA      Slightly decreasing (stable)                 >0.10                       Pattern quite stable
HS                       Decreasing                   <0.001 (1989−2007)           2007 the lowest value
NL                           Mixed                       0<0.05 (1984−2007)           1984 the highest value, the early 1990s the lowest 
                                                                                                             (when the collapse was recorded, see Table1)
SGOSL                   Mixed                       <0.001 (1998−2007)           2007 the highest value, but a generally stable pattern
ESS                     Decreasing                   <0.001 (1984−2007)           2003 the lowest value, then a partial recovery
WSS                    Decreasing                   0<0.01 (1986−2004)           2004 the lowest value
GOM                   Increasing                   <0.001 (1987−2002)           2002 the highest value, 1987 the lowest
GB                           Mixed                       <0.025 (1984−2007)           2001 and 2007 the highest values, mid-1990s the lowest
BSNS                   Increasing                   <0.001 (1984−2007)           A constant increasing trend, 2005 the highest value, 
                                                                                                             1986 the lowest

Table 3. Temporal evolution analysis of the absolute cumulative biomass−trophic level curves in different years for each study 
system; years used in the test are shown in parentheses. Ecosystem abbreviations as in Table 1

                     mean B              SD            mean C           SD

EBS                38.49              10.65             3.56             0.01
GOA              17.58              4.42             3.90             0.05
HS                  13.51              0.76             3.65             0.05
NL                  9.09              4.88             3.49             0.27
SGOSL          30.79              31.51             3.42             0.11
ESS                25.74              28.43             3.54             0.21
WSS               32.03              38.71             3.73             0.12
GOM             18.71              2.58             3.76             0.06
GB                  38.52              33.19             3.73             0.05
BSNS             25.47              1.69             3.65             0.03

Table 4. Mean values of curve parameters (average 1984−
2007), obtained by fitting raw data; B: steepness; C: trophic
level inflection point (see Eq. 1). Ecosystem abbreviations as 

in Table 1

Parameter      SST      AMO      Latitude       Chl a       TC

All systems          
Steepness         +                             −           Without      +
Inflection          +            −               +           Without      −

All systems          
Steepness                                        −                 +            +
Inflection                                         +                 +            −

Table 5. Correlation between parameters of the cumulative
biomass−trophic level curves and external drivers (only
para meters showing significant relationships are reported).
The analysis was carried out for all systems combined with
and without the chlorophyll a (chl a)/flux chl a time series.
+: significant positive relationship; −: significant negative
 re lationship. SST: sea surface temperature; AMO: Atlantic 

Multi decadal Oscillation; TC: Total catches
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methodology applied to construct the trophic spectra
and the taxonomical composition of the analyzed
database, resulting in the fact that it is not a simple
property of the fish community (see also Link et al.
2009a). One could readily leverage this fundamental
feature of marine ecosystems to both further eluci-
date ecosystem dy na mics and establish systemic
management thresholds.

In terms of absolute curves, the dynamics of the
emergent pattern also seem to be consistent both in

terms of the geographic area and latitude of the ana-
lyzed systems. Higher-latitude systems (both in the
Pacific and Atlantic) exhibit a decrease in total bio-
mass over time, whereas mid-latitude systems (in
both the Eastern and Western Atlantic) exhibited an
increase or at least a fluctuating trend. These dynam-
ics represent a change in realized production and
may be indicative of structural shifts in lower TL
community structure in response to broad-scale phe-
nomena (see, for example, changes recorded in the
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Fig. 2. Steepness (B) time series (see Eq. 1), for each analyzed ecosystem. Ecosystem abbreviations as in Table 1
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Newfoundland−Labrador system, Table 1). Sugges-
tions of this have been implied in prior studies
(Drink  water et al. 2009, Gaichas et al. 2009, Link et
al. 2009b, 2010a, Megrey et al. 2009, Pranovi & Link
2009, Blanchard et al. 2010, Coll et al. 2010).

The relative curves exhibit lower biomass accu -
mulation for higher-latitude systems, which are re -
flected in a lower steepness and consequently a
higher TL inflection point. This observation may be
a result of the somewhat lower primary productivity

of those high-latitude systems, although on an areal
basis and as annually integrated, some of those
higher latitude systems can be quite productive
(Gai chas et al. 2009, Lucey et al. 2012, this TS) and
have supported significant fisheries production
(Mue ter & Megrey 2006, Link et al. 2009b, Bundy et
al. 2012, this TS). That there are differences in eco -
systems across latitudes is not surprising; what is
surprising is the minimal difference between ocean
basins.
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If these cumB–TL curves and their associated para-
meters are to be used as potential indicators of EOF,
their relation to the major triad of drivers needs to be
established. Across all of the ecosystems we exam-
ined, measures of exploitation can influence the cur -
ves, producing a consistent pattern, with an in crease
of steepness at lower exploitation levels and then a
decrease at higher levels and a downward shift in the
TL inflection point. This could be related on one hand
to a direct effect of fishing activities on higher TLs,
exporting biomass from the system, thereby produc-
ing a reduction in TL. This could also be combined
with predation release whereby de creases in higher
TL fish results in less predation on those at lower TLs,
which in turn increase, thereby lowering the mean
TL (Benoît & Swain 2008). On the other hand, ex -
ploitation can indirectly affect higher TLs by reduc-
ing the energy flowing from the lower TLs when the
exploitation targets lower TL species, such as forage
fish (Gascuel et al. 2008, Libralato et al. 2008). Either
way, the resulting change in the curve would be a
flatter profile with a lower total biomass. These
results are consistent with the pattern reported by
Sosa-López et al. (2005), who described a flattening
of biomass cumulative curves in relation to an
increase of anthropogenic impacts.

Environmental metrics are also related to the fea-
tures of the relative cumulative biomass curves. On a
global scale, taking into the account all of the sys-
tems, both an increase in SST and chl a resulted in a
downward shift in the inflection point and an in -
crease in steepness, thereby making the cumB–TL
curves more pronounced. This does not directly im -

ply the presence of a positive relationship between
the 2 environmental parameters, since this issue is
still debated (see also Chavez et al. 2011 and Fried-
land et al. 2012), but simply indicates the possible
pre sence of a similar mechanism driving the eco -
logical processes, in relation to both SST and chl a.
The positive effect of chl a on the cumB–TL curve
shape is in agreement with very recent findings by
Friedland et al. (2012).

In the individual ecosystem based analysis, pat-
terns in the cumB–TL curves over time confirmed a
strong effect of fishing pressure on the structure and
functioning of the system, as was also shown in the
global-scale analysis. This is seen via an effect of
fishing on the TL inflection point and a flattening out
of the curve (reflected in the lower steepness values).
At this level of analysis, moreover, SST is replaced by
atmospheric variables as the significant environmen-
tal driver. AMO (which almost always had negative
effects) played a significant role in the Atlantic sys-
tems and PDO (always positive effects) in the Pacific
systems, although the same pattern of the cumB–TL
curves is seen. Both results confirm the observations
regarding the key environmental influences (as
reported in Table 1).

Collectively across systems, within systems, and
considering both exploitation and environmental
effects, what our results show is that positive ecosys-
tem responses are exhibited as a ‘stretching’ or
heightening of the sigmoidal curves. Conversely,
negative effects on an ecosystem are exhibited as a
flattening of these sigmoidal curves (Fig. 8). An
example from our analysis is the flattening of the
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System          Parameter             SST              PDO             SAI                 AO                NAO                AMO          Total catches

EBS                Steepness                                     +                                                                                                                    
GOA              Steepness                                     +                 (+)                   +                                                                        +
                       Inflection                                                                                                                                                          −
GB                 Steepness                                                                                                                                                         −
GOM              Inflection                                                                                                                                −                       ±
SGOSL          Steepness                                                                                                                                +                        
                       Inflection                                                                                                                                                          +
NL                 Steepness                                                                                                                                −                       +
                       Inflection                                                                                                                               (−)                      +
ESS                Steepness               +                                                                                                                                         
                       Inflection                                                                                                                                −                      (+)
WSS               Steepness                                                                                                       +                                                 
                       Inflection                                                                                                                                −                       −
BSNS             Inflection                −                                                                                                                                        +

Table 6. Correlation between parameters of the cumulative biomass−trophic level curves and external drivers (only systems/
parameters showing significant relationships are reported), with analysis carried out on individual systems. +: significant pos-
itive relationship; −: significant negative relationship; ( ): almost significant (0.1 > p > 0.05); ±: significant relationship inverse
U-shaped. Ecosystem abbreviations as in Table 1. SST: sea surface temperature, PDO: Pacific Decadal Oscillation, SAI: 
Siberian/  Alaskan Index; AO: Arctic Oscillation; NAO: North Atlantic Oscillation; AMO: Atlantic Multidecadal Oscillation
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curves in the NL system due to the collapse recorded
in the 1990s. A corollary would be that as ecosystems
are degraded, their patterns on these curves would
flatten out, but as they recover their patterns would
be clearly demonstrable. Examples from our analyses
show that the GOM, NSBS, and GB ecosystems
exhibited some recovery in fishery resources, which
has been confirmed by more detailed studies on the
component species in those ecosystems (Drinkwater
et al. 2009, Link et al. 2009b).

Thus, this fundamental sigmoid feature could
potentially be used as a system-level biological refer-
ence point of EOF. For instance, as changes occurred
in a given ecosystem, the inflection point and steep-
ness parameters also reflected those changes, indica-
tive of potential system-level thresholds similar to
other attempts to define ecosystem overfishing
(Tudela et al. 2005, Coll et al. 2008, 2010, Libralato et
al. 2008, Link et al. 2010a, Shin et al. 2010a). The
value of this approach is that it is a relatively simple
derivation of readily available survey data and does
not require extensive multi-species, food web, or
ecosystem modeling, other than to obtain reasonable
values for TL. Indeed, while in the previous applica-
tion (Link et al. 2009a) the cumB–TL method was
applied to an extensive multi-species food web data-
base, in the present study it was applied to data from
surveys or assessments.

By establishing the cumB–TL curves and then cal-
culating steepness and inflection parameters, a
robust set of 2 simple metrics could be monitored to
detect when a shift in community structures was
beyond normal ranges of the data. Clearly further
work is warranted on developing methodological
features (e.g. sensitivity to the TL attribution could be
a critical issue) and establishing probabilistic thresh-
olds, but as a first-order attempt to examine EOF
from an empirically-based, trophodynamic perspec-
tive, this approach holds some promise.

Obviously, some caveats have to be taken into the
account. Giving a picture of the state of the ecosys-
tem, in the present version the method requires for
comparison at least 2 different temporal points, in

order to assess the direction of changes. Moreover, as
previously shown, there could be different external
drivers which produce similar effects on the cumB–
TL curve shape; for this reason, some cautions are
required in determining causes of a detected change.

Robust ecological indicators of the trophic structure
of marine communities, and long-term changes
therein, are now available (Sosa-López et al. 2005).
The sigmoidal relationship of cumB–TL curves is
another possible indicator, among many in develop-
ment (Libralato et al. 2008, Coll et al. 2008, Link et al.
2009a, 2010a, Shannon et al. 2010, Shin et al. 2010a),
that could be used to delineate EOF. Moving towards
fuller implementation of EBFM will necessarily
require a suite of robust indicators. We trust that
what we propose here is a useful step towards that
end as these ecological indicators continue to
develop.
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INTRODUCTION

Living marine resources inhabit a complex world,
influenced by multiple physical, environmental, an -

thro pogenic, and biotic drivers that operate and
interact over multiple scales (deYoung et al. 2004)
that can result in nonlinear or abrupt responses to
perturbation (e.g. Hare & Mantua 2000, Hunt et al.
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2002, Scheffer & Carpenter 2003, Steele 2004).
Trophodynamically, marine food webs are dynamic,
often have open boundaries, and respond nonlin-
early to climatic, anthropogenic, and ecological in -
fluences (Hsieh et al. 2005). Until relatively recently,
management of living marine re sources largely
ignored this complexity, focusing on single-species
stock assessment. This is one of the many contribut-
ing factors to the series of fisheries crises (stock col-
lapses and fisheries closures) witnessed over the last
2 decades (e.g. Smith 1994, Mullon et al. 2005,
Smith & Link 2005, Murawski 2007, Branch et al.
2011, Pinsky et al. 2011). While the solution and the
way forward towards successful re source manage-
ment does not rest in science alone (Frid et al. 2006,
Bundy et al. 2008, Fulton et al. 2011), robust science
advice, grounded in an ecosystem context, is an
essential component. The inherent complexity and
the large scale of marine ecosystems suggests that
progress toward an understanding of how the struc-
ture and functioning of marine ecosystems influence
and regulate patterns of fisheries production will be
most effective if researchers adopt a comparative
approach (Link et al. 2010a, Murawski et al. 2010),
since this is similar to the replication method tradi-
tionally used in ex perimental science. This approach
has been amply demonstrated in empirical studies
(e.g. Bundy et al. 2009, 2010, Gaichas et al. 2009,
Link et al. 2009, 2010b, Shackell et al. 2012). How-
ever, there is an additional need to explore mecha-
nistic understandings and drivers of ecosystem
structure, functioning, and production as revealed
by such comparisons.

Mechanistic approaches vary from the simple to
the complex. However, comparative analyses require
standardized methods that can be applied across
multiple ecosystems and that produce standardized
results for comparison. Complex methods are usually
developed or tailored for a specific system and are
time-consuming to parameterize and fit. Hence such
models are challenging to use in a comparative ap -
proach since they require far more time, resources,
and co-ordination. Rather, comparative approaches,
especially over a broad range of ecosystems, are most
readily addressed using simpler methods such as
production models (Walters & Hilborn 1976, Jacob-
son et al. 2001, Mueter & Megrey 2006, Gaichas et al.
2012a, this Theme Section). These models relate the
production of a population to current population size,
given an intrinsic rate of productivity and a finite car-
rying capacity to account for density-dependent
effects. As for all models, they are reductionist repre-
sentations of complex processes, and though there

has been some debate about their utility in specific
applications (Mohn 1980, Ludwig & Walters 1985,
1989, Punt 2003), there is consensus that they play a
useful and important role in ecology in general
(Mangel 2006) and fisheries science in particular
(Ludwig & Walters 1985, 1989, NRC 1998).

Production models are a useful method to compare
fish communities across ecosystems and drivers
because: (1) data requirements are relatively simple
and data are readily available, (2) they are robust to
various assumptions (Ludwig & Walters 1989), (3)
they can sometimes outperform more complicated
(i.e. stage or age-structured) fisheries models (Lud-
wig & Walters 1985, 1989, Hilborn & Walters 1992),
(4) they produce standard outputs that are readily
comparable, (5) they can be scaled to different spatial
and organizational levels, and (6) they can incorpo-
rate drivers as covariates (Jacobson et al. 2005,
Mueter & Megrey 2006). In addition, the outputs of
these models can be readily related to commonly
used fishery management biological reference points
(BRPs) such as maximum sustainable yield (MSY)
and the biomass (BMSY) or fishing mortality rate (FMSY)
corresponding to MSY (Restrepo et al. 1999, Mueter
& Megrey 2006).

Here we use surplus production modeling to com-
pare the influence of a triad of drivers (fishery
exploitation, trophic interactions, and environmental
drivers) on fishery production. We apply 2 system-
level surplus production models (regression and
dynamic) to the total aggregated biomass of all tar-
geted fish species in 12 exploited northern hemi-
sphere ecosystems. We do so with and without envi-
ronmental and biological covariates to explore the
effects of selected drivers on production.

We take an aggregate, system-level approach (e.g.
Mueter & Megrey 2006) for the following reasons. (1)
Fundamentally, the energy available to all fish and
invertebrates originates from lower trophic levels
and is limited and shared by the entire marine com-
munity (Pauly & Christensen 1995, Pauly et al. 1998,
2002). Lower-trophic-level production has been
shown to limit fisheries production (Iverson 1990,
Ware & Thomson 2005, Chassot et al. 2007, 2010).
These analyses suggest that the production potential
for marine resources in any given area of the ocean
is, within ranges of natural variation, relatively fixed
due to lower-trophic-level production. (2) Due to spe-
cies interactions, and differences in productivity
among fish stocks, the aggregate management
objective is not the simple sum of the single-stock
objectives (e.g. Brown et al. 1976, Walters et al. 2005,
Mueter & Megrey 2006, Tyrrell et al. 2011). There-
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fore an average or aggregate quota may sometimes
be more appropriate, especially when managing
suites of stocks (May 1975, Pope 1975, 1979, Fukuda
1976, Mayo et al. 1992), and provides additional pre-
caution (in addition to stock-specific quotas) when
used to constrain total removals from a system (With-
erell et al. 2000, Mueter & Megrey 2006). (3) Aggre-
gate surplus production models often fit better than
production models applied on a species-by-species
basis (FAO 1978, Ralston & Polovina 1982).

Comparing responses in aggregate production
across multiple ecosystems elucidates both common,
generic patterns and those processes that are unique
to particular ecosystems. Our aims are to use total,
system-level estimates of BRPs based on production
models to explore (1) the effects of common drivers at
the basin scale and their relative influence within the
triad of drivers among systems, (2) the impact of
covariates on BRPs and implications for fisheries
management, and (3) the relationship between MSY
and production.

METHODS

Data

Biomass, landings, and relevant environmental
data were compiled for 12 temperate and sub-arctic
marine ecosystems in the northern hemisphere
(Table 1) (see Fu et al. 2012, this Theme Section, for
further descriptions). The principal marine species
were selected for each ecosystem based on preva-
lence in the landings and biomass data as well as
importance in the marine community. These species
together comprise a large majority of
total trawlable fish  biomass in each
system. We used biomass estimates
from stock assessments when avail-
able and survey-based estimates oth-
erwise. Stock assessment estimates of
biomass typically corresponded to the
exploitable portion of total biomass,
assuming knife-edge recruitment.
Swept-area estimates of survey bio-
mass were expanded to the total area
of the ecosystem and were corrected
for catchability when possible. Bio-
mass was summed by year over all
selected species to obtain time series
of aggregated biomass for each eco-
system. Similarly, reported landings
were summed by year over all se -

lected species to obtain time series of aggregate
landings for each ecosystem. The landings represent
the majority, if not all, recorded catch, but do not
account for non-recorded by-catch or discards. Prin-
cipal species, years, data types, and sources of bio-
mass and landings data for each system are detailed
in Table S1 in the supplement at www.int-res.com/
articles/ suppl/ m459p203_supp.pdf.

Environmental and biological covariates for each
system were selected by regional experts who were
asked to identify those regional and basin-scale vari-
ables that are generally considered to be important
drivers of productivity in a given ecosystem. Avail-
able time series data were compiled for each system
that included water temperature, stratification, large-
scale climatic indices, freshwater discharge, and
abundances of important top-level predators (Table
S2 in the supplement). All covariates were standard-
ized to have mean = 0 and standard deviation (SD) =
1 over the time series.

Models

The productivity of each of the 12 ecosystems and
the influence of environmental covariates on produc-
tivity were compared using a surplus production mod-
eling approach. Since we don’t know the true dynam-
ics of these systems, we used 2 different ap proa ches
to examine surplus production dynamics: a regression
approach that models empirical estimates of annual
surplus production as a quadratic function of biomass
(Graham-Schaefer functional form with additive er-
rors); and a dynamic surplus production model of the
Graham-Schaefer form with multiplicative errors.
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System                                 Abbreviation        Area (km2)        No. of species

Eastern Bering Sea                    EBS                   430 829                     8
Gulf of Alaska                           GOA                  238 439                    13
Hecate Strait                                HS                     23 501                     20
Georges Bank                             GB                     42 154                     18
Gulf of Maine                            GOM                   76 483                     19
Western Scotian Shelf               WSS                   73 344                     23
Eastern Scotian Shelf                 ESS                   113 704                    24
Newfoundland/Labrador            NL                    388 204                    13
Southern Gulf                          GOSL                  74 137                     20
of St. Lawrence

Norwegian Sea                           NS                    728 331                     3
Barents Sea                                  BS                    747 893                     8
North Sea                                   Nort                   609 748                     9

Table 1. Marine ecosystems in the present study. ‘Species’ means principal
marine species (see Table S1 in the supplement at www.int-res.com/ articles/ 

suppl/m459p203_supp.pdf)

http://www.int-res.com/articles/suppl/m459p203_supp.pdf
http://www.int-res.com/articles/suppl/m459p203_supp.pdf
http://www.int-res.com/articles/suppl/m459p203_supp.pdf
http://www.int-res.com/articles/suppl/m459p203_supp.pdf
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Regression models

The observed annual surplus production in year t
(ASPt) was calculated as:

ASPt = Bt+1 – Bt + Ct (1)
where Bt is the biomass summed across all ages in
year t, Bt+1 is the following year’s biomass, and Ct is
the catch in year t. The Graham-Schaefer model
describes ASPt as a quadratic function of Bt and a lin-
ear function of a covariate as:

ASPt = αBt + βBt
2 + δXt–l + εt (2)

where α, β, and δ are regression parameters, Xt–l is
an environmental or biological covariate measured in
year t − l, normalized to mean 0 with SD = 1 (Table S2
in the supplement), and l represents the time lag (in
years, ranging from l = 0 to l = 7) before effects on
ASP are realized. Parameter δ represents the magni-
tude and sign of the effect of the biological or envi-
ronmental covariate on ASPt and can be directly
compared across different standardized covariates. If
residuals from the model (εt) had significant autocor-
relation (Durbin-Watson test, p < 0.10), the model
was refit under the assumption that residuals follow a
first-order autoregressive process:

εt = ϕ · εt–l + νt (3)
with coefficient ϕ and independent, normally distrib-
uted annual deviations (νt) with mean = 0 and vari-
ance = σν

2:
νt ~ N (0, σν

2) (4)
All parameters were estimated using a generalized

least-squares regression approach as implemented
in the ‘nlme’ package (Pinheiro & Bates 2000) in R (R
Development Core Team 2011). Maximum surplus
production was taken to represent MSY and was cal-
culated as follows (for models with covariates, MSY
corresponds to average environmental conditions):

MSY = –α2/4β (5)
We also calculated the biomass at which MSY

occurs (BMSY) and defined the optimal exploitation
rate F’MSY as the ratio MSY/BMSY. (Note that F’MSY ex-
presses an exploitation rate, i.e. landings as a fraction
of the total biomass, rather than the instantaneous
fishing mortality, as is the common usage of FMSY.)
The potential effects of covariates on ASP were esti-
mated separately for each covariate and at each of
multiple lags, and the resulting coefficients, t-statis-
tics, and p-values were summarized and examined.

Biomass dynamic models

Following Walters & Hilborn (1976), the predicted
biomass in year t + 1 (B̂t+l) was calculated as

(6)

where B̂t is the predicted biomass in year t, and Ct is
the observed catch in year t. The intrinsic population
growth rate in year t (rt) and the equilibrium popula-
tion size in the absence of catch (k, also referred to as
the carrying capacity) are parameterized quantities.
The initial biomass (Bt =0 or B0) is also an estimated
parameter.

For any year t, rt can be expressed as a function of
an environmental or biological covariate in year t
(Xt−l), where l represents a time lag (in number of
years, ranging from l = 0 to l = 7) before effects on r
are realized (Mueter & Megrey 2006):

rt = rmeγXt–l (7)
Covariates were standardized to have mean = 0

and SD = 1 over the time series; hence the expected
value of rt under average environmental conditions
(Xt–l = 0) is rm. Parameter γ represents the magnitude
and sign of the effect of the biological or environmen-
tal covariate on rt and can directly be compared
across different standardized covariates.

The model residuals (εt) are assumed to follow a
log-normal distribution with mean = 0 and variance =
σν

2, i.e.:
ε ~ lnN (0, σν

2) (8)
The model was implemented in AD Model Builder,

a C++ software language extension and automatic
differentiation library (ADMB Project 2009), and all
parameters were estimated by maximizing the likeli-
hood. MSY and BMSY were calculated as

(9)
and

BMSY = k/2 (10)
When comparable, the relative value of each model

(e.g. with versus without a particular environmental
covariate) was evaluated using the small sample
Akaike information criterion AIC (AICc; Hurvich &
Tsai 1989).

(11)

where LL(θ|B) is the loglikelihood of a particular set
of parameter values (θ) given the observed biomass
data (B), and K is the number of parameters esti-
mated in the model.

(12)

The number of years of observed biomass is
denoted by n.

For each modeling approach, we report 2 sets of
results: the model fitted without covariates and the
model fitted with the covariate giving the largest
improvement in model fit. Thus, for each ecosystem
we obtain 4 estimates of biological parameters, in -
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cluding MSY, BMSY, and F’MSY. For comparing among
systems, MSY and BMSY were standardized to t per
km2 by dividing by the area of each system (Table 1).

Comparative analysis of ecosystem parameters

Estimates of MSY, FMSY, and BMSY were compared
across systems and across models — regression and
biomass dynamic model (hereafter referred to the
dynamic model), each with and without covariates —
using a weighted least-squares regression (2-way
ANOVA) with weights that were inversely propor-
tional to their estimated variances (Jennrich 1995).
To investigate how potential fish productivity varies
among ecosystems, MSY per unit area was analyzed
using simple linear regressions and multiple linear
regressions with the following variables as potential
explanatory variables: mean chlorophyll a (chl a)
concentration from NASA’s SeaWiFS Project (we
used the monthly level-3 processed data averaged
over each large marine ecosystem [LME] for the
period 1998−2009 to compute an annual mean con-
centration in mg m−3; http:// oceancolor. gsfc. nasa. gov);
mean primary production (PP) as estimated from
SeaWiFS data (Beh renfeld & Falkowski 1997); mean
mass flux index (a measure of the vertical mass flux
of particulate organic carbon [POC]; estimates of nor-
malized annual flux of organic carbon [FCo, mmol
m−2 yr−1] were derived from a model developed from
globally observed fluxes [Honjo et al. 2008, Friedland
et al. 2012] and remotely sensed chl a and sea surface
temperature [SST] [K. Friedland pers. comm.]); mean
wind speed (Kalnay et al. 1996); and ecosystem area
(Table 1).

RESULTS

Regression (ASP) models

There was large variation in biomass among time
series (Fig. 1); for the regions with large variation in
biomass, there were typically long-term trends such
as overall declining (e.g. Hecate Strait) or increasing
biomass (e.g. Norwegian Sea), or prolonged periods
of both increases and declines (e.g. eastern Scotian
Shelf). Similarly, landings data often showed long-
term trends (Fig. S1 in the supplement). In contrast,
ASP was characterized by high interannual variabil-
ity rather than long-term trends, even for ecosystems
with relatively stable biomass such as the Gulf of
Alaska (Fig. 2).

Estimates of maximum production (MSY per unit
area), BMSY, and F’MSY varied considerably among
regions (Fig. 3; see Table S3 in the supplement for
model parameters). The limited contrast in biomass
in some regions (Gulf of Alaska, North Sea) resulted
in unreliable estimates of BMSY below the minimum
observed biomass, while BMSY was close to the maxi-
mum observed biomass in the Norwegian Sea due to
an increasing trend in biomass throughout most of
the time series. Neither the regression nor the dy -
namic model was able to produce credible estimates
of MSY for the Gulf of St. Lawrence, likely due to the
highly variable input biomass data (Fig. 1), so this
system was dropped from further analysis.

Including environmental covariates improved
model fits significantly in most systems, with temper-
ature or temperature-related indices resulting in the
best model fits in most cases (Table 2; see Table S4 in
the supplement for model parameters). One to 3 dif-
ferent covariates significantly improved the fit,
according to ΔAICc (Table 2). Time lags between
environmental variables and regression for the best-
fit models spanned the range, but most were 4 yr or
less. The estimated environmental effects helped
capture the trends in the observed ASP series, such
as the declining trend in ASP on the eastern Scotian
Shelf, multi-year variability off Newfoundland-
Labrador and in the Barents Sea, and interannual
variability in the Norwegian Sea (Fig. 3).

Biomass dynamic models

The dynamic Graham-Schaefer model captured
the major trends in biomass over time in most sys-
tems, but resulted in poor fits in some regions (e.g.
Georges Bank, eastern Scotian Shelf, western Scot-
ian Shelf, North Sea; Fig. 4). Including environmen-
tal covariates considerably improved the fit of the
estimated biomass trajectories in most, but not all
systems. The estimated biomass trajectories for the
western Scotian Shelf and eastern Scotian Shelf dif-
fered substantially between the model with and
without environmental covariates, but neither model
resulted in a satisfactory fit to the observed time
series. Both models (with and without covariates)
also failed to capture biomass trends in the North Sea
or on Georges Bank. For the Gulf of Alaska and New-
foundland models, although adding environmental
covariates did improve the model fit based on the
sum of squares (SSQ) (also see Fig. 4), the low value
of the ΔAICc (Table 2) indicates that the addition of
this parameter is not justified. Similar to the regres-

207



Mar Ecol Prog Ser 459: 203–218, 2012

sion models, time lags before effects on r were real-
ized for the best-fit models were typically 4 yr or less.
In this case, only 1 to 2 covariates improved the
model fits in each system, most of which reflect tem-
perature conditions.

Comparison of regression (ASP) and dynamic
model results, with and without covariates

In most cases where the inclusion of a covariate
improved the model fit to the data (Table 2), the best
environmental covariates for the dynamic models
were the same as or similar to those for the regression
models (Table 2). In 3 cases they were different —
Gulf of Maine, western Scotian Shelf, and Norwe-
gian Sea; on the western Scotian Shelf, for example,
the biomass index of grey seals provided the best fit
for the dynamic model, but was not included among

the 2 covariates that improved the fit of the regres-
sion model (p < 0.05).

With the exception of the Gulf of Alaska, water
temperature was an important covariate in all sys-
tems and most models in Table 2, either as SST or
temperature at depth. Large-scale climatological sig-
nals such as the North Atlantic Oscillation (NAO),
Pacific Decadal Oscillation (PDO), or Atlantic Multi-
decadal Oscillation (AMO) increased the fit of the
model to the data for 7 ecosystems, and were the
most important covariate in 4 of the regression mod-
els and 1 dynamic model. In some systems, local
covariates were important, such as a measure of sea
ice in the Barents Sea, the Siberian/Alaskan Index in
the eastern Bering Sea, a composite index in New-
foundland-Labrador, winter average sea surface
height in Hecate Strait, and water stratification on
the western and eastern Scotian Shelf. In 3 ecosys-
tems, a biological predator covariate improved the

208

1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000

1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000

1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000

20 000

10 000

0

2000

1000

0

4000

2000

0

15 000

10 000

5000

0

12 000

8000

4000

0

2000

1000

0

8000

4000

0

400

300

200

100

0

6000

4000

2000

0

1200

800

400

0

1200

800

400

0

1200

800

400

0

EBS GOA HS GB

GOM WSS ESS NL

GOSL NS BS Nort

Year

B
io

m
as

s 
(×

10
00

 t
)

Fig. 1. Total aggregate biomass in each system. See Table 1 for system abbreviations



Bundy et al.: Comparative analysis of aggregate surplus production

model fit: the biomass index of grey seals on the east-
ern Scotian Shelf (both models) and on the western
Scotian Shelf (dynamic model), and biomass of
arrowtooth flounder in Hecate Strait (both models).

When compared across all 4 models, the estimated
MSY per unit area (Fig. 5a) differed statistically
among systems (weighted 2-way ANOVA: F11,33 =
43.9, p < 0.001) as well as among models (F3,33 = 8.18,
p < 0.001). Overall estimates largely ranged between
1 and 5 t km−2 (20th percentile = 1.22, 80th percentile
= 5.28). Furthermore, in several cases, MSY per unit
area estimates were relatively consistent across the 4
models, i.e. Barents Sea, Norwegian Sea, and Gulf of
Maine. In other cases, the addition of the covariate
term made a large difference to MSY, such as Hecate
Strait (38%, regression model), western Scotian Shelf
(56%, dynamic model), eastern Scotian Shelf (63%,
dynamic model), and Newfoundland-Labrador (43%,
dynamic model). However, the sensitivity of the
results to the method used was moderate, as the rank
of the ecosystems’ MSY per area was largely in -

dependent of the method: North Sea, eastern Bering
Sea, and western Scotian Shelf were always in the
top 50%, and Hecate Strait, Newfoundland-
 Lab rador, eastern Scotian Shelf, and Gulf of Alaska
were always in the bottom 50%; other systems were
intermediate.

Estimates of F’MSY also differed statistically across
ecosystems (F11,33 = 48759, p < 0.001), but not across
models (F = 0.0563, p = 0.982; Fig. 5b). Estimates of
F’MSY were substantially higher for Georges Bank
and North Sea than for the other systems, which
ranged between 0.1 and 0.4 yr−1.

Estimates of BMSY generally range between 5 and
15 t km−2, although lower values occurred in New-
foundland-Labrador and the highest values occurred
in eastern Bering Sea (Fig. 5c).

Thus, variability notwithstanding, the biological
parameter estimates from each method, with or with-
out covariates (Fig. 5), indicate that MSY is largely
between 1 and 5 t km−2, that the optimal ex ploitation
rate (F’MSY) is between 0.1 and 0.4 yr−1, and BMSY gen-
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erally ranges between 5 and 15 t km−2. An exception
is the Norwegian Sea, which shows a considerably
higher optimal exploitation rate (0.6 to 1.2 yr−1,
depending on the method).

MSY and number of species

In order to exclude the possibility that MSY was
influenced by the number of species included in each
model (Table 1; Table S1 in the supplement), we
tested the relationship between MSY per area and
the number of species represented in each modeled
ecosystem, but found no relationship (regression

model without covariates: R2 < 0.001, with covariates:
R2 = 0.029; dynamic model without covariates: R2 =
0.008, with covariates: R2 = 0.041).

MSY and productivity

We found no relationship between MSY per unit
area and ordinary measures of productivity (chl a
concentration and PP); nor did MSY seem to be
related to mean wind speed (Fig. S2 in the supple-
ment). There was a possible positive relationship
between the flux of chlorophyll and MSY for 3 out of
4 MSY estimates, but the relationships were not sta-
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tistically significant (p-values from 0.07 to 0.18).
Since we observed a tendency for larger areas to
have higher MSY per area in these results, we fur-
ther explored the potential relationship between
MSY and productivity using multiple linear regres-
sion with ecosystem area as a second covariate.
There appeared to be a joint effect for the mass flux
index with ecosystem area; mass flux had a signifi-
cant positive effect (p < 0.05) on MSY for 3 of the 4
MSY estimates (Fig. 6).

DISCUSSION

Our results highlight several novel findings: (1)
MSY is largely between 1 and 5 t km−2, (2) the opti-
mal exploitation rate F’MSY is between 0.1 and
0.4 yr−1, (3) BMSY varies between 5 and 15 t km−2, (4)

the environment, specifically water temperature,
notably affects estimates of MSY across most ecosys-
tems studied, and (5) the relationship between fish-
eries yield and PP is not as simple as suggested in
other studies (Iverson 1990, Ware & Thomson 2005,
Chassot et al. 2007). Our analyses give some new
insights into the similarities and differences among
ecosystems, and suggest that reasonable and consis-
tent estimates of system-level MSY can be obtained,
which can provide useful ecosystem-level reference
points. We discuss each of these findings in further
detail below.

A reasonably consistent picture

Although there was surprising consistency in the
estimated reference points, there was some variation
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System   Regression model                                         Dynamic model
              Covariate                                                     l            δ        ΔAICc

a       Covariate                                                     l        γ     ΔAICc
a

EBS        Summer avg. SST                                     1,7      −517.3   –3.43     Siberian/Alaskan Index                             1   −0.82   −7.1
              PDO                                                             7       −502.0   –2.03     Summer avg. SST                                       1   −0.63   –6.9

GOA      PDO                                                             0       −68.8   −3.33

HS          Biomass index of arrowtooth flounder   4       −21.3   −6.69     Biomass index of arrowtooth flounder   4   −1.48   −13.5
              Winter avg. SST                                         4       10.3   −2.86     Winter avg. surface height                       1   −2.11   −3.9

GB          Annual avg. SST                                        2       −21.1   −2.58     Annual avg. SST                                        5   0.24   −12.3

GOM     NAO index                                                  3       21.5   −4.24     Annual avg. SST                                        3   −0.18   −2.0
                                                                                                                                                                                                     0.11

WSS       Annual avg. water temp. at 50 m              1       103.9   −3.25     Biomass index of grey seals                      0   –0.62    ndb

              Annual avg. stratification                          3       −93.6   −2.28
              NAO index                                                  7       −91.0   −2.06

ESS        Annual avg. water temp. at bottom        4,6      56.7   −4.11     Biomass index of grey seals                      0   −1.92    ndb

              Biomass index of grey seals                  0,1,2    −101.5   −3.47
              Annual avg. water temp. at 50 m              3       81.8   −3.29

NL          Composite of environmental indices        1       230.0   −6.02
              NAO index                                                  5       189.7   −4.20
              Avg. SST (Stn 27)                                       2       237.8   −3.76

NS          AMO                                                           6       638.3   −12.58     Annual avg. SST                                        5   0.65    ndb

                                                                                                                           NAO index                                                  1   –0.30   –3.3

BS          Annual avg. temp.                                    2,3      −893.0     −7.4       Index of sea ice cover                                6   0.76   −19.5
                                                                                                                           Annual avg. temp.                                      4   −0.57   −17.5

Nort       AMO                                                           0       −513.7   −8.32     NAO index                                                  1   −0.12   −24.4
              Annual avg. surface water temp.            0,1      −384.2   −6.55     AMO                                                           0   −0.24   −24.4

aFor covariates with >1 time lag, best improvement in % fit is shown
bCannot compare AIC with and without environmental covariates because the years of data were different between the 2 models

Table 2. Best environmental covariates (based on improved model fit as well as most reasonable or least uncertain parameter values) for
regression models of annual surplus production (ASP) and for biomass dynamic models. The best fitting covariate is listed first. Covari-
ates in bold improved the fit of both models. Column l shows time lag between the covariate and the effect in the model, which was var-
ied between 1 and 7 yr, fitted model parameters are δ (magnitude and sign of effect of the covariate on ASP) and γ (magnitude and sign
of effect of the covariate on population growth), and ΔAICc is the difference in Akaike information criterion (AICc) between models with
covariates and models without (Hurvich & Tsai 1989, Burnham & Anderson 2002). AMO: Atlantic Multidecadal Oscillation, avg.: aver-
age, NAO: North Atlantic Oscillation, nd: not determined, PDO: Pacific Decadal Oscillation, SST: sea surface temperature, temp.: 

temperature. See Table 1 for system abbreviations
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among models and ecosystems. This is to be ex pected
because the ecosystems modeled had different fishing
histories, different data sources (as sessment or sur-
vey-based), and different lengths of time series. The
regression and dynamic models yielded different re-
sults for a few ecosystems, which increased when co -
variates were added, but overall provided a reason-
ably consistent picture across methods, strengthening
our conclusions. We note that including or excluding
covariates had a significant effect on parameter esti-
mates. However, the sensitivity of the results to the
method used was moderate, as the relative magnitude
and rank of the ecosystems’ MSY per area was largely
independent of the method. Where there were differ-
ences, the data pattern may have had a large in flu -
ence on the robustness of the estimates.

We recognize that the aggregated surplus produc-
tion models, like all models, are oversimplifications
be cause they treat the entire fish community as a sin-
gle, aggregated ‘population’, model the dynamics of

this aggregate ‘population’ using an average growth
rate and carrying capacity that is invariant to age
structure and species composition, and assume that
there is no change in productivity or carrying capacity
over time. The latter point is important for the eastern
Canadian systems, which have all undergone a po-
tential regime shift (Benoît & Swain 2008, Bundy et al.
2009, Shackell et al. 2010, DFO 2011). An examination
of empirical estimates of surplus production provides
a useful tool to detect and better understand such
changes in productivity (Walters et al. 2005). Future
work should explore the effect of changes in produc-
tivity on MSY and other BRPs or harvest control rules
(Mohn & Choui nard 2007, Brunel et al. 2010).

Common drivers at the basin scale

In most ecosystems, the model fits to the data were
improved by adding a covariate. Water temperature

212

B
io

m
as

s 
(×

10
00

 t
)

1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000

1960 1980 2000 1960 1980 2000 1960 1980 2000 1960 1980 2000

1960 1980 2000 1960 1980 2000 1960 1980 2000

EBS GOA GB

GOM WSS ESS

HS

NL

NS BS Nort

Year

25 000

20 000

15 000

10 000

2500

2000

1500

1000

15 000

10 000

5000

0

10 000

6000

2000

2000

1500

1000

8000

6000

4000

400

300

200

100

6000

5000

4000

1000

600

200

1400

1000

600

200

1200

800

400

Fig. 4. Observed (unfilled circles)
and predicted biomass from dy-
namic model without (blue line)
and with (red line) best environ-
mental covariates (see Table 2). For
GOA and NL, no covariates im-
proved the dynamic model fit. See
Table 1 for system abbreviations



Bundy et al.: Comparative analysis of aggregate surplus production

im proved either or both model fits for
all ecosystems, except the Gulf of
Alaska. At a basin scale, in the North
Pacific the PDO improved the fit of the
eastern Bering Sea (regression) and
Gulf of Alaska (regression) models,
and the Siberian/Alaskan Index, re-
flecting ice conditions in the Bering
Sea, was significant only in the eastern
Bering Sea dynamic model. In the NW
Atlantic, the NAO improved the model
fits for 3 of the 5 eco systems (Gulf of
Maine, eastern Scotian Shelf, New-
foundland-Labrador re gression mod-
els), but the AMO did not improve the
fit for any NW At lantic ecosystem. In
the NE At lan tic, the NAO and AMO
also improved the fit for 2 of the 3 eco-
systems. Thus these large-scale ocean -
ographic in dices (that largely reflect
water temperature variability) may in-
fluence ecosystem dynamics and pro-
ductivity over the whole North Atlantic
basin. In addition, more local environ-
mental influences were im portant for
most ecosystems. In particular, the
Hecate Strait models were most influ-
enced by the predator biomass and
winter average sea surface height, a lo-
cal composite index (Colbourne et al.
2010) improved the fit of the New-
foundland-Labrador re gression mod-
els, and sea ice was the most important
covariate in the Barents Sea (dynamic
model). Since the inclusion of a covari-
ate had a substantial effect on MSY in
some cases (e.g. western Scotian Shelf),
understanding the importance of dif-
ferent environmental covariates on sys-
tem productivity could lead to im-
proved management by developing
robust models, such as those developed
here, to take environmental effects into
consideration when determining refer-
ence points and setting overall quotas.
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Impact of covariates on BRPs and implications for
fisheries management

Surplus production models, like most stock assess-
ment models, assume stationarity in productivity. Vio-
lations of this assumption are common and can lead
to biases in BRPs estimated from stock-recruitment
 dynamics (Parma 1990) or from surplus production

dynamics (Walters et al. 2005). Empirical estimates of
surplus production such as those used here can pro-
vide insights into processes causing non-stationarity
(Walters et al. 2005), and environmental covariates
can be included into surplus production models to ac-
count for non-stationarity and to obtain improved ref-
erence points (Jacobson et al. 2005). In the absence of
a priori hypotheses, we used an exploratory approach
to assess the influence of selected environmental
 variables of surplus production dynamics and found
strong evidence that aggregate surplus production is
linked to environmental variability.

In those cases where the covariate improved the
model’s fit to the biomass data for the dynamic model
(i.e. eastern Bering Sea, Hecate Strait, western Scot-
ian Shelf, and eastern Scotian Shelf), the inclusion of
a covariate resulted in a lower MSY (under average
conditions) than in the model without a covariate. In
the case of the eastern Bering Sea, increased temper-
atures after the 1976−1977 regime shift were associ-
ated with reduced sea ice cover, and both tempera-
tures and sea ice conditions have shown pronounced
variability in the last decade (Hunt et al. 2011).
Recent high-temperature, low-ice conditions had a
negative impact on the recruitment of species such as
cod and pollock in the eastern Bering Sea and Gulf of
Alaska (Mueter et al. 2009, 2011), which will affect
overall fish production and may result in decreased
MSY if temperatures increase in the future. In the
other 3 models, the addition of a major predator as
the covariate improved the fit of the model and
decreased MSY. In Hecate Strait, arrowtooth floun-
der is a voracious predator whose diet consists of
75% fish (Pearsall & Fargo 2007). For the period from
1984 to 2009, it comprised 41% of the predator bio-
mass of herring (Schweigert et al. 2010). The fit of the
western Scotian Shelf and eastern Scotian Shelf
models was improved with the addition of grey-seal
biomass as a covariate. Grey seals are a top predator
on the eastern Scotian Shelf (Bundy 2005, Trczinski
et al. 2009) and their distribution is expanding to the
western Scotian Shelf (Trzcinski et al. 2009, DFO
2011). The trophic role of grey seals and the extent to
which they are responsible for the non-recovery of
groundfish stocks has been the subject of consider-
able controversy on the Scotian Shelf (DFO 2011), in
the Gulf of St. Lawrence, and in Newfoundland-
Labrador. Interestingly, seal biomass did not improve
the model fits in Newfoundland-Labrador.

The time lag of the environmental variables was in
most cases less than 3 to 4 yr. Time lags of 1 yr indi-
cate that the environment affects the somatic growth
of fish, while time lags >1 yr can be the result of the
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environment affecting recruitment. In the latter case
we would expect the environment to have the largest
impact on the early juvenile stages, hence changes in
biomass will be apparent 2 to 4 yr later when a cohort
first becomes fully or largely vulnerable to the survey
gear or is first included in the assessment. A few time
lags were somewhat longer than expected from this
mechanism and further examination is warranted to
tease apart the mechanisms underlying them.

We recommend that aggregate MSY could be con-
sidered an overall limit for total removals from an
ecosystem, and that the cumulative MSY of individ-
ual stocks should not exceed it, as suggested by other
studies (Brown et al. 1976, Walters et al. 2005,
Mueter & Megrey 2006, Tyrrell et al. 2011) and simi-
lar to the existing caps on total removals in the Bering
Sea and Gulf of Alaska (Witherell et al. 2000). Fur-
ther, we would suggest that the aggregate MSY
should be exploited in a ‘balanced’ way, across
stocks in relation to their productivity (Bundy et al.
2005, Zhou et al. 2010, Garcia et al. 2011, 2012). This
could first be explored using surplus production
models at different levels of aggregation (see Fogarty
et al. 2012, this Theme Section, Gaichas et al. 2012b,
this Theme Section, Holsman et al. 2012b, this
Theme Section, Lucey et al. 2012, this Theme Sec-
tion). Aggregate limits can provide an additional tool
for managers to prevent ecosystem overfishing, in
combination with single-species limits that are
required to prevent the loss of the least common (or
most easily caught) fish species, or those with lower
intrinsic growth rate (Worm et al. 2009, Garcia et al.
2011, Gaichas et al. 2012b).

MSY and PP

Our results suggest a useful rule of thumb for MSY
in the northern hemisphere: MSY appears to vary be-
tween 1 to 5 t km−2 for these ecosystems. This varia -
tion is approximately as large as the variation in aver-
age phytoplankton concentrations (which varies up to
7-fold among systems), but contrary to what we ex-
pected, MSY does not vary consistently with phyto -
plankton concentration nor with estimated PP. How-
ever, if we exclude Hecate Strait from the analysis (an
obvious outlier), a positive relationship be tween chlo -
rophyll concentration and MSY emerged, but most of
the variation in MSY is still unexplained. This con-
trasts with the findings of Iverson (1990), Ware &
Thomson (2005), and Chassot et al. (2007), who found
that realized fisheries yield per area varies linearly
with PP and/or with chlorophyll concentration. How-

ever, other studies (e.g. Sherman et al. 2009, Chassot
et al. 2010, Conti & Scardi 2010, Friedland et al. 2012)
also failed to find a close relationship between PP and
fisheries yield; Chassot et al. (2010) found that 3 addi-
tional factors — the probability of an ecosystem being
sustainably fished (Psust; Libralato et al. 2008), average
maximum length of fish, and ecosystem type — were
required to explain 77% of the variability in catch
across LMEs globally (measured as PP required, PPR;
Pauly & Christensen 1995). They found a tighter rela-
tionship between catch and PP when catch was ex-
pressed as PPR. It is possible that if we calculated
MSY as PPR, we might find similar results: however, it
is not possible to disaggregate the aggregate produc-
tion estimate of MSY into MSY per trophic level with
the models used here. Friedland et al. (2012) also
noted that the relationship between lower-trophic-
level dynamics and pathways with fisheries yield is
not a straightforward linear relationship with stand -
ing phytoplankton biomass.

We challenge previous findings that suggest a sim-
ple linear relationship between catch and PP (see
also Frank et al. 2006). Our exploratory analyses sug-
gest that MSY increases with total ecosystem area
and the mass flux index. The latter index measures
the mass flux of POC (Honjo et al. 2008, Friedland et
al. 2012); a high value indicates that much of the
energy produced by primary producers is transferred
to mesozooplankton and thereby to higher trophic
levels. Ecosystems characterized by strong thermal
transitions and pronounced blooms will tend to have
high values of POC flux. Thus, a positive relationship
between maximum production and the mass flux
index is consistent with the hypothesis that efficient
energy transport from primary producers to higher
trophic levels is more important than high PP per se.

In conclusion, we compared aggregate system pro-
duction models across 12 northern hemisphere eco-
systems to explore likely production caps for aggre-
gate commercial species. We assert that total
species-specific MSYs should be managed within
this aggregate limit to reduce the risk of ecosystem
overfishing (Murawski 2000), using a balanced har-
vesting approach (Garcia et al. 2012). That the triad
of drivers explored here influences MSY and produc-
tivity is not surprising; that environmental drivers
were almost always important was surprising. Impor-
tantly, although in some cases the 2 models (regres-
sion and dynamic) produced different estimates,
there was reasonable consistency among the covari-
ates that were important for model fit, relative mag-
nitude of outputs, and the rank ordering of systems
by each model. Since in most cases where the inclu-
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sion of a covariate significantly improved model fit it
resulted in reduction of MSY, we strongly recom-
mend that environmental and trophic covariates be
explored when estimating MSY for management
purposes (see also Link et al. 2012). These results
have implications for fisheries management (Walters
et al. 2005) and an ecosystem approach to manage-
ment (Murawski 2007, Link 2010, Belgrano & Fowler
2010), particularly in the context of changing sea
water temperatures as a result of climate change
(Belkin 2009).
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INTRODUCTION

There is a growing emphasis in using comparative
ecosystem studies to foster broader, ecosystem ap -
proaches to fisheries management (Murawski et al.
2010). Recognized as a way to provide ad hoc repli-
cation that is otherwise impossible owing to the large

spatial scale and overall complexity of marine eco-
systems, comparative studies have been at the core
of international programs such as Global Ocean Eco-
system Dynamics (GLOBEC), European Research on
Ocean Ecosystems under Anthropogenic and Nat-
ural Forcings (EUR-OCEANS), Indicators for the
Seas (IndiSeas) and Comparative Analysis of Marine
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Ecosystem Organization (CAMEO) (Megrey et al.
2009). Comparative studies have been used to gain
insights on individual species, such as Atlantic cod
Ga dus morhua via ICES/GLOBEC’s Cod and Climate
program (e.g. Brander 1995, Planque & Fredou 1999,
Dutil & Brander 2003, Ratz & Lloret 2003, Drinkwater
2005), and groups of species such as small pelagics
(Checkley et al. 2009), as well as whole ecosystems
(e.g. Hunt & Drinkwater 2005, Shannon et al. 2008,
Gaichas et al. 2009, Link et al. 2009). Comparing sim-
ilar ecosystems allows us to improve our understand-
ing of and draw generalizations about ecosystem
structure (ICES 2001, Megrey et al. 2009, Murawski
et al. 2010). The implementation of these generaliza-
tions in the form of decision support tools (Kangas et
al. 2008) will be an important step in supporting
 ecosystem-based fisheries management (EBFM;
Murawski et al. 2010).

In order to facilitate comparative studies, ap -
proaches must be standardized using methods that
can be readily applied to existing data. This precludes
using complex ecosystem models, which, al though
powerful, are usually tailored to specific eco systems.
Models of lower complexity can often outperform
more complicated models in terms of forecast ability
(Costanza & Sklar 1985, Walters 1986, Fulton et al.
2003, Fogarty et al. this volume). Therefore, a pre-
ferred solution would be to use simpler models such
as surplus production models as the foundation for
comparative ecosystem studies. Surplus production
models relate a population’s production to its current
size accounting for fishery re movals. This approach
relies on readily available data (biomass and land-
ings) and is relatively robust to breach of assumptions
(Restrepo et al. 1999). Al though surplus production
models have their strengths (e.g. limited data de-
mands, ability to generate biological reference points)
and weaknesses (e.g. lack of population structure,
limitations on time lags), they have generally been
deemed useful in fisheries science (Ludwig & Walters
1985, 1989, NRC 1998).

When considering production at the ecosystem
level, exploring aggregated properties of biotic com-
munities has value. Current single species reference
points are derived from assessments that consider
each species in isolation from the ecosystem; how-
ever, individual species catches cannot be consid-
ered independently in multispecies fisheries as a
result of both biological and fishery interactions
(McHugh 1959, Murawski 1984, 1991). When such
interactions are ignored, the sum of single species
maximum sustainable yields (MSYs) is often greater
than that sustainable by the ecosystem. Yet, evalua-

tions of overall potential yield from multispecies fish-
eries assessments suggest that system- or aggregate-
level MSY is generally less than the sum of the indi-
vidual species MSYs (Pope 1975, Brown et al. 1976,
May et al. 1979, NEFSC 2008). By aggregating the
species within ecosystems into functional groups or
ag gregate system biomasses, reasonable multi-
species equivalents to single species reference points
can be obtained (Mueter & Megrey 2006, Sparholt &
Cook 2010).

There are multiple reasons for using an aggregated
approach to evaluate production at the ecosystem
level. First, the energy available from lower trophic
levels is limited and shared by the entire suite of liv-
ing marine resources (LMR), including all fishes and
invertebrates. That is, the production available to
LMR for any given area of the ocean is constrained
by lower trophic level production (Pauly & Chris-
tensen 1995, Pauly et al. 1998, 2002). Second, be -
cause fish stocks have different productivities, it is
often difficult to simultaneously attain single stock
objectives in multispecies fisheries (May et al. 1979).
Third, there are biological and/or technological inter-
actions that may not always be directly accounted for
in single species assessments (Pope 1975, 1979, Fu -
ku da 1976, May et al. 1979, Mayo et al. 1992). How-
ever, aggregate models account for all of these inter-
actions without having to explicitly estimate them as
in multispecies models (Hollowed et al. 2000, Liv-
ingston & Jurado-Molina 2000). In addition, the
aggregate approach provides reference points that
are familiar to both fishery scientists and LMR man-
agers, but in an ecosystem context.

Here we explore, compare and contrast production
model outputs across both various aggregation
schemes and multiple ecosystems. This work is part
of a hierarchy of studies in which surplus production
models were used to undertake comparative eco-
system studies. Holsman et al. (2012, in this Theme
Section) present simple surplus production models of
cod and herring to examine the potential for biophys-
ical, trophodynamic and exploitative drivers to ex-
plain patterns in production. In contrast, Bundy et al.
(2012, in this Theme Section) conducted an examina-
tion of full  system-level aggregate production using
surplus production modeling. Here we aggregated
species using 3 different aggregation types — habitat,
feeding guild and size class — thereby examining
processes at a re solution intermediate between Hols-
man et al. (2012) and Bundy et al. (2012). The aggre-
gation types define functional roles without regard to
taxonomy, highlighting important tropho dynamic
and functional eco logical groups and habitat repre-
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sentations within the ecosystems (Werner & Gilliam
1984, Ross 1986, Hawkins & Mac mahon 1989, Austen
et al. 1994, Fogarty & Murawski 1998, Piet et al. 1999,
Garrison & Link 2000, Brose et al. 2006). Species
within these aggregations should share similar life
history traits and respond similarly to perturbations to
the system. Interactions within these aggregations
tend to result in compensatory dynamics, which are
more stable than individual species dynamics (e.g.
Duplisea & Blanchard 2005, Auster & Link 2009). Be-
cause of this, management based on single species
dynamics may not have the desired results and,
hence, the need for decision support tools based on
broader ecosystem dynamics merits exploration (Wal-
ters & Kitchell 2001, Walters et al. 2008).

MATERIALS AND METHODS

The best available information for landings data
and biomass estimates were assembled for all com-
mercial species across 12 northern hemisphere eco-
systems (Link et al. 2010 and are described in further
detail in Fu et al. 2012, in this Theme Section). The
ecosystems investigated were the Baltic Sea, Barents
Sea, eastern Bering Sea, eastern Scotian Shelf,
Georges Bank, Gulf of Alaska, Gulf of Maine, Hecate
Strait, North Sea, Norwegian Sea, southern Gulf of
St. Lawrence and western Scotian Shelf (see Fig. 2 in
Link et al. 2012, in this Theme Section). The longest
available time series for both landings and biomass
from each ecosystem were used for the analyses

(Table 1). Biomass estimates were acquired from
stock assessments, fishery independent surveys cor-
rected for catchability (q) or minimum trawlable
swept-area estimates from fisheries independent sur-
veys, depending on the ecosystem and species.
Though very infrequent, data for years with missing
biomass estimates were linearly interpolated (Fu et
al. 2012).

Data were combined based on 3 different species
aggregation types within each ecosystem. The first
type of aggregation was based on the habitat in
which species primarily spend their time foraging:
demersal or pelagic habitats. The second type of ag-
gregation was based on specific diet information and
species were grouped according to their feeding
guild. Originally, there were 7 feeding guilds identi-
fied for this project (Link et al. 2010, Fu et al. 2012);
however, only 4 of those had sufficient numbers of
species across multiple ecosystems for ana   lyses here:
planktivores, zoopivores (those animals that con-
sumed zooplankton, shrimp and fish), benthivores
and piscivores. The final type of aggregation ac-
counted for size-dependent differences in tro phic po-
sition. Fish species (excluding invertebrates) were
aggregated into 3 size class groups based on the 30th
and 70th percentiles of the cumulative frequency his-
togram of maximum fish lengths across all species.
The 3 size categories were: ‘small’ (<55 cm), ‘medium’
(≥55 cm and <100 cm) and ‘large’ (>100 cm).

Aggregate annual surplus production (ASP) was
calculated for each aggregate group (agg) and eco-
system ( j) as:
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Region      Area                                                            Length of time series (year−year)
                 (km2)       Demersal        Pelagic      Planktivore    Zoopivore  Benthivore     Piscivore          Small          Medium          Large

BALT      211 069    1974−2008    1974−2008    1974−2008           nd                nd           1974−2008    1974−2008           nd           1974−2008
BS           747 893    1946−2009    1950−2009    1950−2009    1964−2009  1950−2009    1946−2009    1950−2009    1986−2009    1946−2009
EBS         430 829    1954−2009    1964−2009    1964−2009           nd         1954−2009    1976−2009    1954−2009    1964−2009    1977−2009
ESS         113 704    1970−2008    1970−2008    1970−2008    1970−2008  1970−2008    1970−2008    1970−2008    1970−2008    1970−2008
GB            42 154    1963−2009    1963−2009    1963−2009    1963−2009  1963−2009    1963−2009    1963−2009    1963−2009    1963−2009
GoA        238 439    1950−2009    1950−2009    1950−2009    1960−2009  1977−2009    1950−2009    1961−2009    1961−2009    1950−2009
GoM         76 483    1963−2009    1963−2009    1963−2009    1963−2009  1963−2009    1963−2009    1963−2009    1963−2009    1963−2009
HS             23 501    1984−2009    1951−2009    1951−2009    1984−2009  1984−2009    1984−2009    1951−2009    1984−2009    1984−2009
NORT     609 748    1963−2007    1963−2007    1963−2007           nd         1963−2007    1963−2007    1963−2007    1963−2007    1963−2007
NS           728 331           nd           1950−2009    1950−2009           nd                nd                  nd           1950−2009    1972−2009           nd
GSL          74 137    1971−2009    1971−2009    1971−2009    1971−2009  1971−2009    1971−2009    1971−2009    1971−2009    1971−2009
WSS          73 344    1970−2008    1970−2008    1970−2008    1970−2008  1970−2008    1970−2008    1970−2008    1970−2008    1970−2008

Table 1. The 12 northern hemisphere ecosystems analyzed in this study. Length of the time series for each aggregation per eco-
system is listed as well as the physical area of the ecosystem. nd: no data for that aggregation within that ecosystem. Ecosystems are:
Baltic Sea (BALT), Barents Sea (BS), eastern Bering Sea (EBS), eastern Scotian Shelf (ESS), Georges Bank (GB), Gulf of Alaska
(GoA), Gulf of Maine (GoM), Hecate Strait (HS), North Sea (NORT), Norwegian Sea (NS), southern Gulf of St. Lawrence (GSL), 

and western Scotian Shelf (WSS)  
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ASPagg,j,t = Bagg,j,t+1 − Bagg,j,t + Cagg,j,t (1)

where Bagg,j,t is the total biomass of all species within
aggregation in ecosystem j for year t and Cagg,j,t is the
corresponding total catch. We examined the rela -
tionship between ASP and annual biomass by plot-
ting ASPagg,j,t against Bagg,j,t. We fit both a null model
and a Graham-Schaefer surplus production model.
The null model assumed that aggregate annual sur-
plus production was linearly related to the aggregate
 biomass:

ASPt = βBt (2)

where the intercept is 0 (no production at no bio-
mass) and β is the slope of the relationship. While the
surplus production model (hereafter the process
error model) estimated surplus production as a qua-
dratic function of biomass (Graham-Schaefer func-
tional form with additive error; e.g. Quinn & Deriso
1998) given by:

ASPt = αBt + βB2
t + εt (3)

where α and β are regression parameters. The pro-
cess model assumed deterministic biomass and first-
order autocorrelation error structure [εt = ϕεt−1 + Vt,
where Vt ≈ N(0,σ2)]. Parameters were estimated with
a generalized least squares regression using the
package ‘nlme’ in R (v. 2.14.1, R Foundation for Sta-
tistical Computing). This model assumes that obser-
vations are made without error and that all of the
error occurs in the change in population size (process
error). Biological reference points (BRPs) were calcu-
lated directly from the process error model parame-
ters; MSY = α2/4β and BMSY = α/2β.

We compared the 2 models using Akaike’s infor-
mation criterion with correction for small sample size
(AICc; Anderson 2008). Differences in AICc between
the null and process error models (diffAICc) were cal-
culated as:

diffAICc = AICcnull
− AICcprocess

(4)

This is similar to ΔAICc, which in typical AIC nota-
tion is the difference between a candidate model and
the best model, where high ΔAICc values indicate
less credibility for the candidate model, with values
less than 14 having at least some credibility (Ander-
son 2008). However, since we used the equation
above, we defined diffAICc values of 2 or greater to
indicate a better fit by the process error model over
the null model, values of between 2 and −2 to indi-
cate equal support for both models and values of −2
or less to indicate a better fit by the null model. Inde-
pendent of model selection, overall fit of the models

to the data was also determined with R2 value and p-
values of regression coefficients.

Finally, comparisons were made across ecosystems
by aggregation type. To facilitate comparisons, we
standardized the BRPs by the area of the ecosystem
(Table 1). Observed variation within aggregate
groups was quantified with coefficients of variation
(CVs). We then conducted a 2-factor ANOVA to test
whether there were significant differences between
ecosystems or aggregate groups. Further analysis
was done with Tukey’s HSD test to make multiple
comparisons of means between ecosystems as well as
between aggregate groups. Based on these tests, we
identified patterns with respect to overall aggregate
production across ecosystems and relative produc-
tion between aggregation types.

RESULTS

There was substantial variation in physical size and
fish biomass density among the 12 ecosystems exam-
ined. There was a greater than 30 times difference in
area between the smallest ecosystem (Hecate Strait,
23 501 km2) and the largest ecosystem (Barents Sea,
747 893 km2) (Table 1). Despite these differences, the
average annual biomass estimates per unit area from
1984 to 2008 for all aggregate groups were generally
≤13 t km−2 (0.001 to 31.200 t km−2); the one consistent
exception was the eastern Bering Sea ecosystem,
which had high estimates of biomass per unit area for
several of the aggregate groups (Fig. 1). For most
aggregate groups, the top species (or species group)
contributed over 50% of the biomass per unit area
(Fig. 1, striated area of bars).

Generally, the process error model was more infor-
mative than the null model. Some ecosystems lacked
species in certain aggregate groups, leaving a total of
98 combinations of ecosystems and aggregate groups
for which comparisons could be made. Of the 98
combinations, there was substantial evidence in
favor of the process error model being a better fit in
78 instances (79.6%; Table 2). There was equal sup-
port for both models in 17 combinations (17.3%).
Substantial support for the null model was found in
only 3 instances (3.1%). General fit of the process
error model to the data was good with a range of R2

values from 0.031 to 0.928, while 85.7% and 73.5% of
the α and β parameters were significant at the 0.05
level, respectively (Fig. 2, Table S1 in the supplement
at www.int-res. com/ articles/ suppl/ m459 p219_ supp.
pdf). Hecate Strait on average had the lowest R2 val-
ues while the Baltic Sea had the highest. For all eco-
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systems, these R2 values were gener-
ally higher than similar values for the
null model.

There were similarities and differ-
ences between ecosystems and ag -
gregations with respect to BRPs esti-
mated by the process error model
(Figs. 3− 5). Estimates of both MSY
and BMSY varied between aggregate
groups (Table 3). The 2-factor ANOVA
showed significant difference between
ecosystems and aggregate groups
(Table 4). Comparing the differences
in means with Tukey’s HSD test, we
found that most of the differences be-
tween ecosystems arose from the 2
systems: the eastern Bering Sea and
southern Gulf of St. Lawrence (Tables
S2 & S3 in the supplement). Most other
ecosystems were not signi ficantly dif-
ferent. As expected, there were more
significant differences be tween aggre-
gate groups (Tables S4 & S5 in the
supplement).

Mean values for both MSY and BMSY

were larger for the pelagic ag gregate
group than the demersal aggregate
group with values ~1.5 and 1.3 times
larger, respectively (Table 3). Esti-
mates of MSY had ap proximately the
same amount of variation for the pe la -
gic and demersal aggregate groups
(CVs, 62.9 and 62.2%, respectively;
Table 3). There was slightly more vari-
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Fig. 1. Average (±SE) biomass per unit area (t km−2) of each aggregation for
12 ecosystems during 1984−2008. Each bar is divided into 2 sections. The bot-
tom striated section of each bar represents the top ranked species or species
group (i.e. highest proportion of total biomass). The top section of each bar
represents the rest of the species in that group. For reference purposes a
 horizontal line is shown at 13 t km−2. See Table 1 for definition of ecosystem 

abbreviations

Table 2. Values of diffAICc (AICcnull − AICcprocess; see text for explanation). Negative values indicate where the null model
fit the data better than the process model. Values that are not shaded indicate combinations for which the process error
model had substantially more support than the null model. Light grey boxes show where there is equal support for both
models (−2 < diffAICc < 2). Dark grey boxes show where there is substantial support for the null model over the process
error model. nd: data missing for individual levels of aggregation within ecosystems. See Table 1 for definition of eco-

system abbreviations

Aggregate Ecosystem

group BALT BS EBS ESS GB GoA GoM HS NORT NS GSL WSS

Pelagic 0.7 7.4 12.2 9.9 12.2 13.5 9.3 −1.6 44.3 20.4 14.5 −0.4

Demersal 4.0 20.9 20.2 −1.1 17.8 5.7 10.8 4.4 3.5 nd 5.9 51.8

Planktivore 0.7 4.4 12.2 10.8 13.8 8.8 8.8 −1.7 13.6 20.4 13.3 27.2

Benthivore nd 16.2 18.9 10.5 13.0 2.3 12.2 2.5 6.3 nd 5.4 23.7

Zoopivore nd 6.5 nd 11.0 16.4 0.8 17.7 −2.7 nd nd 4.6 14.2

Piscivore 4.0 29.4 −0.5 6.4 16.5 1.6 14.2 4.8 −1.4 nd 0.7 27.3

Small 0.7 4.8 11.5 −2.9 13.9 −1.2 7.3 −1.8 14.6 20.3 14.5 25.7

Medium nd 8.9 13.5 13.4 27.6 29.8 15.0 5.1 6.2 27.6 2.8 12.6

Large 4.0 23.2 30.3 −0.1 23.6 −3.7 16.6 1.1 7.9 nd 0.7 31.5
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ation in the pelagic estimate of BMSY (CV, 52.7%)
than the demersal estimate (CV, 46.9%) (Table 3).
Estimates of MSY for the pelagic aggregate groups
ranged from 0.97 to 5.46 t km−2, while estimates of
BMSY ranged from 2.36 to 16.31 t km−2 (Table 3). The
highest estimates for MSY and BMSY for the pelagic
aggregate group were from the eastern Bering Sea
and southern Gulf of St. Lawrence (Fig. 3). For both
systems, the pelagic productivity was much larger
than production from their demersal aggregate
groups (2.6 and 4.2 times larger for the eastern
Bering Sea and southern Gulf of St. Law rence, re -
spec tively). In contrast, estimates of MSY for the
demersal aggregate groups ranged from 0.45 to
3.32 t km−2 while estimates of BMSY ranged from 3.49
to 13.16 t km−2 (Table 3). The most productive demer-
sal aggregate group was from the North Sea eco-
system. The North Sea’s demersal aggregate group
was 3.1 times more productive than its pelagic aggre-
gate group (Fig. 3). However, unlike the pelagic ag -
gregate group, the ecosystem with the highest esti-
mate of BMSY (eastern Bering Sea) was not the most
productive (Fig. 3).

Similar patterns were observed in the other 2 ag -
gregation types, although CVs for the majority of the
aggregate groups within the feeding guild and size
aggregation types showed more variation than with
the habitat aggregation type (Figs. 3−5, Table 3).
Ranges for aggregate groups usually associated with

‘forage’ fish (pelagic, planktivore and
‘small’) were similar (Table 3). The ‘for-
age’ fish ag gregations were also more
productive than the other aggregate
groups (Table 3). Based on Tukey’s HSD
test, differences in means were signifi-
cantly different for all 3 ‘forage’ fish
aggregate groups against the benthi-
vore aggregate group. Means were also
significantly different for the pelagic and
planktivore ag gregate groups against
the zoo pivore, piscivore, medium and
large aggregate groups (Tables S4 & S5
in the supplement).

There were also similarities with re -
gards to relative differences in produc-
tion as well as dominate ecosystems.
The greatest variability among func-
tional groups was ob served in the feed-
ing guild aggregation type, of which
the planktivore aggregate group’s mean
MSY was 2 to 5 times greater than the
other feeding groups (Table 3). Similar
to the pelagic aggregate group, the east-
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Fig. 2. Examples of the fit by the models to the data. (a) Ex-
ample where the process error model (thick dashed line) fits
the data well (North Sea pelagic aggregate group). This oc-
curs for the majority of the aggregate groups across the eco-
systems. (b) Example of where the null model (solid line) fits
the data well (Gulf of Alaska ‘large’ aggregate group). This
occurred in only 3 aggregate groups. The thin dashed line 

shows where annual surplus production equals 0

Fig. 3. Area-corrected maximum sustainable yield (MSY) and biomass at
maximum sustainable yield (BMSY) derived from the process error model for
the habitat aggregation type by ecosystems. See Table 1 for definition of eco-

system abbreviations
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ern Bering Sea and southern Gulf of St. Lawrence
were the most productive (Figs. 4 & 5). For both sys-
tems, the most productive aggregate group within
the feeding guild aggregation type was the plankti-
vore aggregate group (Fig. 4). However, for the size
aggregation, production was higher within the
‘medium’ size aggregate group for eastern Bering
Sea and not the ‘small’ aggregate group (Fig. 5).

Despite physical differences among the eco-
systems, estimated BRPs appear to be independent of
ecosystem size. Specifically, the Barents Sea, which
was the largest ecosystem at ~748 000 km2, had BRPs
that were generally intermediate to other systems.
Whereas the relatively small ecosystem, Georges
Bank, had high demersal area-corrected MSY, which
may be related to its shallow average depth and rel-
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Fig. 4. Area-corrected maximum sustainable yield (MSY) and biomass at maximum sustainable yield (BMSY) derived from the
process error model for the feeding guild aggregation type by ecosystems. Note the different scale for the planktivore aggregate 

group than the other 3 aggregate groups. See Table 1 for definition of ecosystem abbreviations

Fig. 5. Area-corrected maximum sustainable yield (MSY) and biomass at maximum sustainable yield (BMSY) derived
from the process error model for the size class aggregation type by ecosystems. See Table 1 for definition of ecosystem 

abbreviations 
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atively high primary production (O’Reilly & Zetlin
1998). There did not appear to be a trend in BRPs
with regard to ocean basin or latitude (data not
shown).

DISCUSSION

We have shown that, with a few exceptions, esti-
mated aggregate group BRPs are relatively invariant
among ecosystems when data are aggregated to
reflect habitat, trophodynamic or allometric affini-
ties. While aggregate production varied across ag -
gregation types and ecosystems, MSY never ex -
ceeded 6 t km−2 and was generally less than 3 t km−2.
The comparative ecosystem approach is important
for revealing commonalities and differences across
ecosystems. Yet, to date, the bulk of scientific litera-
ture on ecosystems is composed of ‘within ecosystem’
comparisons, which focus on comparing different
sections of various time series (Murawski et al. 2010).
‘Within ecosystem’ comparisons are helpful in deter-
mining covariation among changes in species pro-

duction dynamics and regime shifts within particular
ecosystems but do not often identify broader, overar-
ching ecosystem patterns and functions. Our study
revealed insights from a broader intersystem com-
parison (Murawski et al. 2010) within the temperate
northern hemisphere ecosystems. Although not re -
plicates in traditional statistical parlance, all of our
ecosystems are similar in that they are highly pro-
ductive and have sustained long-term fisheries re -
movals (Fu et al. 2012). Through applying surplus
production models to several types of functional ag -
gregations, we can draw some generalities that are
ap plicable to a wide range of ecosystems.

Previous studies have demonstrated that develop-
ing estimates of aggregate ecosystem MSY is a more
conservative management approach than summing
estimates from multiple single-species models (Pope
1975, Brown et al. 1976, May et al. 1979, Collie & Gis-
lason 2001, Walters et al. 2005, Mueter & Megrey
2006, Sparholt & Cook 2010) This occurs because
within any given aggregation, it is assumed that as
individual species compete with one another re -
sources become limited and each species cannot be
maintained at carrying capacity simultaneously
(Gamble & Link 2009). In addition, the functional ag -
gregate group is less annually variable than individ-
ual species as perturbations in population dynamics
are smoothed. Moreover, Bundy et al. (2012) show
that aggregating at the full system level is even more
conservative (1 to 5 t km−2) than aggregating at the
functional group level, as presented here.

There was no apparent pattern in aggregate pro-
ductivity with respect to ocean basin, region or com-
ponent species. For many different aggregation
types the southern Gulf of St. Lawrence and the east-
ern Bering Sea were the most productive ecosystems.
The southern Gulf of St. Lawrence was located
within the Atlantic basin at the mid-range of our
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Aggregate                                                                  Biological reference point
group             MSYmean    MSYmedian   MSYSD    MSYrange    MSYCV            BMSYmean

   BMSYmedian
  BMSYSD

     BMSYrange
    BMSYCV

Pelagic              2.13             1.76           1.34      0.97−5.46      62.9                  8.68            9.80         4.57      2.36−16.31     52.7
Demersal          1.34             1.17           0.83      0.45−3.32      62.2                  6.48            5.45         3.04      3.49−13.16     46.9
Planktivore       2.12             1.82           1.48      0.20−5.73      70.1                  8.21            8.93         5.04      0.71−16.33     61.3
Benthivore        0.63             0.56           0.30      0.22−1.11      48.0                  2.98            1.66         2.87       0.85−9.79      96.2
Zoopivore         0.46             0.29           0.45      0.01−1.01      98.9                  1.33            1.23         1.05       0.04−3.18      79.3
Piscivore           0.85             0.74           0.42      0.23−1.68      48.8                  3.96            3.34         2.49       1.67−9.67      62.9
Small                 1.71             1.73           1.40      0.01−5.28      81.9                  6.88            5.81         4.83      0.01−16.46     70.2
Medium            1.02             0.66           1.22      0.11−4.48     119.7                 4.10            2.06         5.57      0.18−19.17    135.8
Large                 1.03             0.88           0.56      0.08−1.86      54.7                  4.38            3.34         2.87      1.65−11.96     65.5

Table 3. Measures of central tendencies for estimated biological reference points obtained for the aggregate groups. Values
were derived using the process model. Ecosystems without data for an aggregate group were excluded from calculations

                     df         SS          MS      F-value       Pr(>F)

MSY
Ecosystem    11      34.59      3.144      5.040    8.04 × 107***
Agg. group   8       37.63      4.704      7.540    1.22 × 108***
Residuals     176    109.79     0.624

BMSY

Ecosystem    11      653.3      59.39      5.689    1.20 × 106***
Agg. group   8       433.0      54.12      5.184    3.33 × 105***
Residuals      78      814.3      10.44

Table 4. Results of 2-factor ANOVAs for MSY and BMSY. The
2 factors were ecosystem and aggregate group (see Table 1). 

***Factor significant at p < 0.001
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study geographically while the eastern Bering Sea
was the most northerly of the Pacific basin eco-
systems examined. The high production from both
can be attributed to the pelagic and planktivore
aggregate groups. But there were differences in the
most productive size class aggregation, with the
southern Gulf of St. Lawrence dominated by the
‘small’ size class and the eastern Bering Sea domi-
nated by the ‘medium’ size class. Both the southern
Gulf of St. Lawrence and eastern Bering Sea are rel-
atively shallow with seasonal ice cover; however, the
southern Gulf of St. Lawrence is an inland sea con-
taining a mixture of estuarine and marine, as well as
subtropical to subarctic species (Fu et al. 2012).

We found that aggregations typically associated
with ‘forage fish’ (pelagic, planktivore and ‘small’)
were consistently more productive than other aggre-
gation groups. ‘Forage fish’ play a key ecological role
within marine ecosystems, transferring energy from
primary production to upper trophic levels (Pikitch et
al. 2012). When dealing with single species manage-
ment, BRPs may be overestimated with respect to
MSY or underestimated with respect to BMSY without
explicitly accounting for this higher natural mortality
(Tyrrell et al. 2011). However, as noted previously, by
aggregating species we indirectly account for these
interactions while simultaneously dampening single
species variability; thus, aggregate ‘forage’ BRPs
may be a useful alternative. It seems reasonable that
special attention should be afforded these aggregate
‘forage’ groups as trophic pressures may increase as
predator stock sizes continue to rebuild (Overholtz et
al. 2008, Smith et al. 2011).

To utilize information from comparative studies,
outputs should be familiar to managers. Therefore,
we provide BRP estimates derived from aggregates
rather than single species. In fisheries science, BRPs
are benchmarks from which to assess the status of
fish stocks. In single-species assessment, they are
usually based on fishing mortality or biomass levels.
As we transition to EBFM, the concept of reference
points will need to be expanded to include other eco-
logical indicators and multivariate indices (Link
2005). However, a first step is to apply more familiar
BRPs, such as MSY and BMSY, in a context broader
than single species such as the aggregate reference
points presented here. While we assume that LMR
managers could interpret other metrics, the familiar-
ity with more traditional BRPs may aid in the transi-
tion to other EBFM reference points. In addition to
familiarity, the value of aggregated metrics can be
high. A major criticism of MSY is its appropriateness
as a management goal (Punt & Smith 2001). This is

based on the static nature of MSY, which ignores nat-
ural fluctuations in species abundance. By aggregat-
ing species into similar life-history categories some of
this natural fluctuation may be dampened. This could
lead to more robust yet conservative estimates of pro-
ductivity.

Conceivable uses of such aggregated metrics war-
rant consideration. We could envision them being
adopted in the following way. First, aggregate BRPs
should be used as overall caps to fishery removals
with respect to aggregate groups. This proposed
usage conforms to the recent paradigm of using MSY
as a limit rather than a target and has had some
precedence in some ecosystems (e.g. Witherell et al.
2000). Aggregated metrics can also balance yield
and biodiversity objectives (Worm et al. 2009,
Gaichas et al. this volume). Species within aggregate
groups should generally have similar life histories;
however, some are more productive than others. To
optimize biodiversity objectives, removals should be
distributed within the aggregation with some consid-
eration of individual species productivity. This way,
lower productive stocks will be safeguarded against
overfishing (Mueter & Megrey 2006). This also cre-
ates a bridge between single species assessments
and multispecies assessment that can better inform
managers of potential risks of particular manage-
ment decisions (Mace 2001).

As fishery management transitions towards an eco-
system approach, comparative studies like this one
will provide useful insights. Comparative studies
allow for ad hoc replication between similar eco-
systems. The aggregation schemes we employed
were based on various criteria, but there does not ap -
pear to be a difference in using habitat, feeding guild
or size class. Future choices regarding the best ag -
gregation to use for developing decision support
tools will certainly need to be based on individual
ecosystem history and species composition as well as
the management question being addressed, but we
assert that the general patterns we observed should
be informative for such selections. The logical next
step would be to move to the final level of compara-
tive hierarchy outline by Murawski et al. (2010). That
would be a global comparison between dissimilar
ecosystems. By comparing the contrast between eco-
systems from temperate marine ecosystems to coral
reef ecosystems or even terrestrial ecosystems we
can begin to answer the broadest of ecosystem ques-
tions related to biodiversity, variability and produc-
tivity (Murawski et al. 2010). This work represents a
useful step to that end and ultimately a global syn-
thesis of the determinants of fisheries production.
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INTRODUCTION

Ecosystem-based approaches have been promoted
as a way to improve fisheries assessment and man-
agement (Pikitch et al. 2004, US Commission on
Ocean Policy 2004, Link 2010). There are multiple
facets and goals of the ecosystem-based approach,
but a central feature is a holistic perspective on fish-
eries productivity that considers multiple controls

beyond fishing mortality and stock size (Walters &
Martell 2004, Hollowed et al. 2011). One potential
benefit of this approach is improved estimates of both
biological reference points (Overholtz et al. 2008,
Tyrrell et al. 2011) and of population trajectories
under various future management and climatic sce-
narios. For example, consideration of trophodynamic
interactions in both stock assessments and harvest
policies might improve assessment accuracy and

© Inter-Research and Fisheries and Oceans Canada 2012 ·
www.int-res.com

*Email: kirstin.holsman@noaa.gov

Comparative analysis of cod and herring
 production dynamics across 13 northern hemisphere

marine ecosystems

Kirstin K. Holsman1,*, Timothy Essington2, Thomas J. Miller3, 
Mariano Koen-Alonso4, William J. Stockhausen5

1Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington 98195-5672, USA
2School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195-5020, USA

3Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, USA
4Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St John’s, Newfoundland and Labrador A1C 5X1, Canada

5Alaska Fisheries Science Center, NOAA Fisheries, Seattle, Washington 98115, USA

ABSTRACT: We conducted a comparative ecosystem analysis to understand environmental and
biological drivers of production dynamics of 2 common species groups, cod (Gadus morhua and
G. macrocephalus) and herring (Clupea harengus and C. pallasii), across 13 large marine ecosys-
tems. For all 4 species, we fit a hierarchy of nested surplus production models with terms for
trophodynamic and biophysical covariates; models were then compared using an  information-
theoretic framework. Across ecosystems, models including terms for biophysical covariates exhib-
ited stronger fits to the data and were often included in the top set of selected models. However,
the numerical effects of covariates differed among systems and species. For example, surplus pro-
duction in several ecosystems was significantly affected by sea surface temperature, but to differ-
ing degrees (i.e. direction and magnitude of effect). Similarly, surplus production of cod was pos-
itively associated with herring biomass in 4 of the ecosystems examined, whereas negative
trophodynamic interactions alluded to complex cultivation-depensation food-web dynamics in 5
other systems. Importantly, no single covariate emerged as the most important predictor of surplus
production nor were biological reference points from models with covariates always more conser-
vative than those without covariates. This suggests that inclusion of tropho dynamic and biophys-
ical covariates in simple production models has the potential to increase model fit, but the relative
benefit will be stronger for systems and species where trophodynamic and biophysical processes
are tightly coupled to species productivity.

KEY WORDS:  Cod · Herring · Surplus production · Fisheries management · Trophic dynamics ·
Biological reference points · Environmental factors · Maximum sustainable yield · MSY

Resale or republication not permitted without written consent of the publisher

Contribution to the Theme Section ‘Comparative analysis of marine fisheries production’ OPENPEN
 ACCESSCCESS



Mar Ecol Prog Ser 459: 231–246, 2012

identify trade-offs that emerge between fisheries that
target multiple species in a food web (Link 2010,
Constable 2011, Smith et al. 2011).

Although the importance of biophysical and tropho -
dynamic drivers of fisheries production dynamics
are widely acknowledged (e.g. Mantua et al. 1997,
Lehodey et al. 2006, Baum & Worm 2009), identifying
and ranking the relative influence of these drivers
on production rates is challenging. Often covariates
of fisheries production dynamics are determined
through a correlation analysis of data from multiple
time series. Yet, survey and biophysical time-series
data are frequently autocorrelated, so that spurious
relationships between production dynamics and en -
vironmental variables are not uncommon. For exam-
ple, Leggett et al. (1984) analyzed data from 1966 to
1978 for capelin Mallotus villosus and found a strong
correlation between recruitment, sea surface temper-
ature, and the frequency of onshore winds during
 larval emergence from spawning beaches. Yet, when
Carscadden et al. (2000) updated the original ana -
lysis with additional years of data, temperature was
no longer a useful predictor of recruitment. These
authors speculated that the original correlation was
spurious rather than causative. In a broad review of
such relationships, Myers (1998) noted that recruit-
ment correlations become particularly unreliable when
time series are short relative to generation times.
Other authors have since demonstrated additional
challenges inherent in using correlative approaches
to evaluate processes that may act synergistically to
regulate production dynamics (Hunt et al. 2002, Hunt
& McKinnell 2006).

The comparative approach has been identified as a
promising tool to provide ecosystem-scale scientific
advice for fisheries (Megrey et al. 2009, Murawski et
al. 2009). We suggest that the comparative approach
is also helpful in assessing the importance of ecolog-
ical covariates in predicting production of fisheries
stocks. By assessing covariates of fisheries produc-
tion across multiple ecosystems that have unique his-
tories of environmental forcing and food web dy -
namics, it may be possible to identify covariates that
consistently predict production levels and thereby
diminish the likelihood of drawing spurious correla-
tions. Indeed, Myers (1998) recommended a compar-
ative approach in his review of correlative studies of
environmental controls of recruitment. More gener-
ally, such analyses offer the potential to distinguish
covariates that regulate production in many different
ecosystems as opposed to the system-specific effect
of individual covariates. Additionally, a comparative
approach can also reveal how mean levels of produc-

tivity vary across ecosystems and thereby detect con-
trols of productivity that might be concealed in
analysis of data from a single ecosystem (Perry &
Schweigert 2008).

As a part of a larger collaborative project to com -
pare the dynamics of marine ecosystems (see Gaichas
et al. 2012, this Theme Section), we assembled time
series data on biomasses and harvest of multiple spe-
cies in 13 different northern temperate ecosystems
(see Fig. 2 in Link et al. 2012, this Theme Section). The
overall goal of the project was to quantify the  relative
importance of biophysical (environmental), tropho -
dynamic and ex ploitative processes on production. To
maximize the strength of the comparative approach,
we apply a simple production model to population
and harvest biomass data for cod and herring species,
which were present in most of the 13 northern eco -
systems. These 2 species groups have traditionally
supported culturally and economically important fish-
eries (Kurlansky 1997) and have also long been the
 focus of efforts to relate population dy namics to en -
vironmental conditions (e.g. Hjort 1914, Sinclair &
Tremblay 1984). As a result, there are ample data
sources from a diverse array of marine fishery eco -
systems on which to base comparative analyses. The
surplus production modeling framework was chosen
because the notion of surplus production is funda-
mental to both single species and ecosystem-based
approaches (Schnute & Richards 2002, Walters et al.
2008). Moreover, despite their simplicity, surplus pro-
duction models can outperform more complicated
age-structured models (NRC 1998). Here we use a sur-
plus production modeling framework to ask: (1) how
do average surplus production levels relate to eco -
system scale properties such as temperature, (2) do
particular biophysical or trophodynamic variables
consistently predict production dynamics across
ecosystems, and (3) are biological reference points
(e.g. maximum sustainable yield [MSY]) for each
 species group similar across ecosystems?

MATERIALS AND METHODS

We evaluated patterns in biomass and annual sur-
plus production for Atlantic and Pacific cod (Gadus
morhua and G. macrocephalus, respectively) and
Atlantic and Pacific herring (Clupea harengus and
C. pallasii, respectively) from 13 high-latitude eco -
systems that varied in size and ecosystem structure
(Table 1). Although we recognize that there are spe-
cific differences between the species pairs, we argue
that each occupy similar niches in the individual
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ecosystems in which they are found; both species of
herring are important forage fish prey for a myriad of
predators, including cod, which are in turn a domi-
nant component of the predatory groundfish guild in
each ecosystem.

Sources of population biomass (either survey-
based or stock assessment-based estimates) and
annual catches are provided by Bundy et al. (2012,
this Theme Section). Overall, data time series ranged
from 1946 to 2009, although time-ranges for specific
ecosystems varied based on available data for each
system. Annual biomass and catch of cod or herring
from surveys or assessments were standardized to
tons per square kilometer of each ecosystem prior
to analysis by dividing by ecosystem area. We note
that estimates of ecosystem area are not necessarily
indicative of habitable area, particularly for herring
that are more coastal (e.g. the entire eastern Bering
Sea is not inhabited by Pacific herring).

We used an annual surplus production modeling
approach to evaluate drivers of stock productivity.
This choice was based on the recognition that en -
vironmental and trophodynamic effects are most
directly manifest in stock productivity because this
metric integrates effects on growth, mortality and
recruitment. Moreover, the surplus production ap -
proach allowed us to conduct comparative analysis
across ecosystems using a common framework and
currency. The annual surplus production (ASPt) of a
species in year t was calculated as:

ASPt = Bt+1 – Bt + Ct (1)

where Ct is annual catch and Bt and Bt +1 are the
mean biomass estimates in years t and t + 1, respec-

tively. In some systems, biomass estimates from sur-
veys contained one or more positive outliers, typi-
cally caused by a single survey tow containing un -
usually high catches. These high catch events most
likely reflect differences in catchability or species
aggregation rather than true variation in annual
 production. Preliminary analyses indicated that the
inclusion of anomalously large biomass estimates led
to unrealistic rates of increase in population biomass
from time t to t + 1 and subsequently produced extra-
ordinarily high, then low, ASP values when esti-
mated survey biomass returned to levels that pre-
ceded the outlier. We therefore smoothed biomass
time series to account for this observation error
by using a Kalman filter (i.e. local level structural
time-series model, StructTS() function in R; R Devel-
opment Core Team 2010). This approach imple-
mented an autoregressive integrated moving average
(ARIMA[0,1,1]) model and appeared to have little
effect in most systems (particularly for biomass esti-
mated from stock assessments) but was able to
reduce noise and eliminate anomalous biomass esti-
mates for several ecosystems and species (Fig. 1).

To identify covariates that best predict inter-annual
variation in ASP for each species from each ecosys-
tem, we statistically fit multiple models, each con-
taining different combinations of covariates, and used
multi-model inference to identify the weight of evi-
dence in support of each covariate (Burnham &
Anderson 2002). In particular, we fit a null model
where ASP varied randomly around a mean value
(i.e. no relationship to biomass) and a Schaefer surplus
production model (Hilborn & Walters 1992) where
ASP exhibited a parabolic relationship with biomass
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Ecosystem Abbreviation Area Cod Herring Data source
(103 km2) n Years n Years

Baltic Sea BALT 211.1 34 1974−2007 34 1974−2007 Stock assessment
Barents Sea BS 525.3 63 1946−2008 59 1950−2008 Stock assessment
Eastern Bering Sea EBS 430.8 32 1977−2008 29 1978−2006 Stock assessment
Eastern Scotian Shelf ESS 113.7 38 1970−2007 q-corrected biomass
Georges Bank GB 42.2 44 1963−2006 41 1967−2007 q-corrected biomass
Gulf of Alaska GoA 238.4 32 1977−2008 29 1980−2008 Minimum swept area
Gulf of Maine GoM 76.5 44 1963−2006 41 1967−2007 q-corrected biomass
Hecate Strait HS 23.5 25 1984−2008 59 1951−2009 q-corrected biomass
Newfoundland and Labrador NL 388.2 27 1981−2007 Minimum swept area
North Sea NORT 609.7 44 1963−2006 44 1963−2006 Stock assessment
Norwegian Sea NS 728.3 59 1950−2008 Stock assessment
Southern Gulf of St. Lawrence sGoSL 74.1 38 1971−2008 38 1971−2008 q-corrected biomass
Western Scotian Shelf WSS 73.3 38 1970−2007 38 1970−2007 q-corrected biomass

Table 1. Ecosystem abbreviation and area, and the number (n) and range of years of cod and herring biomassdata included in 
each ecosystem- and species-specific analysis
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according to parameters r (maximum annual  per-
biomass rate of population increase) and K (equilib-
rium population biomass in the absence of fishing). To
this simple production model we added a number of
biological and environmental covariates (m) that mo -
di fied annual surplus production additively such that:

(2)

where Xi,t is the Z-score standardized value of covari-
ate i in year t, γ i describes the effect of covariate i,
and εt is an independently and normally distributed
random variable with variance σ (~N [0,σ2]).
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Fig. 1. Regional time series of observed biomass, Kalman-filtered (smoothed) biomass, and observed harvest (catch) for cod 
and herring in different ecosystems. See Table 1 for ecosystem abbreviations
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We selected covariates that indexed important
trophodynamic or ecosystem processes and were
broadly available for most of the systems in our study
(see Fu et al. 2012, this Theme Section). Our selected
biophysical covariates included mean sea surface
temperature (T) and wind speed (V) as well as 2
atmospheric indices of marine productivity depend-
ing on ocean basin: the Pacific Decadal Oscillation
(PDO) for Pacific ecosystems and the North Atlantic
Oscillation index (NAO) for Atlantic systems. We
hypothesized that ASP may vary as a function of prey
and/or predator abundance, so we also included her-
ring biomass as prey in the models for cod (lagged by
1 yr to reflect subsequent production), and cod bio-
mass within the same year as an index of predation in
herring models. In addition to the aforementioned
models with normally distributed errors, we addition-
ally fit both the null (i.e. random variation around the
mean) and simple production model (i.e. no covari-
ates) using autocorrelated residuals (i.e. εt = ϕ ·εt –1

+ vt) where ϕ represents the degree of temporal auto-
correlation and vt is an independently and normally
distributed random variable (i.e. vt ~N [0,σ2]).

We fit all models to the data by minimizing the neg-
ative log-likelihood using the optim() or lm() func-
tions of the R statistical system (R Development Core
Team 2010; www.r-project.org); a penalized likeli-
hood was used to constrain K (and subsequently
BMSY) within reasonable bounds (i.e. 0 < K < 40) for
models that failed to converge on biologically realis-
tic parameter estimates (e.g. Collie & DeLong 1999).
We then ranked candidate models using Akaike’s
information criterion corrected for small sample sizes
(AICc; Burnham & Anderson 2002). We expect that
most species will exhibit some degree of autocorrela-
tion in errors of surplus production. However, because
our objective is to use a comparative approach to
evaluate the rela tive effect of including environ -
mental covariates on emergent biological reference
points from surplus production models (rather than
find the best fitting model for each system per se), we
choose to only include models with independent
errors in model averaged parameter estimates. We
recognize that for systems where cod or herring
exhibit a high degree of autocorrelation, these
may not be the top selected models. For all models
with independent, normally distributed errors (i.e. not
autocorrelated), we used the Akaike weight (Wi) of
each model (i) to find a 95% confidence set of models
(i.e. the subset of top-ranked models whose Akaike
weights together comprise 95% of the total). Vari-
able weights (W+(j)), which measure the explanatory
power of each predictor variable (j), were calculated

by summing the normalized Akaike weights (Wi’) of
all models in the 95% subset in which that variable
appeared. We also calculated model averaged esti-
mates (

–̂βj) for each parameter across all models by
summing the product of the normalized model
Akaike weights and parameter coefficient values
(β̂i,j) for each model across all models (R) in the 95%
subset (Burnham & Anderson 2002) such that:

(3)

The weighted unconditional variance estimator for
the same model averaged parameter is then given
by:

(4)

where 
–̂βj is the averaged parameter estimate from

Eq. (3) and var(
–̂βi,j |gi) is the variance in 

–̂βj conditional
on model gi. We similarly calculated the model-aver-
aged mean response and unconditional variance of
the response variable by replacing β in Eqs. (3) & (4)
with estimated surplus production (ASPi) from each
model in the 95% subset. The unconditional variance
was used to construct 95% confidence intervals
around the model-averaged mean response assum-
ing that the variable was normally distributed. Lastly,
we calculated MSY and BMSY reference points for
ecosystem- and species-specific models using model
averaged parameter values for r and K as:

(5)

(6)

RESULTS

Biomass and catch time series displayed consider-
able variability within and across ecosystems for
each species (Fig. 1). In general, herring biomass was
higher and more variable than cod biomass; across
ecosystems, coefficients of variation (i.e. standard
deviation/mean; CV) for herring biomass before
Kalman filtering averaged 80.9% whereas cod CVs
were 63.5%. Similarly, overall regional mean herring
biomass across years ranged from 0.02 to 22.58 t
km−2, while average cod biomass ranged from 0.03 to
7.94 t km−2. In 5 of the 13 ecosystems we examined
(BALT, EBS, GoA, HS, and WSS; see Table 1 for ab -
breviations), herring and cod exhibited similar tem-
poral trends in biomass (mean Pearson’s correlation
coefficient of 0.76), whereas in the remaining eco -
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systems, patterns of cod and herring biomass were
decoupled, or in the case of GoM and NORT, nega-
tively correlated (correlation coefficients of −0.52 and
−0.70, respectively; Fig. 1).

ASP dynamics within ecosystems were also more
variable for herring than cod (mean CV values of
5.6 and 2.8, respectively), and exhibited a wider
range of average levels across ecosystems (ranges of

−1.47 to 5.69 and −0.56 to 2.56 t km−2, for herring
and cod, respectively; Fig. 2). Pacific cod exhibited
lower mean surplus production rates (0.2 ± 0.1 t km−2)
than Atlantic cod in the ecosystems we examined
(0.44 ± 0.11 t km−2), but there were no clear dif -
ferences in ASP for herring from Atlantic or Pacific
ecosystems (0.79 ± 0.15 and 0.37± 0.34 t km−2,
respectively).

236

Fig. 2. Observed annual surplus production values (ASP; points) for herring and cod from each ecosystem. Solid lines: model
averaged predicted values from top AICc selected models. Shading: 95% confidence intervals; numerical values: R2 values 

for model fits. See Table 1 for ecosystem abbreviations
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We were able to achieve credible fits to Schaefer
production models for 12 of the 13 ecosystems for her-
ring, and 9 of 13 ecosystems for cod; GB herring, and
NL and WSS cod production dynamics were not well
described by the Schaefer production model (Fig. 3).
Furthermore, parameter estimates for EBS cod surplus

production should be considered cautiously as the
 estimate for K was near the upper limit set by the pe-
nalized likelihood (i.e. ~40). Lastly, although the esti-
mate of K for cod from BALT was substantially below
the upper limit, it is still well outside the range of the
data and should also be considered cautiously.

237

Fig. 3. Observed annual surplus production (ASP) and biomass (t km−2) of herring and cod species from each ecosystem (gray
arrows; ‘ASP’); m: first year in each time series. Predicted ASP values from averaged parameter estimates of top AICc selected
models (thin black lines; ‘Mean + cov’), estimates of ASP curves from models without covariates (dashed ‘No cov.’), and ASP
curves from covariate models under mean environmental conditions (thick black lines; ‘Mean’) are also shown. See Table 1 for 

ecosystem abbreviations
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Although, temporal autocorrelation in surplus pro-
duction was strong for both species from most
ecosystems (ϕ > 0.2; Table 2), ecological covariates
appeared to explain a large portion of the observed
autocorrelation; in approximately 40% of the ecosys-
tems we analyzed, AICc selected one or more models
with ecological covariates above the simple Schaefer
model with autocorrelation (Table 3). That said, we
did not find overwhelming support for one specific
model with covariates; for most ecosystems there
were multiple models that equally explained surplus
production for cod or herring species (Table 3).
Model-averaged parameter weights and coefficient
values indicated that temperature was an important
predictor of ASP dynamics, especially for herring (i.e.
values were often non-zero; Tables 2 & 4), but the
direction of the effect was species- and system-
dependent (Fig. 4). For herring, positive anomalies in
sea surface temperature were positively correlated

with surplus production in WSS, NS, GoM and HS
ecosystems, whereas herring production was signifi-
cantly reduced during warm conditions in NORT and
BS (Fig. 4). For cod, positive anomalies in annual sea-
surface temperatures were associated with marginal
declines in ASP in most ecosystems; this was most
notable in GoA and GoM (Fig. 4). Average parameter
weights and coefficient values for terms representing
variability in wind and atmospheric indices indicated
that both were important predictors of ASP dynamics
(i.e. values were often non-zero; Table 4 & Fig. 4,
respectively), yet these factors had mixed effects on
herring and cod production, and confidence intervals
of mean parameter estimates frequently overlapped
zero (Table 2).

We found some evidence of bottom-up or facilita-
tive processes between herring and cod. In roughly a
third of the ecosystems we examined, mean parame-
ter weights for the effect of herring (lagged by 1 yr)

238

(A) Herring
Ecosystem BMSY MSY T Wind speed PDO/NAO Cod ϕ r K

BALT 8.39 (3.59) 1.11 (0.07) 0.11 (0.06) NA 0.09 (0.05) 0.04 (0.04) 0.04 (0.08) 0.26 (0.04) 16.78 (7.18)0
BS 2.01 (1.76) 0.12 (0.06) –0.08 (0.04)0 –0.02 (0.02)0 0.02 (0.02) –0.02 (0.02)0 0.41 (0.08) 0.12 (0.07) 4.02 (3.52)
EBS 0.21 (0.23) 0.05 (0.03) 0 0 0 0.03 (0.02) 0.29 (0.08) 0.48 (0.26) 0.42 (0.46)
GB 20.0 (1.00) 2.56 (1.14) –0.04 (0.04)0 0 (0.01) 0.11 (0.06) 0.04 (0.04) 0.20 (0.08) 0.26 (2.28) 40.0 (2.00)
GoA 0.26 (0.21) 0.03 (0.01) 0 –0.02 (0.01)0 0 0.03 (0.01) 0.08 (0.11) 0.23 (0.10) 0.52 (0.42)
GoM 3.75 (2.04) 0.92 (0.07) 0.05 (0.04) 0 (0.01) 0.01 (0.02) 0.03 (0.03) 0.09 (0.07) 0.49 (0.07) 7.5 (4.08)
HS 8.44 (3.35) 1.44 (0.19) 0.04 (0.05) 0.05 (0.06) –0.19 (0.13)00 –0.24 (0.14)0 0.28 (0.07) 0.34 (0.11) 16.88 (6.70)0
NORT 3.32 (1.87) 1.15 (0.07) –0.12 (0.06)0 NA 0 (0.02) 0.02 (0.03) 0.44 (0.08) 0.69 (0.07) 6.64 (3.74)
NS 11.05 (8.28)0 1.28 (0.23) 0.16 (0.12) –0.06 (0.07)0 0.05 (0.06) NA 0.25 (0.07) 0.23 (0.06) 22.1 (16.56)
sGoSL 9.04 (5.89) 2.21 (0.11) 0.01 (0.02) 0.04 (0.04) –0.17 (0.07)0 0.01 (0.02) 0.31 (0.08) 0.49 (0.04) 18.08 (11.78)
WSS 10.86 (5.84)0 1.97 (0.22) 0.41 (0.20) 0.15 (0.12) –0.04 (0.06)0 0.18 (0.15) 0.43 (0.09) 0.36 (0.08) 21.72 (11.68)

(B) Cod
Ecosystem BMSY MSY T Wind speed PDO/NAO Herringt−1 ϕ r K

BALT 6.15 (1.74) 1.53 (0.09) 0 (0.01) NA −0.01 (0.02)0 0.02 (0.02) 0.41 (0.07) 0.5 (0.1) 12.3 (3.48)
BS 4.97 (2.60) 1.44 (0.07) 0.02 (0.02) 0.03 (0.03) 0 (0.01) 0.03 (0.03) 0.15 (0.06) 0.58 (0.05) 9.94 (5.20)
EBS 20.0 (1.00) 1.12 (1.08) −0.01 (0.01)0 0 (0.01) 0.01 (0.01) −0.29 (0.03)0 0.87 (0.23) 0.11 (2.16) 40.0 (2.00)
ESS 1.8 (0.98) 0.61 (0.07) −0.03 (0.03)0 0.02 (0.03) −0.03 (0.03)0 NA 0.24 (0.07) 0.68 (0.14) 3.60 (1.96)
GB 1.99 (1.19) 0.43 (0.04) 0 (0.01) −0.05 (0.02)0 0.04 (0.02) −0.01 (0.01)0 0.26 (0.07) 0.43 (0.07) 3.98 (2.38)
GoA 1.44 (1.00) 0.27 (0.06) −0.05 (0.02)0 −0.01 (0.01)0 −0.01 (0.01)0 −0.02 (0.02)0 0.99 (0.60) 0.38 (0.12) 2.88 (2.00)
GoM 0.92 (0.59) 0.23 (0.04) −0.05 (0.02)0 0 0 (0.01) −0.01 (0.01)0 0.28 (0.07) 0.50 (0.14) 1.84 (1.18)
HS 0.39 (0.64) 0.04 (0.06) −0.02 (0.02)0 0 (0.01) 0.01 (0.01) 0.03 (0.03) 0.21 (0.13) 0.21 (0.19) 0.78 (1.28)
NL 19.2 (3.29) 1.10 (2.28) 0.01 (0.01) 0.06 (0.04) −0.02 (0.02)0 NA 0.21 (0.09) 0.11 (1.39) 38.4 (6.58)
NORT 1.13 (0.39) 0.54 (0.03) −0.02 (0.02)0 NA 0 (0.01) −0.02 (0.02)0 0.31 (0.07) 0.96 (0.15) 2.26 (0.78)
sGoSL 3.71 (2.29) 0.66 (0.14) −0.03 (0.04)0 0.02 (0.03) −0.1 (0.07) −0.02 (0.03)0 0.23 (0.09) 0.36 (0.12) 7.42 (4.58)
WSS 19.86 (1.46)0 6.76 (1.47) 0 0 0 0.03 (0.01) 0.71 (0.1)0 0.68 (2.01) 39.72 (2.92)0

Table 2. Model-averaged parameter values for (A) herring and (B) cod from each ecosystem (excluding models with autocorrelation). Note
that values have not been standardized to mean biomass for each species from each ecosystem. Parentheses: unconditional standard error for
each average parameter value. Bold: significant para meter values (i.e. estimate interval does not overlap zero). Italics: ecosystems where sur-
plus models converged on the upper limit for K (40) and that should be considered cautiously. B: biomass; MSY: maximum sustainable yield;
T: sea surface temperature; PDO/NAO: Pacific Decadal Oscillation or North Atlantic Oscillation index, given as applicable; cod: biomass of
cod; herringt–1: biomass of herring in the previous year; ϕ: degree of temporal autocorrelation; r: maximum annual per-biomass rate of popula-
tion increase; K: equilibrium population biomass in the absence of fishing; NA: data not available. See Table 1 for ecosystem abbreviations
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on cod, or cod on herring (in the same year), were
greater than 0.5, indicating models with terms for
trophodynamic covariates comprised more than 50%
of the cumulative AICc model weights from each
ecosystem (Table 4). In BALT, BS, and HS, increased
biomass of herring was associated with slight in -
creases in cod ASP the following year, whereas in
EBS, GB, GoM, and sGoSL, and NORT, cod ASP was
negatively correlated with herring biomass in the
previous year (Fig. 4). However, in most ecosystems,
parameter estimates indicate a weak effect of herring
biomass in a previous year on cod ASP, since model
averaged parameter intervals often overlapped zero
(except for EBS and WSS, which should be consid-
ered cautiously; Table 2). In contrast, cod biomass
was an important predictor of herring surplus pro-
duction in the same year, especially in EBS, GoA, HS
and WSS (Table 2), but somewhat unexpectedly was
positivity correlated with ASP in most systems except
HS and BS (Fig. 4).

Across ecosystems, there were associations between
mean MSY corrected for biomass and biophysical
 attributes. Mean estimated MSY values for herring
were largest in the warmest systems in our study, but
colder systems on average exhibited slightly higher
estimates of MSY for cod (Fig. 5a). Mean MSY esti-
mates for both species were negatively correlated with
mean wind speed across systems, although the pattern
was considerably stronger for herring than for cod
(Fig. 5b). Finally, mean MSY estimates were differ-
ently correlated with the average biomass of preda-
tor or prey species; estimated herring MSY values
were lower in systems with high mean cod biomass,
whereas estimated cod MSY values were higher in
systems with higher mean herring biomass (Fig. 5c,d).

Model-averaged estimates of biological reference
points varied across ecosystems and species. MSY for
both species were always less than 2.5 t km−2, with
estimates generally higher for herring than for cod
(mean of 0.9 and 0.4 t km−2, respectively). MSY for
herring from EBS, BS, and GoA had low values of
MSY (0.03 to 0.07 t km−2) as compared to the remain-
ing ecosystems where MSY estimates were an order
of magnitude larger (0.92 to 2.2 t km−2), although
 differences were much smaller when values were
standardized by mean ecosystem biomass. MSY and
BMSY of cod ranged between 0.2 and 1.5 t km–2 and
0.5 and 6.2 t km−2, respectively, and were highest for
BALT and lowest for HS (Fig. 6). Similarly, BMSY was
lowest for EBS, BS, and GoA (1.4 to 2.2 t km−2) and
highest for sGoSL, and generally ranged between 3.3
and 10.9 t km−2. Maximum population growth rate (r)
ranged between 0.12 and 0.96 and was relatively
constant across ecosystems and species (mean =
0.44 ± 0.05; Fig. 6).

Estimated MSY was robust to changes in model
formulation; including physical or trophic covariates
in surplus production models either had little effect
on MSY or resulted in lower estimates of MSY than
those of models without covariates (Fig. 6). This may
be due to the mitigating effects of r, which were more
sensitive to inclusion of covariates and exhibited
regional and species-specific estimates of r (i.e. both
positive and negative deviations from no-covariate
models; Fig 6). Lastly, surplus production models
with biophysical or trophic covariates had different
effects on estimated BMSY. Inclusion of physical co -
variates sometimes resulted in less conservative,
slightly higher estimates of BMSY than models without
covariates. In contrast, surplus production models
containing trophic covariates generally resulted in
lower or unchanged estimates of BMSY values as com-
pared to models without covariates (Fig. 6).
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(A) Herring
Ecosystem r K T Wind PDO/NAO Cod

BALT 1.00 1.00 0.76 0.00 0.77 0.39
BS 0.93 0.93 0.72 0.37 0.28 0.34
EBS 0.78 0.78 0.16 0.18 0.14 0.56
GB 1.00 1.00 0.41 0.17 0.76 0.41
GoA 1.00 1.00 0.21 0.91 0.38 0.73
GoM 1.00 1.00 0.51 0.18 0.27 0.39
HS 1.00 1.00 0.29 0.32 0.63 0.73
NORT 1.00 1.00 0.80 0.00 0.22 0.29
NS 1.00 1.00 0.56 0.34 0.33 0.00
sGoSL 1.00 1.00 0.24 0.36 0.90 0.20
WSS 1.00 1.00 0.81 0.46 0.24 0.48
Mean 0.97 0.97 0.5 0.3 0.45 0.41

(B) Cod
Ecosystem r K T Wind PDO/NAO Herringt−1

BALT 1.00 1.00 0.19 0.00 0.32 0.31
BS 1.00 1.00 0.28 0.37 0.21 0.38
EBS 1.00 1.00 0.25 0.16 0.19 1.00
ESS 1.00 1.00 0.38 0.34 0.39 0.00
GB 1.00 1.00 0.24 0.77 0.66 0.38
GoA 1.00 1.00 0.80 0.32 0.35 0.46
GoM 0.94 0.94 0.88 0.19 0.19 0.42
HS 0.65 0.65 0.26 0.08 0.14 0.24
NL 0.96 0.96 0.19 0.49 0.29 0.00
NORT 1.00 1.00 0.50 0.00 0.25 0.55
sGoSL 0.98 0.98 0.29 0.27 0.58 0.23
WSS 1.00 1.00 0.19 0.19 0.21 0.85
Mean 0.96 0.96 0.37 0.26 0.32 0.4

Table 4. Average surplus production parameter AICc weights
for (A) herring and (B) cod. Bold: overall regional means.
 Italics: ecosystems where surplus models converged on the up-
per limit for K (40) and should be considered cautiously. Wind =
wind speed. See Table 1 for ecosystem abbreviations and Table 

2 for column heading abbreviations
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DISCUSSION

We conducted a cross-ecosystem comparative ana -
lyses to (1) identify whether inter-annual production
dynamics are consistently predicted by particular
biophysical variables, (2) relate mean production
 levels to ecosystem attributes, and (3) derive and

compare biological reference points. We suggest 2
findings of our ana lyses are of note. First, biophysical
and trophodynamic models commonly improved
model fits: production models with biophysical and
trophodynamic covariates were often preferred over
simple models in most ecosystems. Especially for her-
ring, inclusion of covariates partially accounted for
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Fig. 4. Ecosystem-specific mean parameter estimates from top AICc selected models for herring and cod. Data are staggered for
visual purposes and standardized to mean biomass for each species from each ecosystem. See Tables 1 & 2 for abbreviations
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annual variation in auto-correlated errors that typi-
fied ASP. Yet, despite considerable inter-annual vari-
ability in ASP, no biophysical variables were consis-
tently important in predicting production dynamics
across ecosystems. Often individual parameters had
different and even opposite effects on predicted ASP
for either species from various ecosystems.

Second, inclusion of covariates into production
models had species- and ecosystem-specific effects
on resultant biological reference points (i.e. MSY and
BMSY) that reflect regional influences of biophysical
or trophodynamic processes on species production.
Although BMSY and r estimates  varied between mod-
els with and without covariates, estimates of MSY
remained relatively unchanged. This is similar to
previous studies that found MSY to be robust to
changes in bottom-up drivers while biological refer-
ence points including MSY were lower if predation
was accounted for in production models (i.e. Collie &
Gislason 2001, Tyrrell et al. 2011). In contrast, inclu-
sion of covariates did not universally result in more
conservative estimates of r or BMSY, nor did they
always differ from parameters estimated from models
without biophysical covariates. That said, when dif-
ferences were observed in models for either species,

trophic covariates generally lowered BMSY,
whereas physical covariates slightly raised
BMSY from the baseline estimated from
 models with no covariates. Differences in
biological reference point estimates gener-
ally were larger when surplus production
rates were highly correlated with biophysi-
cal covariates. Thus, inclusion of covariates
should influence estimates of MSY and
BMSY accordingly for species in regions
where production is highly responsive and
tightly coupled to measured ecosystem pro-
cesses.

Surplus production models are simple,
computationally efficient methods to derive
key population dynamic parameters from
time series of population biomass indices
(Schnute & Richards 2002). Our surplus pro-
duction model fits were greatly improved
by application of a Kalman filter to the input
data prior to production modeling to smooth
out observation error in relative abundance.
Although not a common practice in many
stock assessments, our analyses suggest that
prior data smoothing can stabilize resultant
estimates. Similarly, Walters & Hilborn
(2005) used a simple smoother of relative
abundance to stabilize estimates of recruit-

ment and also recommend their use in assessment
more generally. However, such filtering is not a
panacea. For example, filtering the herring biomass
data for GB may have removed contrast in biomass
and ASP needed to parameterize the model. Kalman-
filtered biomass and surplus production values for
GB are restricted to the domain of the ascending limb
of the production function, which is consistent with
observations that the stock was heavily depressed
during much of the time series we analyzed (Melvin
& Stephenson 2007). Yet, specific additional outliers
need to be removed (requiring additional information
beyond the scope of this study), or further recovery of
the stock is needed in order to fit to the parabolic pro-
duction curve of the Schaefer model. Conversely,
non-stationarity in GB ecosystem processes driving
surplus production may render divergent biological
reference points for historical and contemporary
abundances, a feature that simple production models
with equilibrium assumptions are unable to capture
(Walters et al. 2008). Similarly, lack of contrast and
non-stationarity precluded our ability to fit produc-
tion models to 4 of 13 cod stocks (i.e. WSS, NL and
EBS, and to a lesser degree BALT). In particular, the
data time series of population production from EBS
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Fig. 5. Maximum sustainable yield (MSY) of cod (black) or herring (gray)
species from each ecosystem as a function of mean environmental and
 biological parameters: (a) sea-surface temperature (T), (b) wind speed, (c)
herring predator (cod biomass), and (d) cod prey (herring biomass). Val-
ues in brackets: adjusted R2 values of the lines (grey: herring, black: cod). 

See Table 1 for ecosystem abbreviations
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and NL were indicative of non-stationary production,
leading to clockwise cycles of production and bio-
mass that are not well explained by the Schaefer pro-
duction model with stationary model parameters
(Walters et al. 2008).

Even within the same ocean basin, variation in PDO
and NAO indices are often associated with regional
and species-specific changes in ecosystem structure.
For example, positive PDO values are often corre-
lated with below average ocean conditions (e.g. in -
creased predation risk, decreased upwelling, reduced
food supply; Emmett et al. 2006) in the northern Cali -

fornia current and above average conditions for
salmon in Alaska (Mantua et al. 1997). We also found
species- and ecosystem-specific associations between
ASP and atmospheric indices. Specifically, produc-
tion dynamics of herring were more frequently cou-
pled with atmospheric indices of ecosystem produc-
tion than those of cod; slight changes in PDO or NAO
indices were associated with measurable changes in
ASP of herring species from BALT, HS and sGoSL,
but only appreciably impacted estimated ASP of cod
from GB (i.e. GB was the only ecosystem where aver-
age parameter confidence limits for NAO did not
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Fig. 6. Estimated values for maximum sustainable yield (MSY), biomass at MSY (BMSY), and population growth rate (r) for
 herring (light gray) and cod (dark gray) species from 13 focal ecosystems. Shaded bars: estimated values from models without
covariates (±1 SE), symbols: individual model values from the top AICc selected models with physical (s) and/or trophic 

covariates (×). NA: data not available. See Table 1 for ecosystem abbreviations
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overlap zero). Similarly, biophysical covariates, par-
ticularly sea surface temperature and wind indices
were more influential in models for herring species
than cod species, as evidenced by mean parameter
values and weights. In part, this may result from
divergent life-history traits; herring are highly fe -
cund and shorter-lived than cod and experience
 fluctuations in biomass that can vary by orders of
magnitude with changes in environmental conditions
(Nash & Dickey-Collas 2005). In contrast, cod pro-
duction integrates long-term trends in regional con-
ditions and may lag one to many years behind
ecosystem changes (e.g. Brodziak & O’Brien 2005).

Our results also support efforts to include trophic
interactions in surplus production models (i.e. Collie
& DeLong 1999, Gamble & Link 2009); for most
ecosystems, models with covariates for cod or herring
biomass ranked highly with AICc, although the direc-
tion of species covariate effects was sometimes unex-
pected. We anticipated that cod production would be
positively correlated with herring production since
herring are often found in the diets of adult cod (Link
& Garrison 2002). Yet, while cod pro duction was
lower when herring biomass was also depressed in
some ecosystems (i.e. BALT, BS), in others, particu-
larly EBS, cod production was negatively correlated
with herring production in the previous year. This
may result from disparate juvenile cod and adult her-
ring survival responses to environmental conditions,
juvenile cod competition with herring for mutual
prey resources, increased mortality from aggregation
of mutual predators, or even direct predation mortal-
ity (Fauchald 2010).

Systems with strong negative correlations may also
represent cultivation-depensation processes (Walters
& Kitchell 2001). According to this hypothesis, domi-
nant predator fishes (i.e. cod) prey on forage fish spe-
cies (i.e. herring), which in turn compete with larval
and juvenile age classes of the predator, indirectly
increasing recruitment success in subsequent years.
If harvest reduces predator biomass below some crit-
ical threshold, depensation may occur as forage fish
populations are released from predatory control and
increasingly prey upon or compete with juvenile
predators for mutual resources. We find some evi-
dence of cultivation-depensation in 3 systems in par-
ticular (NORT, GoM, and sGoSL) and possibly GB
and EBS. In these systems, herring biomass and ASP
increased over time, coincident to low cod biomass
and ASP that persisted even after harvest pressure
on that species was reduced or eliminated. Addi-
tional analyses are needed to evaluate mechanisms
driving this potentially important relationship.

The 13 systems we examined spanned a wide
range of ecosystem properties from 2 ocean basins.
MSY estimates did not differ by ocean basin, nor
were they related to area, average depth or annual
average primary production. However, MSY esti-
mates (corrected for mean biomass for each species
from each ecosystem) were related to average sea
surface temperature for a number of systems, even
though parameter  values were not large. This sug-
gests that large-scale climatic events (i.e. regime
shifts, climate change) that induce significant warm-
ing of shallow surface waters will also be associated
with changes in production of these 2 species. Our
results suggest generally that herring production in
these ecosystems should increase as ecosystems
warm, whereas cod production should decline. Addi-
tionally, one might expect that as biophysical condi-
tions change, populations may shift their distribu-
tions to track centers of production (Nye et al. 2009),
potentially affecting spatial patterns of abundance
and estimates of surplus production.

Although we found consistent evidence for the im-
portance of including biophysical and tropho dynamic
covariates in production models, their inclusion did
not appear to result in a consistent effect on resultant
biological reference points. This finding has implica-
tions for management advice. Increasingly, analysts
are asked to provide estimates of the uncertainty
 associated with biological reference points. Typically,
biophysical and trophodynamic considerations are
viewed as factors that increase observation error in
input data. Our results suggest the contrary, namely
that biophysical and trophodynamic covariates can
be important sources of process error, and that failure
to incorporate their effects can lead to underestimates
of the uncertainty in biological reference points.

In summary, we found that inclusion of ecological
covariates can strengthen the fit of common produc-
tion models to surplus production data and help cap-
ture some of the dynamic error that is associated with
highly correlated production rates observed in some
ecosystems. Yet, despite similarities across the sys-
tems we examined, no single covariate was univer-
sally selected by AIC and the relative influence of an
ecological covariate was system dependent, even
when parameters were corrected for variability in
biomass. This suggests that the potential benefit of
including ecological covariates in surplus production
models is species- and system-dependent, and high-
lights the importance of selecting biophysical and
trophodynamic covariates for a region and species
that have strong mechanistic underpinnings and
reflect true variation in production rates.
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INTRODUCTION

The Gulf of Maine is a semi-enclosed continental
shelf sea delimited on its seaward boundary by
Georges Bank and on its landward margins by bor-
dering sections of the US states of Massachusetts,
New Hampshire, and Maine and the Canadian
provinces of New Brunswick and Nova Scotia (Fig. 1).
The system is characterized by an extremely complex
topography, reflecting its recent glacial history. Three
major deep basins and over 20 smaller basins occur

within the Gulf. Two ledge-bank systems within the
Gulf, Stellwagen Bank and Jeffries Ledge, are histori-
cally important fishing grounds. Stell wagen Bank is
now a designated National Ma rine Sanctuary. The
rich mosaic of sediment types associated with these
features results in high habitat diversity in the
system. The deep Northeast Channel (Fig. 1) provides
a major pathway for inflow of  nutrient-rich con ti nen -
tal slope water into the Gulf. These physical charac-
teristics collectively contribute to a diverse and pro-
ductive fauna.
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Fisheries within the Gulf, capitalizing on this pro-
ductivity, were among the earliest maritime indus-
tries established following European settlement in
the region over 400 yr ago (Lear 1998, Bolster 2008).
For example, fisheries on Stellwagen Bank can be
traced to the turn of the 17th century (Rosenberg &
Claesson 2008), and fishing remains a major industry
in the Gulf. The lobster fishery in particular is among
the most valuable in the nation. The ecological struc-
ture of the Gulf of Maine has been altered radically
by centuries of fishing and other human activities
(Apollonio 2002). The decimation of populations of
large whales, the sequential depletion of fish popula-
tions such as sturgeon (Acipenser spp.) and halibut
Hippoglossus hippoglossus that have not recovered,
and the impacts on diadromous species through
obstruction of river systems have fundamentally
changed the structure and productivity patterns in
the Gulf.

We assessed the recent dynamics of an economi-
cally important assemblage of 12 demersal fish spe-

cies in the Gulf of Maine using aggre-
gate-species production models.
These species are taken together in a
mixed-species trawl fishery. Our
objective was to capitalize on the
greater stability and predictability of
aggregate system properties using
simple and robust models to estimate
community-level biological reference
points and to compare these results
with comparable single-species model
results. The aggregate-species mod-
els implicitly account for interspecific
interactions among species in the as -
sem blage. They can also readily
accommodate environmental and cli-
mate forcing in an analytically
tractable setting (Mueter & Megrey
2006). Brown et al. (1976) provided
one of the earliest demonstrations of
the value of this general approach.
For the Northeast US Continental
Shelf Large Marine Ecosystem (NES
LME) as a whole, an aggregate multi-
species model provided more conser-
vative biological reference points
(total system maximum sustainable
yield, MSY) relative to the sum of sin-
gle-species MSY estimates (Brown et
al. 1976). Ralston & Polovina (1982)
showed that aggregate-species pro-
duction models can outperform com-

parable models focused on higher levels of taxo-
nomic resolution in the Hawaiian longline fishery.
Sparholt & Cook (2009) recently applied an aggre-
gate production model approach to 5 Northeast
Atlantic fish stocks and concluded that suitable bio-
logical reference points could be derived for this spe-
cies complex in a combined-species analysis.

Tradeoffs inevitably arise in the balance of mecha-
nistic detail and parameter uncertainty in models of
multispecies systems. Aggregate production models
provide one potentially effective approach to coping
with the issues that emerge with increasing model
complexity (Sugihara 1984). These simple models
nonetheless must be carefully evaluated and the
potential for adverse effects on low productivity
stocks assessed (Gaichas et al. 2012). Vulnerable spe-
cies (so-called weak-link stocks) will require special
consideration in any management regime, and it will
be particularly important to include appropriate safe-
guards in systems based on aggregate production
dynamics.
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Fig. 1. Gulf of Maine, showing major basin systems, the position of the North-
east Channel, and the location of Georges Bank. The inset shows the location 

of the Gulf of Maine (boxed area) in the Northwest Atlantic
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METHODS

Catches and abundance estimates were assembled
for 12 economically important demersal fish stocks in
Gulf of Maine (GOM) for the period 1964 to 2007
(Table 1). Species selected for analysis comprise
dominant components of the GOM otter trawl fishery
(Lucey & Fogarty in press). Landings data were com-
piled for each species from the Northeast Fisheries
Science Center (NEFSC) commercial fishery statis-
tics data base. We used NEFSC autumn research sur-
vey estimates (stratified mean catch in kg tow−1) for
the GOM, adjusted for catchability to the survey gear
(Brodziak et al. 2004) and the area swept by the
trawl, to generate total biomass estimates (see also
Link et al. 2006). Approximately 75 stations are occu-
pied in the GOM in each survey, and the modal coef-
ficient of the estimates for the species included in this
analysis is 30%. Biomass estimates for each stock
were summed to produce an aggregate estimate for
the 12-species complex.

These aggregate estimates of biomass and land-
ings were then used as primary inputs in a quadratic
surplus production model. The basic approach fol-
lowed the methods described by Jacobson et al.
(2002) and Mueter & Megrey (2006). We based our
analysis on a discrete-time version of the simple
logistic production model:

(1)

where α is the intrinsic rate of increase, β is a density-
dependent term, α, β > 0, Bt is the aggregate annual
biomass at time t, and εt is a normally distributed ran-
dom variable with mean 0 and constant variance.
Following Mueter & Megrey (2006), 
By definition, the annual surplus production in year t

(ASPt) is the change in biomass from year t to year
t+1 plus the catch in year t (e.g. Quinn & Deriso
1999).

We can rearrange Eq. (1) to give:

(2)

The MSY is given by:

(3)

The corresponding proportional fishing mortality
at MSY is:

(4)

representing the annual proportion of the population
removed by harvesting. Finally, the biomass level at
MSY is given by:

(5)

The parameters α and β were estimated by the
method of maximum likelihood using a process-error
model. We evaluated variability in the estimates of
the biological reference points using a nonparametric
bootstrap routine with 1000 replicates to generate
probability distributions for each reference point. Be-
cause of the time series nature of the data, we em-
ployed a moving blocks bootstrap procedure (Efron &
Tibshirani 1994). The series was divided into intervals
(blocks) of 3 yr, and we randomly selected a selection
of these blocks rather than individual observations for
each of the 1000 iterations of the bootstrap.

Contrast with single-species models

For comparison, biological reference points were
also derived for each of the individual stocks using
single-species production models employing the
same methods used for the aggregate-species model.
We then compared the summed single-species
results with those for the base case aggregate model.
We also compared the single-species surplus produc-
tion model results with biological reference points
reported in the comprehensive Groundfish Assess-
ment Review Meeting (GARM) report (NEFSC 2008)
and additional analyses for hake species. A wide
range of model types was used in the GARM analy-
ses, and the selection of reference points differed
substantially from the surplus production model
analysis. Models and analytical approaches for indi-
vidual species in the GARM included age- and size-
structured models and index-based analyses draw-
ing on survey (and in some cases catch) information.
The GARM analyses had a principal focus on main-
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Species                                                  Common name

Gadus morhua                                     Atlantic cod
Melanogrammus aeglefinus               Haddock
Merluccius bilinearis                           Silver hake
Urophycis tenuis                                  White hake
Urophycis chuss                                   Red hake
Pollachius virens                                  Pollock
Limanda ferruginea                             Yellowtail flounder
Pseudopleuronectes americanus        Winter flounder
Hippoglossoides platessoides             American plaice
Glyptocephalus cynoglossus               Witch flounder
Lophius americanus                            Monkfish
Sebastes fasciatus                                Redfish

Table 1. Demersal teleost species included in the Gulf of 
Maine assemblage considered in this analysis
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taining target levels of spawning stock biomass and
specifying corresponding fishing mortality rates
using spawning-biomass-per-recruit analyses. For
index-based assessments, we expanded survey
catch-per-tow estimates to total biomass using the
area-swept and survey catchability approach de -
scribed above. Once placed on an absolute scale,
these reference points could then be compared with
the production model results. Again, because the
basis for selecting and estimating reference levels
differed markedly from the production model ap -
proach, the GARM results are intended only to pro-
vide a general point of comparison and to test for
concordance and directionality of overall results.

Environmental effects

We examined the potential effect of environmental
or  climate-related factors on surplus production in this
system. The covariates used were the Atlantic Multi-
decadal Oscillation (AMO) index, the winter (Decem-
ber to February) North Atlantic Oscillation (NAO)
index, and the Extended Reconstructed Sea Surface
Temperature (ERSST) index for the Northeastern US.
Both the NAO and AMO are basin-wide indicators.
The AMO index is based on spatial patterns in SST
variability after removing the effects of anthropogenic
forcing on temperature (Enfield et al. 2001). The NAO
is the dominant mode of climate variability over the
North Atlantic Basin (Hurrell 1995) and is known to

exert important ecosystem effects (Stenseth et al.
2002). The broad-scale ERSST series is based on a
comprehensive analysis of long-term temperature
records obtained from ships-of-opportunity (Smith &
Reynolds 2003, 2004). In each case, we converted the
observations to standard normal deviates with 0 mean
and unit standard deviation.

To examine candidate lags to be included in the
analysis, we first examined the cross-correlation
structure (Box & Jenkins 1976) for ASP and each of
the environmental covariates. Following identifica-
tion of candidate environmental variables and lags,
we incorporated these metrics in an extended pro-
duction model:

(6)

where δj is a coefficient for the effect of the jth covari-
ate, Xj,t-τ is the value of covariate j at lag τ , and all
other terms are defined as before. All candidate mod-
els were compared using the Akaike Information Cri-
terion (AIC; Akaike 1992) to test whether the fit with
environmental covariates performed better than the
base case (Eq. 2). We used the corrected AICc to
adjust for sample size effects:

(7)

where L is the likelihood estimate, K is the number of
parameters estimated, and n is the number of obser-
vations (Burnham & Anderson 1998).

RESULTS

Aggregate biomass of the 12-
 species complex de clined through the
mid-1990s but has since in creased,
nearly recovering to the levels at the
start of the survey time series (Fig. 2).
Substantial changes in relative spe-
cies composition are again evident
throughout the series with important
changes in the abundance of key spe-
cies such as cod, haddock, and red-
fish. The coefficient of variation of the
aggregate biomass series (30.5%)
was substantially lower than that of
the individual species, which ranged
from 50.0 to 87.6% (mean 64.8%).
The greater relative precision of the
combined series is a potential advan-
tage of dealing with aggregate data.
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Fig. 2. Biomass (kt) of selected demersal fish species for the Gulf of Maine 
during 1964 to 2007



Fogarty et al.: Production models for demersal fisheries

Total aggregate catch of the demersal species com-
plex declined steadily during 1964 to 2007. The rela-
tive species composition of the catch has varied con-
siderably over time (Fig. 3). In particular, red hake
was dominant in the first decade of the series. Sharp
declines in red hake catch in this initial period ac-
counted for the overall drop in the total catch from just
under 250 kt in 1964 to a low of ~20 kt in 2007 (Fig. 3).
The coefficient of variation of the individual catch se-
ries was again higher than for the aggregate series
but less markedly so than for the biomass series (mean
84.52% compared with 70.67%) and the range of the
coefficients of variation (CVs) for the individual catch
series was quite broad (45.13 to  171.95%). We note
that the CV in the catch series is affected by manage-
ment actions, and these have changed over the time
period covered in this analysis.

The summed landings and biomass series were
used to generate estimates of annual surplus produc-
tion for the assemblage (Fig. 4). ASP has fluctuated in
the GOM over the entire period, with several periods
of negative surplus production reflecting periods of
non-sustainable harvesting (Fig. 4).

Contrast with single-species models

The point estimate of the MSY for the 12-species
as semblage was 74 kt and the BMSY was 510 kt
(Table 2). The corresponding FMSY was 0.16 (Table 2).
Bootstrap probability distributions for each reference

point are provided in Fig. 5; the BMSY

distribution was strongly skewed
with a long tail. The summed MSY
esti mate for the individual surplus
production models (94.5 kt) was
~28% higher than for the aggregate
model. The summed BMSY estimate
(650 kt) exceeded the aggregate
model results by 27.5%. The variabil-
ity in the re ference point determina-
tions for both the aggregate and
summed single-species results com-
plicates detailed comparison and test-
ing. Strong negative covariances be -
tween the parameter estimates for
MSY and BMSY introduces additional
uncertainty because the covariance
terms themselves enter the overall
variance for these reference points as
negative terms
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Fig. 3. Landings (kt) of selected demersal fish species for the Gulf of Maine 
during 1964 to 2007

Fig. 4. (a) Total landings (kt), (b) biomass (kt), and (c) annual
surplus production (kt) of 12 demersal fish species in the 

Gulf of Maine used in this analysis
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The estimated FMSY levels for individual species
ranged from 0.02 to 0.60 (Table 2), reflecting both
real differences in life history characteristics and the
effects of noisy data at the single-species level. The
single-species estimate for yellowtail flounder at
FMSY = 0.6 is unreasonably high, and the estimates for
silver and red hake are also very high (Table 2). The
estimate of FMSY for the aggregate model case (0.16)
was lower than two thirds of the estimates for indi-
vidual species (Fig. 6), suggesting its general utility
as a conservative reference point. However, any
attempt to manage using an aggregate target F strat-
egy would need to consider that some fraction of spe-
cies included in the analysis would require special
consideration to ensure that they were not overex-
ploited and driven to low biomass levels because of
low productivity. The use of supplemental manage-
ment measures designed to reduce fishing mortality
on these vulnerable stocks through gear modifica-
tions, spatial protection, and other mechanisms
would be required. We note that this issue is no more
problematical for the aggregate analysis than for sin-
gle-species analyses for mixed-species fisheries con-
fronting the weak stock constraint.

A comparison of derived reference points for single
species production models relative to the results from
the GARM and hake analyses indicate a strong con-
cordance in results (Fig. 7). The Spearman rank order
correlation for the 12 species was 0.86 for the MSY
estimates and 0.81 for BMSY. Although the basis for
reference point determination differs markedly in the

production model approach and the various methods
employed in the GARM, the general picture that
emerges is consistent for the individual species
involved in both cases (Fig. 7). The greatest diver-
gence occurs for the BMSY estimate for redfish, which
is substantially higher in the GARM analyses. The
summed estimate for the 12 species is quite similar
for the single-species production model and the
GARM results for both MSY and BMSY (triangles in
Fig. 7).
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Species Production model reference points
                                       FMSY          MSY (kt)        BMSY (kt)

Cod                                 0.27            18.842            69.329
Haddock                         0.17             0.862              5.065
Silver hake                     0.45            31.551            69.886
White hake                     0.13             5.115             38.905
Red hake                        0.44             3.687              8.437
Pollock                            0.23            13.987            58.986
Yellowtail flounder        0.60             1.341              2.216
Winter flounder              0.36             2.557              7.040
American plaice             0.06             3.296             54.986
Witch flounder               0.02             3.045             15.237
Monkfish                        0.15             4.367             27.977
Redfish                            0.04             5.830             154.72

Sum                                                    94.497           650.030

Aggregate model           0.16            73.846           509.746

Table 2. Biological reference points derived from simple
production models and Groundfish Assessment Review
Meeting (GARM) assessment results (NEFSC 2008). MSY:
maximum sustainable yield, FMSY: fishing mortality at MSY, 

BMSY: biomass at MSY 

Fig. 5. Empirical probability distribution of biological refer-
ence points based on aggregate surplus production models
using 1000 nonparametric bootstrap replicates for each 

reference point type
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Environmental effects

The AMO index has steadily increased over the
last 3 decades (Fig. 8). The first decade of the stan-
dardized NAO series was dominated by negative
anomalies, followed by a preponderance of positive
anomalies punctuated by some sharp reversals in the
mid-1990s (Fig. 8). The ERSST series reflects gener-
ally low temperature values in the 1960s and gener-
ally high values in the last decade (Fig. 8). An exam-
ination of the cross-correlations between ASP and
each of the 3 environmental variables indicated
potential effects of NAO at a lag of 0 and for ERSST
at a lag of 2 yr (Fig. 9). We included these terms both
together and individually in extended production
models to test for environmental effects. The change
in AICc scores (Δ AICc) was low in all cases (Table 3),
suggesting that further consideration of these envi-
ronmental terms was not warranted at this time.
Generally, a decrease in the AIC scores greater than
2 is required to be considered meaningful (Burnham
& Anderson 1998), and our results did not meet this
threshold.

DISCUSSION

Substantial progress is now being made in devel-
oping and implementing approaches for marine eco-
system-based fishery management (e.g. Link 2010,
Belgrano & Fowler 2011, Christensen & Maclean
2011). A diverse set of modeling tools is being used to
guide management options as shown in these recent
compilations. For the Northeast US Continental
Shelf, a long tradition of multispecies and ecosystem
modeling efforts has been used to explore aspects of
the dynamics of the system in response to exploita-
tion. Along a continuum from simple to complex
model structures, these include aggregate-species
surplus production models (Brown et al. 1976), multi-
species production models (Sissenwine et al. 1982,
Gamble & Link 2009), donor-controlled multispecies
models (Overholtz & Tyler 1986), recipient-controlled
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Fig. 6. Cumulative frequency distribution of fishing mortal-
ity at maximum sustainable yield (FMSY) levels for single-
species production model results for the 12-species system.
Solid vertical lines indicate the values for individual species
results. The dashed vertical line indicates the position of the 

aggregate species FMSY value

Fig. 7. Relationship between maximum sustainable yield
(MSY) and biomass at MSY (BMSY) estimates based on
Groundfish Assessment Review Meeting (GARM) and hake
assessment results (NEFSC 2008) and single-species pro-
duction model results. The 1:1 line is indicated, and (m) rep-
resents the summed estimates for each modeling approach.
The insets at the lower right of each panel show only the in-
dividual species results and not the total. Statistical compar-
isons (Spearman rank-order correlations) were done only on 

the individual species results
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box models (Overholtz & Link 2009), multispecies
delay-difference models (Fogarty et al. 1991, Collie &
DeLong 1999), energy budget and network models
(Cohen et al. 1982, Sissenwine et al. 1984, Steele et
al. 2007, Link et al. 2008a,b), full age- or size-struc-
tured consumption models (Overholtz et al. 1991,
1999), and a coupled physical-ecological- fishery mo -
del (ATLANTIS; Link et al. 2011). For a full overview
of ecological models developed for this system, see
Link et al. (2012). The broad array of modeling
approaches applied can be effective in testing for
consistency in inferences concerning system dynam-

ics and the likely utility of alternative management
strategies.

Aggregate surplus production models were used as
part of an overall management strategy for the North-
east US Continental Shelf by the International Com-
mission for Northwest Atlantic Fisheries nearly 40 yr
ago, representing one of the earliest formal applica-
tions of an ecosystem approach to fisheries manage-
ment. Our updated application of simple multispecies
models based on aggregate catch and bio mass points
to the need for conservative ecological reference
points that reduce the risk of over-exploitation at the
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Fig. 9. Cross-correlations between aggregate annual sur-
plus production and (a) the Atlantic Multidecadal Oscilla-
tion (AMO), (b) North Atlantic Oscillation (NAO), and
(c) Extended Reconstructed Sea Surface Temperature
(ERSST). Dashed lines show upper and lower 95% 

confidence intervals

Fig. 8. Environmental and climate-related time series con-
sidered in development of the extended production model
approach. All variables are expressed as standard normal
deviates for the time series represented. AMO: Atlantic
multidecadal oscillation. NAO: North Atlantic oscillation.
ERSST: Extended reconstructed sea surface temperature
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system level. Our comparison of aggregate surplus
production models and single-species analyses indi-
cate that both the aggregate MSY and BMSY levels are
lower for the simple multispecies model, a conclusion
consistent with previous analyses. The single-species
MSY and BMSY reference point are ~30% higher than
the aggregate model findings, suggesting that the
former may result in more risk-prone decisions.
Brown et al. (1976) found differences of a similar
mag nitude in their early development of an ag -
gregate production model (see also Mayo et al. 1992
and Mueter & Megrey 2006). Walters et al. (2005) re-
ported differences in management measures derived
from single-species and multispecies or ecosystem
models that can lead to higher risk when ecological
interactions are ignored. Recently, Steele et al. (2011)
contrasted single-species results and 2 ecosystem
models for Georges Bank species and indicated that
all species cannot be simultaneously at high produc-
tion levels. Not accounting for biological interactions
or environmental variability may result in overly opti-
mistic predictions of long-term sustainable yield and
unrealistically high estimates of BMSY. An aggregate
approach can mitigate such concerns.

The demersal fish assemblage considered here
comprises species that are caught together as mem-
bers of a distinct operational fishery (Lucey & Fogarty
in press), are part of recognized ecological assem-
blages defined in space and time (Garrison 2001),
and are connected through trophic interactions
(Smith & Link 2010). Linkages through predation are
particularly strong among the hakes and several of
the gadid species (notably cod, pollock, and white
hake). In several cases, reciprocal predation patterns
are evident among these species. Other components
of the assemblage are connected as members of
trophic guilds defined on the basis of diet composi-
tion. For example, the gadoids mentioned above
along with monkfish are part of a piscivore guild
while several of the flatfish species are members of a
defined benthivore guild (Garrison & Link 2000).

These interconnections reinforce the importance of
considering the assemblage as part of a dynamic sys-
tem subject to technical and biological interactions.
That such a system has different properties than
those of the individual species comprising it is not
un expected.

Simulation testing of the performance of full multi-
species models (Worm et al. 2009) and aggregate
production models (Gaichas et al. 2012) clearly indi-
cate that the vulnerability of weak-link stocks must
be carefully considered prior to the application of any
aggregate reference points. It is possible to devise
precautionary harvesting policies that result in mini-
mum loss in yield using conservative exploitation
rates to protect vulnerable species (Worm et al. 2009,
Gaichas et al. 2012). Gear modifications or the use of
protected areas may also be necessary to safeguard
highly vulnerable species.

Estimation of biological reference points for aggre-
gate species assemblages can be used to set upper
constraints or caps on removals from the system. It
has long been recognized that due to biological  or
technological interactions, an aggregate quota may
be more appropriate for managing species as sem -
blages (May 1975, Pope 1975, 1979, Brown et al.
1976, Fukuda 1976, Mayo et al. 1992, Witherell et al.
2000). If fishing effort is relatively high, incidental
catches are important, and species overlap, then con-
sideration of total yield from the complex of available
species is appropriate (Garrod 1973). This approach
will still require specifying individual target exploita-
tion patterns for the species comprising the assem-
blage, both to protect vulnerable species as noted
above and to prevent targeted overfishing of the
more valuable species. In the context of the  single-
species and aggregate-species models considered
here, this can be readily accomplished by ap -
portioning the aggregate-level MSY levels to the
species level by proportionally adjusting the single-
species targets downward. Under this approach, the
sum of the adjusted individual species targets would
be constrained not to exceed the aggregate level.
Other approaches can of course be considered for
allocating the total catch among species. Solutions
that maximize yield or profit from the assemblage
subject to constraints that prevent the assemblage
total from being exceeded, while also preventing
unacceptable declines in individual species, can be
constructed and may be preferable.

We note that while we have focused on selected
teleost species in this analysis to allow a general
comparison with existing groundfish assessments,
these species also interact directly with other parts of
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Covariates included         Total no. parameters        ΔAICc

NAO0, ERSST2                                                  5                         −1.01

NAO0                                                 4                          1.01

ERSST2                                              4                         0.004

Table 3. Change in corrected Akaike Information Criterion
(AICc) scores for extended production models including envi-
ronmental covariates relative to the base case model of no co-
variates. NAO: North Atlantic Oscillation, ERSST: Extended 

Reconstructed Sea Surface Temperature
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the system, notably with small elasmobranches (dog-
fish and skates), pelagic fishes, and invertebrates
(particularly crustaceans and mollusks) through tro -
phic and, in some cases, technical interactions. The
development of a full ecosystem-based fishery man-
agement strategy for the GOM will require consider-
ation of this broader set of interactions. Such an
approach can be developed as a direct extension of
the methods employed here or by considering mod-
els that can address interactions among different
sub groups (e.g. Fogarty & Brodziak 1994, Collie &
DeLong 1999) in a multispecies analysis with inter-
mediate levels of aggregation.

Although our analysis of a particular set of environ-
mental or climate-related effects does not warrant
inclusion in extended production models at this time,
it is clear that we should view overall production in
the system as a dynamic process that should be care-
fully monitored and periodically re-evaluated. There
is ample evidence of large-scale changes in physical
forcing in this system (Ecosystem Assessment Pro-
gram 2009), and these changes are manifest in shifts
in distribution patterns of marine organisms (Nye et
al. 2009, Lucey & Nye 2010). If overall declines in
productivity become evident, the multispecies refer-
ence points would have to be ad justed accordingly to
reduce the risk of overfishing. This would allow fish
stocks to maintain some potential for responding to
further environmental change (Hilborn et al. 2003,
Stram & Evans 2009).

Perceived constraints on the application of multi-
species and ecosystem models to support ecosystem-
based fishery management continue to be expressed
(e.g. Hilborn 2011). These concerns are largely cen-
tered on the data requirements for complex ecologi-
cal models. While many multispecies and ecosystem
models do in fact require information on diet compo-
sition, feeding interactions, and other factors that can
be difficult and expensive to obtain, our results show
the potential utility of quite simple multispecies mod-
els in which the interaction terms are implicit rather
than explicit. In principle, these methods could pro-
vide an avenue for estimation of ecological/multi-
species reference points in data-limited situations.
They can hold advantages even in data-rich situa-
tions where greater stability and predictability of
aggregate system dynamics are found. For example,
despite significant compositional changes, system-
level properties including catch, total biomass, and
aggregate size composition in the NES LME have
been much more stable than the individual com -
ponents (Hennemuth 1979, Murawski & Idoine 1992,
Fogarty & Murawski 1998, Auster & Link 2009).

These characteristics appear to reflect compensatory
processes related to a sequence of species re -
placements under the constraint of overall energy
limitations in the system. These characteristics con-
tribute to the greater overall stability and predictabil-
ity at the system level. Renewed evaluation and
potential broader application of simple aggregate
production models appear to be warranted to meet
the challenge of coping with complexity in ecosys-
tem-based management.
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INTRODUCTION

Ecosystem-based fisheries management (EBFM)
has called for broader consideration of the factors
which impact on the dynamics of living marine re-
sources (LMR) (NMFS 1999, Link 2002a,b, 2010, Pik-
itch et al. 2004). One of the common themes in these
calls for EBFM is the need to consider a triad of
drivers (see Fig. 1 in Link et al. 2012, this Theme Sec-
tion) that influence fish populations: (1) fisheries ex-
ploitation, (2) physico-chemical factors (especially
climate), and (3) ecological interactions among spe-
cies (Link et al. 2010a). Fisheries exploitation is long

understood to have direct effects on marine ecosys-
tems through direct removals of exploited stocks
(Pauly & Christensen 1995, Worm et al. 2009), and in-
ducing indirect effects on other species in the ecosys-
tem via predatory (Sissenwine 1984, Bax 1991, 1998,
Christensen 1996, Link 2002a) or competitive release
(Link 2002a). Overfishing also leads to ecosystem
level effects such as eutrophication, outbreaks of dis-
ease in the trophic levels beneath the overfished spe-
cies, and species introductions (Jackson et al. 2001).
Ecological interactions and related trophodynamic
processes, such as predation or competition as re-
ferred to above, are also recognized as potentially
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dominant drivers (Frank et al. 2005, Daskalov et al.
2007, Tyrrell et al. 2011). Physico-chemical drivers
are important in that fisheries production is linked to
primary production (Ware & Thomson 2005, Chassot
et al. 2010), early life history survivorship is at least
partially, if not mainly, dictated by biophysical condi-
tions (Beaugrand et al. 2003, Platt et al. 2003), and
climate change can affect marine populations (An-
derson & Piatt 1999, Chavez et al. 2003, Nye et al.
2009). While each of these drivers can have
important effects on an ecosystem, they are not rou-
tinely considered simultaneously (cf. Lucey & Nye
2010, Fulton et al. 2011). Thus there is a need for
models that can explicitly explore the effects of this
triad of drivers on an ecosystem simultaneously.

Another key element of EBFM is to determine the
maximum sustainable yield (MSY) in an ecosystem
(Link 2010). Doing so is important, as each ecosystem
has known limitations to productivity (Pauly & Chris-
tensen 1995), with the amount of fish harvested ulti-
mately limited by primary production (Ryther 1969,
Ware & Thomson 2005). There are methods of esti-
mating MSY for an ecosystem. These methods effec-
tively account for a broader set of consideration (e.g.
species interactions, climate) than methods for calcu-
lating single species MSY, and thus can give quite
different results than a simple summation of all spe-
cies production for a given ecosystem (Au 1973, May
1975, Pope 1975, 1979, Brown et al. 1976, Fukuda
1976, May et al. 1979, Walters et al. 2005, NEFSC
2008, Tyrrell et al. 2011).

The combination of, and interactions between, these
drivers suggests the need to utilize a Management
Strategy Evaluation (MSE; Smith et al. 1999, Sains-
bury et al. 2000). MSEs have a core operating model
capable of evaluating this triad of drivers under a
variety of scenarios. Executing such an MSE should
take the relative effects of these drivers into con -
sideration and be able to provide outputs related to
achieving a system-level MSY, as well as exploring
tradeoffs among the species and drivers inherent to
an ecosystem.

While there are many classes of extant ecosystem
models that could serve as MSE operating models,
there is an important class of models between the
simpler, stock-focused models that are typical in
stock  assessments (or that incorporate other factors
such as Extended Single-species Assessment Mod-
els, ESAMs) and the full ecosystem models such as
GADGET, APECOSM, InVitro, or ATLANTIS. Aggre -
gate Surplus Production (ASP) models are part of this
intermediate class of models (Hollowed et al. 2000,
Plagányi 2007, Townsend et al. 2008, Link et al.

2010b). These models require the same basic inputs
as standard stock assessment models or ESAMs, but
are aggregated across species at a higher level of
bio logical hierarchy. ASPs estimate biological refer-
ence points (BRPs) commonly used in LMR manage-
ment (such as MSY), but for an aggregate group of
species. ASP models can also simulate the effects of
ecological interactions, harvest, and climate, making
them a valuable tool generally for EBFM and specifi-
cally within an MSE context as an operating model
(Link et al. 2010c).

Such ASP models have a number of advantages.
They fall into the simpler range of the complexity
continuum of models. Models of low to intermediate
complexity often have higher forecast skill than more
complex models (Costanza & Sklar 1985, Walters
1986, Fulton et al. 2003, Adkison 2009, Hannah et al.
2010). Additionally, surplus production models can
outperform age-structured models in providing more
robust characterizations of fish population dynamics
(Ludwig & Walters 1985, 1989, Hilborn & Walters
1992). For instance, Ludwig & Walters (1985) gener-
ated data from a model with 2 age classes (pre-
recruitment and catchable adults) with random recruit-
ment (Deriso 1980). When they fit parameters from
both the original age-structured model and a simple
surplus production model to the generated data, the
surplus production model performed just as well or
better than the original model. Additionally, ASPs
rely on relatively common and easy to collect data
(biomass or abundance estimates and fisheries land-
ings) and thus are of use even in many data-limited
ecosystems (Graham 1935, Pitcher & Hart 1982, Smith
1994). ASP models can incorporate stochasticity,
trophic interactions, and environmental and climate
forcing relatively simply and easily (Clark et al. 2003,
Rose 2004, Jacobson et al. 2005, Keyl & Wolff 2008).
ASP models capitalize on the stability of aggregate
groupings that, although dynamic, are nevertheless
less variable than those commonly observed for their
component species (Duplisea & Blanchard 2005,
Auster & Link 2009). Finally, ASPs produce outputs
that are widely used in fisheries management and do
not require additional familiarization for managers.

Although several assumptions need to be met for
use of ASP models (e.g. comparable life histories
and vital rates among species within an aggregate
group), these models have the ability to provide syn-
thetic information useful for implementing EBFM.
The main strengths of this approach are its rela -
tive simplicity, minimal assumptions, requirement of
readily available data, and relative portability of the
approach for ease of use on different data sets. The
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drawbacks are those usually associated with pro -
duction models (e.g. missing internal stage or age
related dynamics, and ignoring different life history
characteristics of individual species within an aggre-
gation, which is explored more thoroughly in Gaichas
et al. 2012, this Theme Section).

Here we describe a particular ASP model, AGG-
PROD, which is an aggregated application of MS-
PROD (Gamble & Link 2009) used to model func-
tional groups of species. The objectives in doing so
are to explore the aggregate properties and outputs
from modeling such groups, and contrast various sce-
narios that could be used in an MSE context among
the triad of drivers that influence LMR dynamics. Our
focus here is to explore how aggregate BRPs change
under differing scenarios.

METHODS

Model description

We used an application of AGG-PROD to examine
the effects of different harvest, climate, and ecologi-
cal scenarios on aggregated groups of fish loosely
parameterized to reflect the Northeast US Large
Marine Ecosystem (NEUS LME). This model is a vari-
ation of an MS-PROD, a multi-species surplus pro-
duction model described previously (Gamble & Link
2009), where instead of individual species, aggre-
gated, functional groups were considered. AGG-
PROD is identical to MS-PROD, except that due to
lack of a species focus, the within-group competition
terms are removed. The model formulation is:

(1)

where BI is the biomass of an aggregated group of
species or stocks (I), rI is the growth rate of group I, KI

is the carrying capacity of group I, hI is the harvest
rate (a proxy for fishing mortality, defined as the
instantaneous removal rate) on group I, G is a group
other than I with corresponding B and K, βIG is the
competition interaction coefficient be tween groups I
and G, Kσ is the system carrying capacity, P is a
group which preys on group I with a corresponding
B, and αIP is the predation interaction coefficient
between groups I and P.

This model framework is based on the general form
of extended Schaefer-types of models (e.g. Prager
1994, Collie & DeLong 1999. Mueter & Megrey 2006,

Gamble & Link 2009) and has been employed for
all fished species in over 10 northern hemisphere
ecosystems (Bundy et al. 2012, this Theme Section,
Lucey et al. 2012, Theme Section). This resultant form
here is  similar to other fisheries production models ap-
plied in the NEUS region (e.g. Spencer & Collie 1996,
 Collie & DeLong 1999) and elsewhere (e.g. Constable
2001, Mueter & Megrey 2006). Unlike those other ap-
proaches, here we are aiming to simulate a system
with specified parameters, not fit it to the typical data
series, in an MSE context. The other distinction of our
approach is that, like Lucey et al. (2012), the main as-
pects that influence aggregate dynamics are parti-
tioned into their explicit ecological and fishing factors.
We also note that values of K are fixed and not linked
to prey population abundances. Although the latter
would be feasible, for this ap proach we simply
address the relative impacts of harvesting, predation,
and competition rather than the feedback among
predator−prey linkages. We address climate effects
via alterations to r (see ‘Scenarios’ below).

We note the following major assumptions of our
modeling approach:

(1) Aggregated groups have a carrying capacity
that is distinct from the systemic carrying capacity,
but such a systemic carrying capacity does exist
(e.g. Brown et al. 1976, May et al. 1979, Pauly &
Christensen 1995, Pauly et al. 1998, 2002).

(2) Harvest and species interactions (competition
and predation) in our model may similarly influence
a group’s ability to reach its carrying capacity
(e.g. May 1975, Pope 1975, 1979, Brown et al. 1976,
Fukuda 1976).

(3) Considering only aggregated groups will not
reveal whether aggregated fishing mortality levels
might cause specific stocks within the group to be
overfished, or indeed what the likely result of any set
of fishing levels will be on individual stocks (Worm
et al. 2009, Gaichas et al. 2012).

(4) There is no age structure in the model, and
there fore the effects of stage-specific mortality,
growth, and related demographic processes cannot
be  modeled.

Base model parameterization and simulations

The parameterization for the simulations using
AGG-PROD was informed by the parameterization
for MS-PROD, which was applied to a simulated fish
community that was generally based on the NEUS
LME (Gamble & Link 2009). We parameterized the
model for 3 groups: groundfishes, small pelagics, and
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elasmobranchs. We chose these groupings primarily
because they correspond to the fishery management
plans in the region. While groundfishes could have
been further split into gadids, flatfish, and an ‘other’
groundfish group, we considered the groups chosen
to have enough similarity among life history parame-
ters used in the model. Specifically, the species cho-
sen for the groundfish group have growth rates
higher than those in the elasmobranch group, and
lower than those in the small pelagics group. Addi-
tionally, competition (for space and due to diet over-
lap) is likely greater for the members of the ground-
fish group than for members of the elasmobranch or
small pelagics groups.

The biomasses for each group were calculated by
summing the individual biomasses for each stock
within the group (NEFSC 2002, 2007, Overholtz et al.
2008). While each stock was not considered individu-
ally, the component stocks present in each group are
shown in Table 1. Growth rates (r) for each group
were calculated based on a biomass-weighted aver-
age of the individual r values from the MS-PROD for-
mulation. The individual r values were calculated
by doubling estimates of fishing mortality at maxi-

mum sustainable yield (FMSY) for groundfishes, pe la -
gics, and elasmobranchs (Applegate et al. 1998,
Quinn & Deriso 1999, Hilborn & Walters 1992, NEFSC
2002, 2007, Overholtz et al. 2008). System fish carry-
ing capacity (K) was set to ~7 700 000 mt as the sum of
the group K  values for groundfishes (~2 800 000 mt),
small pelagics (~2 600 000 mt), and elasmobranchs
(~2 300 000 mt). These K  values were estimated as
twice BMSY for individual stocks within each group
and then summed (by definition; Applegate et al.
1998, Quinn & Deriso 1999, Hilborn & Walters 1992,
NEFSC 2002, 2007, Overholtz et al. 2008). Competi-
tion coefficients between groups were informed by
diet matrices and overlap in habitat. Predation was
set only on the pelagics, as informed by stomach con-
tent data (Link & Almeida 2000). Spatial overlap was
set to 0.6 between all groups based largely upon in-
formation of seasonal movements for the pelagic and
elasmobranch species derived from fishery indepen-
dent surveys. These salient parameters used to ini-
tialize the base model are given in Table 2.

Fisheries removals (i.e. harvest, h) were set as an
annual rate of removal for each group. We set these
in accordance to the scenarios we ran (see ‘Scenarios’
below).

We ran the simulations for 30 yr with an annual
time step. The model was developed in Visual C++
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Group Stocks

Groundfishes American plaice
CC-GOM yellowtail
GB yellowtail
GB cod
GB haddock
GB winter flounder
GOM-GB windowpane
GOM cod
GOM haddock
Halibut
Ocean pout
Pollock
Redfish
SNE-MAB windowpane
SNE-MAB winter flounder
SNE-MAB yellowtail
White hake
Witch flounder

Small pelagics Butterfish
Herring
Mackerel

Elasmobranchs Skates
Spiny dogfish

Table 1. List of stocks within each group in this formulation
of AGG-PROD. CC: Cape Cod, GOM: Gulf of Maine, GB:
Georges Bank, SNE: Southern New England, MAB: Mid-

Atlantic Bight

Parameter Ground- Elasmo- Pelagics
fishes branchs

Growth rate 0.45 0.2 0.6
Initial biomass (mt) 834002 756418 3377800
Carrying capacity (mt) 2849576 2311462 2591956
BMSY (mt) 1424788 1155731 1295978

Competition coefficient no. 1
Between Group and Groundfishes 0 0.5 0
Between Group and Elasmo- 1 0 0.05
branchs

Between Group and Pelagics 0 0.1 0

Predatory loss rates
With Groundfishes 0 0 8.00×10−8

With Elasmobranchs 0 0 2.00×10−7

With Pelagics 0 0 0

Spatial overlap
With Groundfishes 0.6 0.6 0.6
With Elasmobranchs 0.6 0.6 0.6
With Pelagics 0.6 0.6 0.6

Harvest loss rate 0.1 0.1 0.1

Demersal 1 1 0
Pelagic 0 0 1

Table 2. Basic parameterization for the AGG-PROD sim ulation 
model. BMSY: biomass at maximum sustainable yield
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and utilizes a calculation engine designed to account
for multiple iterations of simultaneous equation (i.e.
groups) solving, using a fourth-order Runge-Kutta
numerical integration algorithm. (Note: we devel-
oped a software package which utilizes a graphical
user interface to handle data inputs for model initial-
ization, parameterization, and scenario development,
and additionally to handle and process model out-
puts. This package is available from the authors upon
request.) The current version of the model is a
 simulator that produces deterministic results, with no
direct data fitting beyond the data used to inform the
initial parameterization.

Scenarios

We ran 3 classes of scenarios to explore the effects
of the triad of drivers on aggregate groups (Table 3).
Each class of scenarios was run with 2 different
sets of parameters for the groundfish group. The first
parameter set used the base parameters described
previously. The second parameter set decreased the
groundfishes growth rate by 10% (r = 0.405) to simu-
late a negative effect on growth due to climate
change. Previous work has linked changes in the
intrinsic rate of growth or carrying capacity to cli-
mate changes (Brander 1995, O’Brien et al. 2000,
Attrill & Power 2002, Clark et al. 2003, Gislason et al.
2010). We applied this climate effect on growth rate
only to groundfishes. This was due to small pelagics
(e.g. Atlantic herring, Atlantic mackerel, and butter -
fish) having generally larger range distributions, and
hence wider optimal thermal regimes, than ground-
fishes. Additionally, a recent study (Nye et al. 2009)
indicated that many individual stocks of ground-
fishes in the NEUS LME showed a recent range con-
traction due to climate effects, while pelagic stocks
and all but 1 elasmobranch showed range expan-
sions or no change. Specifically, of the 19 species that
make up the aggregate groundfish group, 8 showed
a northward movement and 2 showed a southward
movement (Nye et al. 2009). Additionally, 8 species
showed a range contraction and 2 showed a range
expansion. These range changes, especially contrac-
tions and poleward movements, are indicative of
probable accommodation of differential growth rates
 relative to changing ambient water temperatures, as
approximated here by the change in r. The toggling
of the climate effect on groundfish growth rates are
seen in Table 3 as the ‘Climate effects’ column, either
with base growth parameters (N) or the modified
parameter for groundfishes (Y).
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(A) Combination scenarios
Scenario Harvest Ecological Climate 

rate interactions effects

1 N N N
2 Y N N
3 N Y N
4 Y Y N
5 N N Y
6 Y N Y
7 N Y Y
8 Y Y Y

(B) Targeted harvest scenarios
Scenario Harvested Ecological Climate 

group (h = 0.3) interactions effects

1 Groundfishes Y N
2 Elasmobranchs Y N
3 Pelagics Y N
4 Groundfishes Y Y
5 Elasmobranchs Y Y
6 Pelagics Y Y

(C) System harvest scenarios
Scenario Harvest Ecological Climate 

rate interactions effects

1 0 Y N
2 0.01 Y N
3 0.05 Y N
4 0.1 Y N
5 0.2 Y N
6 0.3 Y N
7 0.5 Y N
8 0 Y Y
9 0.01 Y Y
10 0.05 Y Y
11 0.1 Y Y
12 0.2 Y Y
13 0.3 Y Y
14 0.5 Y Y

Table 3. Settings for each of the 3 scenario classes exploring
the effects of the triad of drivers on aggregate groups. (A)
Combination scenarios. The 3 drivers were each toggled on
and off at a base level to determine the relative effects of
each. Harvest rate (h): ‘Y’ means h set at 0.1; ‘N’ means h
set at 0.0. Ecological interactions: ‘Y’ means competition and
predation were set as parametized in Table 2; ‘N’ means all
competition and predation were set to zero. Climate effects:
‘Y’ means groundfish growth rate (r) set at 0.405 to simulate
climate effects on growth; ‘N’ means groundfish r set to base
value of 0.45 (as per Table 2). (B) Target harvest scenarios.
Harvested group: h set at 0.3 for this group, the rest set at
h = 0. Ecological interactions: always ‘Y’ as defined in (A).
Climate effects: ‘Y’ = on, ‘N’ = off, as defined in A. (C) Sys-
tem harvest scenarios. Harvest rate: h set to a specific value.
Ecological interactions: always ‘Y’ as defined in (A). Climate 

effects: ‘Y’ = on, ‘N’ = off, as defined in (A) 
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The first class of scenarios, the  combination scenar-
ios, independently toggled ecological interactions
(competition between all groups, and predation on
small pelagics), harvest, and climate effects. Ecologi-
cal interactions were toggled off by removing inter -
action terms. Harvest scenarios were toggled on (h =
0.1) or off (h = 0). Climate effects were toggled on (r =
0.405 for groundfishes) or off (r = 0.45 for ground-
fishes) for each scenario in this class.

The second class of scenarios, the targeted harvest
scenarios, examined targeted harvest rates on a spe-
cific group both with (r = 0.405 for groundfishes) and
without (r = 0.45 for groundfishes) climate effects.
One of the groups was subjected to a higher harvest
rate (h = 0.3) while the other 2 were subjected to a
base harvest rate (h = 0.1).

The third set of scenarios, the system harvest sce-
narios, examined the effects of increasing harvest
rates on the entire system, again with climate effects
toggled on (r = 0.405 for groundfishes) or off (r = 0.45
for groundfishes). All groups simultaneously had their
harvest rates set to: 0, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5.

In all scenarios, it was possible to partition the
losses to biomass to each group at each time step for
each type of removal (predation, competition, and
harvest). The MS-PROD software package, using the
Runge-Kutta numerical integration algorithm cal -
culates these removals at each step of the algorithm
and they can then be summed to provide the final
removal at each time step of the model. Losses or
increases due to climate were calculated as the
 difference between a group’s biomass in a scenario
which did not include climate effects, and the cor -
responding non-climate version of a scenario.

RESULTS

In all scenarios, we expressed the results both in
terms of biomass (mt) and as a proportion of group
BMSY such that a value greater than 1.0 indicated the
group was higher than its BMSY, and a value less than
1.0 indicated the group did not reach the group BMSY.

Combination scenarios

For the combination class of scenarios (where we
toggled ecological interactions, harvest, and climate
effects separately) the main results show some com-
mon patterns. In Scenario 1 (interactions off, h = 0,
groundfish r = 0.45), all groups asymptotically ap -
proach their carrying capacities (Fig. 1a). Because

of this, each group’s final biomass is almost equal
to its carrying capacity, and therefore almost double
the group’s BMSY (Table 4).

In Scenario 2 (interactions off, h = 0.1, groundfish
r = 0.45), no groups reached their carrying capacities
(Fig. 1b). Elasmobranchs showed a final biomass less
than half that in Scenario 1. The other 2 groups also
showed a drop in final biomass, but not to the same
extent. Only elasmobranchs fell below a Bfinal /BMSY

ratio of 1.0 in this scenario (Table 4).
In Scenario 3 (interactions on, h = 0, groundfish r =

0.45), no groups reached their carrying capacity.
Small pelagics showed a final biomass of less than
half that in Scenario 1. Elasmobranchs had a higher
biomass, and groundfishes had a lower biomass than
in Scenario 2 (Fig. 1c), indicating that harvest effects
are stronger than interaction effects on elasmo-
branchs in the simulated ecosystem while interaction
effects are likely stronger than harvest effects on
groundfish. Additionally, in this scenario there was a
switch in ecosystem dominance (in terms of final
 biomass) between elasmobranchs and groundfishes
(compared to the groundfish-dominated Scenarios 1,
2, and 4) Only small pelagics fell below a Bfinal /BMSY

ratio of 1.0 in this scenario (Table 4).
In Scenario 4 (interactions on, h = 0.1, groundfish r =

0.45), no groups reached their carrying capacity. Elas-
mobranchs showed a final biomass more than two-
thirds less than in Scenario 1, while the other 2 groups
had a final biomass at or slightly more than in Sce -
nario 3 due to release of groundfishes and pelagics by
elasmobranchs (Fig. 1d). Again, only elasmobranchs fell
below a Bfinal /BMSY ratio of 1.0 in this  scenario (Table 4).

Scenarios 5 to 8 are equivalent to Scenarios 1 to 4,
but with climate effects turned on (groundfish r =
0.405). In Scenario 5 (interactions off, h = 0, ground-
fish r = 0.405), it took longer for the groundfish group
to reach its carrying capacity compared to Scenario 1
(same but with groundfish r = 0.45) due to climate
being modeled as a reduction in growth rate. In Sce-
nario 6 (interactions off, h = 0.1, groundfish r = 0.405),
the groundfish group had a 3.2% lower biomass and
a correspondingly lower Bfinal/BMSY ratio when com-
pared to Scenario 2 (same but with groundfish r =
0.45), while the other 2 groups were largely unaf-
fected. In Scenario 7 (interactions on, h = 0.0, ground-
fish r = 0.405), the Bfinal/BMSY ratios for all groups
were the same as in Scenario 3 (same but with
groundfish r = 0.45). In Scenario 8 (interactions on,
h = 0.1, groundfish r = 0.405), the groundfish group
had a 4.5% lower biomass and a correspondingly
lower Bfinal/BMSY ratio when compared to Scenario 4
(same but with groundfish r = 0.45) (Table 4).
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Fig. 1. Results from the combination class of scenarios, showing the effects of independently toggling harvest and interactions:
(a) no harvest and no interactions, (b) harvest and no interactions, (c) no harvest but interactions present, (d) harvest and 

interactions. The dotted lines represent the carrying capacities of each group

Scenario Harvest Interactions Climate Combination Bfinal /BMSY
Groundfishes Elasmobranchs Small pelagics System

1 N N N 2.00 1.99 2.00 2.00
2 Y N N 1.56 0.97 1.67 1.42
3 N Y N 1.26 1.60 0.95 1.26
4 Y Y N 1.25 0.64 1.07 1.01
5 N N Y 2.00 1.99 2.00 2.00
6 Y N Y 1.51 0.97 1.67 1.40
7 N Y Y 1.26 1.60 0.95 1.26
8 Y Y Y 1.20 0.65 1.08 0.99

Table 4. Summary of combination scenarios of final biomass to biomass at maximum sustainable yield (Bfinal /BMSY) ratios. In
the Harvest, Interactions, and Climate columns, a ‘Y’ indicates that the corresponding effect on the system is turned on, and
a ‘N’ indicates that the corresponding effect on the system is turned off (see Table 3 for definitions). Bold values are <1, 

indicating that this group did not reach the group BMSY
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Generally, the elasmobranch and pelagic groups
showed minimal changes in final biomass in the sce-
narios where climate effects were present (Scenarios
5−8) compared to the non-climate scenarios (Scenar-
ios 1−4). Furthermore, adding the climate effects did
not have an impact on final biomasses and therefore
the Bfinal/BMSY ratio of the groundfish group unless
harvest was also occurring. Finally, in all of the com-
bination scenarios except Scenario 8 (interactions
on, h = 0.1, groundfish r = 0.405), the total system
 Bfinal/BMSY ratio remained above 1.0, although only
barely so in the case of Scenario 4 (interactions on,
h = 0, groundfish r = 0.405). In the case of Scenario 8,
the total system Bfinal/BMSY ratio was 0.99 (Table 4).

The comparative effects of species interactions, cli-
mate, and harvest differ among the 3 groups (Fig. 2).
When all 3 are present in Scenario 8 (interactions on,
h = 0.1, groundfish r = 0.405), groundfishes are
affected strongly by harvest, which, in the last year of
the run, is responsible for 48% of the removals of bio-
mass. Of the losses, 30% come from competition with
the other guilds, and 22% come from the effects of
climate (Fig. 2a). Elasmobranchs are most strongly
affected by harvest, which is responsible for 73% of
losses to biomass in the final year of the run, while
competition is responsible for 27% (Fig. 2b). Pelagics
are the most affected by species interactions of the 3
groups (Fig. 2c), and in the final year of the run most
of the losses (62%) come from predation, 36% of the
losses come from harvest, and the remaining 2%
come from competition.

Targeted harvest scenarios

In the targeted harvest class of scenarios, where
interactions were turned on, the harvest rate was set
to 0.1 for 2 groups while the third was set to 0.3, and
climate effects were toggled off (groundfish r = 0.45),
there were 4 main results.

(1) Not surprisingly, the final biomass for each
group was lowest when it was assigned the higher
harvest rate. This sometimes resulted in shifts in
ecosystem structure when compared to the combina-
tion scenarios. For example, when combination Sce-
nario 4 (interactions on, h = 0.1, groundfish r = 0.45)
was compared to the targeted harvest Scenarios 1 to
3, shifts in pelagic versus demersal dominance of the
modeled ecosystem were seen (Fig. 3a−d). Also, in
targeted harvest Scenario 1 (interactions on, ground-
fish h = 0.3, groundfish r = 0.45), final biomass for
pelagic fishes was higher than for demersal fishes
(Fig. 3b) compared to combination Scenario 4 (Fig. 3a).

In targeted harvest Scenario 2 (interactions on, elas-
mobranch h = 0.3, groundfish r = 0.45) there was less
of a difference in pelagic and demersal final biomass
(Fig. 3c) than in combination Scenario 4 (Fig. 3a), and
in targeted harvest Scenario 3 (interactions on, small
pelagic h = 0.3, groundfish r = 0.45), the modeled
ecosystem was dominated more by demersal biomass
(Fig. 3d) than in combination Scenario 4 (Fig. 3a).
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Fig. 2. Proportional losses to biomass in Scenario 8 (h = 0.1;
interactions present; climate on—groundfish r = 0.405) in
the combination class of scenarios: (a) groundfishes, (b) 

elasmobranchs, (c) pelagics
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These results are primarily due to the increased har-
vest on a specific group, combined with the tropho-
dynamic interactions (predation and competition)
between the groups.

(2) Groundfishes and small pelagics achieved a 
Bfinal/BMSY ratio greater than 1.0 in all scenarios
except when they were targeted at the higher har-
vest rate (Table 5), while elasmobranchs were below
a Bfinal/BMSY ratio of 1.0 in all scenarios. These results
are primarily due to the susceptibility of elasmo-
branchs to harvest relative to the other groups
because of their lower growth rate compared to the
other 2 groups. The higher harvest rate when applied
to groundfishes and small pelagics was enough to
lower their respective Bfinal/BMSY ratios below 1.0:
groundfishes to a ratio of 0.32 in Scenario 1 (no cli-
mate effects) and to 0.21 in Scenario 2 (with climate
effects), and pelagics to a ratio of 0.41 in Scenarios 3
(without climate effects) and 6 (with climate effects).

(3) When the targeted harvest was on a group that
was parameterized with strong interactions on another
group, the second group had a higher final biomass
and Bfinal/BMSY ratio than otherwise, due to competi-
tive or predatory release. Small pelagics had the high-
est final Bfinal/BMSY ratio when elasmobranchs were
targeted, due to predatory release. Groundfishes and
elasmobranchs had their highest final Bfinal/BMSY ratio
in the scenario in which the other group was targeted,
due to competitive release (Table 5).

(4) The total system Bfinal/BMSY ratio was higher
than 1.0 only when elasmobranchs were preferen-
tially targeted. This resulted because of the combina-
tion of predatory release on small pelagics and com-
petitive release on groundfishes (Table 5). This also
reflects compensatory dynamics from a systemic
 perspective.

When climate effects were present (groundfish r =
0.405), the main response was a generally reduced
groundfish biomass and Bfinal/BMSY ratio compared to
the non-climate scenarios (Table 5). The largest rela-
tive change occurred in Scenario 4 (interactions pre-
sent, groundfish h = 0.3, groundfish r = 0.405), with a
33% decrease in groundfish final biomass and cor -
responding Bfinal/BMSY ratio compared to Scenario 1
(same but with no climate effects; groundfish r = 0.45).
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Fig. 3. Effects on the demersal and pelagic fish communities
of the targeted harvest class of scenarios with interactions
on, but climate effects turned off: (a) triad combinatory Sce-
nario 1 (interactions on, h = 0.1, climate off—groundfish r =
0.45), (b) targeted harvest Scenario 1 (groundfishes targeted
at h = 0.3), (c) targeted harvest Scenario 2 (elasmobranchs
targeted at h = 0.3), (d) targeted harvest Scenario 3 (pelagics 

targeted at h = 0.3)
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While harvest had the largest impact on biomass
losses of groundfishes for the first half of the model
run, climate eventually became the dominant cause
of biomass losses. Species interactions stayed rela-
tively consistent in their impacts on groundfish bio-
mass loss over the model run (Fig. 4). Additionally,
pelagic and elasmobranch Bfinal/BMSY ratios in creased
in the scenarios where climate was present (Scenar-
ios 4–6; groundfish r = 0.405) due to decreased pre-
dation and competition effects on the 2 groups,
respectively (Table 5).

System harvest scenarios

In the system harvest scenarios where the harvest
level for all groups was set to 7 different values
 (Scenarios 1−7; 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5), species
interactions were turned on, and climate was toggled
off (groundfish r = 0.45), each of the 3 groups showed
different responses to increasing harvest (Table 6).
Elasmobranchs de creased in biomass at each in -
crease in harvest level and fell below a  Bfinal/BMSY

ratio of 1.0 in all scenarios where the system harvest
rate was 0.1 or greater (Scenarios 4−7).

Groundfish biomass remained stable when the har-
vest rate was be tween 0 and 0.1 (Scenarios 1−4) and
only fell below a Bfinal/BMSY ratio of 1.0 at a harvest
rate of 0.3 or higher (Scenarios 6 and 7). This ‘delay’
was likely due to competitive release as elasmo-
branch biomass did drop at the lower harvest rates
(h = 0.01 to 0.1).

Small pelagic biomass actually in creased slightly
through the first 4 levels of harvest rates (0−0.1),
likely due to predatory release by elasmobranchs.
Due to their higher growth rate, they ended with a
higher final biomass and Bfinal/BMSY ratio than ground -
fishes at the higher harvest levels (0.3, 0.5). Because
of the indirect interaction effects combined with har-

vest rates, the small pelagics had a
 Bfinal/ BMSY ratio above 1.0 at the mod-
erate harvest levels (0.05, 0.1, 0.2) but
not at the lower or higher harvest
rates (0, 0.01, 0.3, 0.5). Finally, the
system  Bfinal/BMSY ratio fell below 1.0
at a harvest rate of 0.2 or higher (Sce-
narios 5−7), largely driven by the
small pelagic biomasses.

When the effects of climate were
added (groundfish r = 0.405) in Sce-
narios 8 to 14, 4 main results occurred
(Tables 6 & 7). Groundfishes fell
below a  Bfinal/BMSY ratio of 1.0 at a

harvest rate of 0.182, instead of a harvest rate of
0.212 as in the system harvest scenarios without cli-
mate effects (Table 6 only shows the scenarios
described above; further runs were done to more
precisely define the ratio’s tipping point). Similarly,
the system  Bfinal/ BMSY ratio fell be low 1.0 at a harvest
rate of 0.098, compared to a harvest rate of 0.104 in
the system harvest scenarios without climate effects.
The percentage of final biomass compared to the cor-
responding system harvest scenario without climate
effects decreased for ground fish as harvest rates
increased (from ~100% at harvest rates of 0 and 0.01
to 35.7% at a harvest rate of 0.5; Table 7). The other
groups showed a minor increase in their final bio-
mass and Bfinal/BMSY ratio compared to the system
harvest scenarios, likely due to competitive release of
elasmobranchs and an overall lowering of predation
on small pelagics.

Losses to groundfish biomass varied over the range
of harvest rates explored when climate effects were
present (Fig. 5). At low levels of harvest (h = 0.01
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Fig. 4. Proportional losses to biomass of groundfishes accord-
ing to the targeted harvest of groundfishes (h = 0.3) scenario

Scenario Harvested group Climate Targeted harvest Bfinal /BMSY
Ground- Elasmo- Small System

fishes branchs pelagics

1 Groundfishes N 0.32 0.83 1.20 0.76
2 Elasmobranchs N 1.55 0.01 1.31 1.01
3 Pelagics N 1.24 0.66 0.41 0.79
4 Groundfishes Y 0.21 0.85 1.21 0.73
5 Elasmobranchs Y 1.50 0.01 1.32 0.99
6 Pelagics Y 1.19 0.68 0.41 0.78

Table 5. Summary of targeted harvest scenarios of final biomass to biomass at
maximum sustainable yield (Bfinal /BMSY) ratios. The targeted group had its har-
vest rate set to 0.3, while the other 2 groups had their harvest rates set to 0.1.
Bold values are <1, indicating that this group did not reach the group BMSY
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and 0.05), losses to biomass for the groundfish group
were mostly from in ter actions with elasmobranchs
(Fig. 5a,b). At h = 0.1, harvest accounted for a bit less
than half of the losses to biomass, with interactions
and climate effects approximately equal (Fig. 5c). At
h = 0.2 and above, elasmobranchs were greatly re-
duced in biomass, leaving harvest and climate effects
as the dominant losses to biomass for groundfishes
(Fig. 5d). At h = 0.3 and 0.5 (Fig. 5e,f), harvest effects
were strongest in the first few years, before climate
effects become dominant (about 50% of losses to bio-
mass came from climate at h = 0.3 after about Year 17,
and greater than 75% of the losses to biomass came
from climate at h = 0.5 by Year 30).

DISCUSSION

As might be expected, the relative importance
among the triad of drivers differed among the 3 func-
tional groups, and under different harvest scenarios.

Generally, when harvest occurred, it
had the strongest effect on each
group, particularly on elasmobranchs
due to their low growth rate. Ground-
fishes were also strongly affected, start-
ing at moderate  levels of harvest (h =
0.2 to 0.3), but less so than elasmo-
branchs—due to the higher growth
rate for the groundfish functional
group. Additionally, release of com-
petitive effects when elasmobranchs
were also fished at the same level
tended to keep groundfish—and there -
fore system—biomass more stable at
lower levels of harvest. Finally, small
pelagics were least affected by har-
vest (h < 0.2), due to a combination of
having the highest growth rate among
the 3 groups, and because of the
predatory release as groundfish and

elasmobranch biomass declined. These results are
similar to those seen in previous studies which
showed compensatory dynamics in the NEUS LME
(Fogarty & Murawski 1998, Auster & Link 2009).

Ecological interactions had the strongest overall
effect on small pelagics (predation from both of
the other 2 groups), and a moderate effect on ground -
fish (competition from the elasmobranchs). Elasmo-
branchs were less strongly affected by competition
from ground fish. Climate effects, since they targeted
ground fish specifically in our model, primarily re sulted
in a decrease in groundfish biomass when applied,
with a corresponding increase in elasmobranch and, in
some scenarios, pelagic biomass, due to competitive
and predatory release, respectively. The interplay
among these factors, as simulated here, demonstrates
that the prominence of any driver can shift given the
dynamics and magnitude among the others.

When comparing the effects of the triad of drivers
on each group, small pelagics were most strongly
affected by ecological interactions, then harvest, and
then climate. Elasmobranchs were most strongly
affected by harvest, then ecological interactions, and
finally climate. Groundfishes, however, appeared to
be notably affected by all 3 drivers. Obviously as har-
vest increased in any class of scenarios, its effect
became increasingly dominant, and as long as elas-
mobranchs remained at relatively high biomass, the
corresponding ecological interactions also had a
large impact on groundfish biomass losses. Climate
tended to also have a stronger effect at higher har-
vest levels in our scenarios—indicating that climate
effects may be more important in heavily exploited
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Scenario Harvested System harvest Bfinal/BMSY
Climate Ground- Elasmo- Small System

fishes branchs pelagics

1 0 N 1.26 1.60 0.95 1.26
2 0.01 N 1.26 1.49 0.96 1.23
3 0.05 N 1.27 1.09 1.02 1.13
4 0.1 N 1.25 0.64 1.07 1.01
5 0.2 N 1.04 0.12 1.03 0.76
6 0.3 N 0.65 0.01 0.84 0.52
7 0.5 N 0.04 0.00 0.33 0.12
8 0 Y 1.26 1.60 0.95 1.26
9 0.01 Y 1.26 1.50 0.96 1.23
10 0.05 Y 1.24 1.10 1.02 1.13
11 0.1 Y 1.20 0.65 1.08 0.99
12 0.2 Y 0.93 0.13 1.05 0.73
13 0.3 Y 0.49 0.01 0.88 0.48
14 0.5 Y 0.01 0.00 0.34 0.12

Table 6. Summary of system harvest scenarios of final biomass to biomass at
maximum sustainable yield (Bfinal/BMSY) ratios. Bold values are <1, indicating 

that this group did not reach the group BMSY

Harvest Groundfishes Elasmo- Small System
branchs pelagics

0 100.1 100.0 99.9 100.0
0.01 99.6 100.1 100.0 99.9
0.05 97.8 100.7 100.2 99.4
0.1 95.5 102.0 100.6 98.6
0.2 89.6 105.7 102.1 96.0
0.3 76.6 108.0 103.9 91.5
0.5 35.7 102.5 102.0 94.4

Table 7. System harvest. Percentage of final biomass when 
climate effects were turned on compared to turned off
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ecosystems than in ones with lower levels of exploita-
tion. These results, while simulation only, are con-
firmed by other empirical and modeling studies (e.g.
Mackinson et al. 2008, Blanchard et al. 2010, Coll et
al. 2010, Link et al. 2010a, Shin et al. 2010a,b, Tyrrell
et al. 2011).

There are some important implications that come
from these results. Depending on the life history of
the groups, each of the triad of drivers can have very
different impacts on each of the groups. Since har-
vest was the only driver of the 3 that was toggled at

different ranges, the relative effects of the triad of
drivers in our scenarios is dependent on the level of
harvest for each group. It is also important to be care-
ful in choosing the component species of each aggre-
gate group, as a group with widely varying growth
rates or other characteristics can create issues of
interpretation in the results. While we maintain that
it is likely the group as a whole would react with rel-
ative stability, the individual species within that
group might not do so (see Auster & Link 2009,
Gaichas et al. 2012). Other implications from our
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Fig. 5. Proportional losses to biomass of groundfishes caused by the system harvest class of scenarios with climate effects on 
(groundfish r = 0.405) where harvest was set to: (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.2, (e) 0.3, (f) 0.5
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models relate to harvest levels. For instance, h > 0.3
for any group results in the group as a whole having
a Bfinal/BMSY ratio less than 1.0, while h = 0.1 results in
groups with moderate (groundfishes) or high (small
pelagics) growth rates having a Bfinal/BMSY ratio above
1.0. The effects of climate further lower the exploi -
tation rate at which this ratio drops below 1.0 for
ground fish, indicating that a more precautionary
exploitation rate should be considered under climate
change. While we do not recommend these as uni-
versal basic properties of ecosystems, even for the
NEUS LME, we do suggest that this kind of MSE
could explore such recommendations, given a properly
fitted ASP which incorporates climate and tropho -
dynamic effects. Obviously the choice of parameter
values (particularly r) greatly affects the results and
the relative importance, but we think that our results
generally demonstrate the utility of such an approach.

One of the strengths of our approach is that models
like AGG-PROD can elucidate the effects of the triad
of drivers on biological reference points (BRPs).
While one might qualitatively be able to predict the
effects of some of the drivers in isolation on indi -
vidual groups with no interactions between them, we
think that once multiple drivers (climate, inter -
actions, and fishing) are occurring at the same time,
a model such as AGG-PROD is very valuable, and
needed, in separating their effects on fish popula-
tions. Even though we explored only a comparison of
final biomass to BMSY, there are some general conclu-
sions we can draw. The most important might be that
in the presence of strong impacts from climate or eco-
logical interactions, the effects of setting F to any ref-
erence level are difficult to predict. Decreasing the
predators through increased harvest can cause for-
age fish to increase in some cases, but in other cases
interactions between predator groups, and differen-
tial effects of harvest on them, could result in more
complex effects which might be counterintuitive. Cli-
mate and environmental effects also have varying
impacts on the system, which should be taken into
account. Therefore, we propose that if trophody-
namic and climate effects are not explicitly included
in models which determine BRPs, a more conserva-
tive approach should be taken in estimating these
BRPs. An important consideration in this approach is
that the precision possible in this model for defining
BRPs (and the harvest rates corresponding to those
BRPs) is likely much greater than could realistically
be differentiated in an actual management setting.
This will need to be further explored when using
these models in a management context beyond a
management strategy type of approach.

ASPs like AGG-PROD can be very flexible and
valuable tools. For instance, one use is as an operating
model in an MSE context. While certain classes of
management actions are more difficult to simulate
(e.g. spatial management) using ASPs, these models
can be easily extended to include ecological interac-
tions and climate effects. In some cases, as we did
with groundfish growth rates, a simple modification to
a parameter (e.g. r or K) can approximate certain cli-
mate effects such as range contraction or population
size (Attrill & Power 2002, Nye et al. 2009). Addition-
ally, empirical and modeling studies have shown link-
ages between growth rates and climate change (Bran-
der 1995, O’Brien et al. 2000, Clark et al. 2003),
supporting this approach. Work to further develop
this modeling approach will include fitting model pa-
rameters to data, sensitivity analyses, and introducing
stochasticity representing environmentally driven
pressures on the fish populations. Additionally, ex-
ploring differential application of harvest rates across
the different groups is a logical next step, especially in
conjunction with exploring scenarios in a manage-
ment context of tradeoffs between yield and ecosystem
objectives. Ultimately, this model can be used to ex -
plore impacts on ecosystem function and yield under
multiple strategies (e.g. proportional harvest rates
based on productivity of the different stocks versus se-
lective fishing) (Garcia 2011, Rochet et al. 2011).

Aggregating groups as part of a surplus production
model has certain benefits. Many important fisheries
are multi-species fisheries, such as those which tar-
get groundfishes in the NEUS LME, the North Sea,
Southeast Australia, and similar temperate shelf
 systems (ICES 1993, Smith 1994, CEFAS 2001), all
of which have management plans that reflect this
 multispecies targeting. An ASP can easily explore
the effects from the triad of drivers on a level that
multi-species fisheries operate. Aggregate groups
also tend to be more stable than the indi vidual com-
ponents (Fogarty & Murawski 1998, Auster & Link
2009), so this method can be used initially to deter-
mine robust harvest levels to achieve system and
aggregate group level BRPs. More complex models
which explicitly include multiple species can then be
used to examine the implications of those harvest
strategies on the individual components of an aggre-
gated group (as was done by Gaichas et al. 2012).
This 2-stage approach is also recommended due to
the observation that aggregated models may have
very different characteristics regarding community
stability, resilience, and other behaviors of the com-
ponents modeled, than one in which the components
are disaggregated (Pinnegar et al. 2005).
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An ASP model could also be used to provide a pre-
cautionary cap on biological reference points deter-
mined by a suite of single-species models. Since it has
been shown through multi-species and ecosystem
modeling exercises (Au 1973, Pope 1979, Collie &
Gislason 2001, Walters et al. 2005, Mueter & Megrey
2006, NEFSC 2008) and other analyses (May 1975,
Pope 1975, Brown et al. 1976, Fukuda 1976, May et al.
1979, Gislason et al. 2010, Tyrrell et al. 2011) that the
sum of single-species MSYs can be quite different
than the MSY of the corresponding multispecies
group, we suggest that BRPs resulting from an ASP
model could be utilized as the maximum total amount
that should be removed from the group. A further
consideration is that by not directly modeling species
interactions in our model, we would expect differ-
ences in the estimated BRPs in our approach com-
pared to a model in which those interactions were
present explicitly. As an example, not all species in
the groundfish group would be affected equally by
climate—in fact there might be species which would
show increased growth rates. Thus, while we recom-
mend ASPs as useful operating models, they should
be applied with an understanding of their limitations
as well as their strengths. Particularly we recommend
that they be part of a toolbox of models rather than
the sole operating model in an MSE.

With EBFM emerging (NMFS 1999, Link 2002a,b,
Pikitch et al. 2004, Link 2010), there is a need for tools
and methods that can evaluate the triad of drivers in
an MSE context (Link et al. 2010b,c), particularly in
the context of multi-species fisheries. We think that
the utility of ASPs with trophic interactions and cli-
mate effects modeled explicitly can be an important
element of EBFM by providing aggregate level refer-
ence points and as operating models in an MSE con-
text to explore the possible effects of changes in cli-
mate and the trophic structure of a fish community. We
recommend that they be used with other models, par-
ticularly multi-species models which also include the
triad of drivers explicitly, to fully explore the dynamics
of not only the aggregate groups of interest to a fishery
or management, but also the entire system and the
individual component species within that system.
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INTRODUCTION

Understanding the determinants of productivity of
marine systems is critical to devising effective and

sustainable management practices. The concept of
biological production has long served as a corner-
stone in the development of the theory of resource
management (Watt 1968). An early focus on this issue
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ABSTRACT: Ecosystem-based fisheries management (EBFM) emphasizes sustainability at multiple
levels of organization beyond single target species. Therefore, biological reference points (BRPs)
for aggregated groups are required, which optimize yields while preventing overexploitation of in-
dividual species. We evaluate the tradeoffs between yield and biodiversity objectives for a wide
range of aggregation strategies using multispecies surplus production models and comparing 2
simulated fish communities. We simulated population trajectories with an operating model de -
tailing predation and competitive interactions for all individual species within each community, and
with additional stochastic environmental variability for one community. Species trajectories were
then aggregated by functional feeding guild, taxonomy, habitat association, size class, and at the
entire community level. We estimated production parameters and BRPs (e.g. maximum sustainable
yield, MSY) using a simple assessment model applied to each aggregated time series, then we ap-
plied the MSY fishing rates to each simulated community as alternative fishing strategies and com-
pared equilibrium biomass and yield under each strategy. We were able to define multi-species ref-
erence points to meet both yield and biodiversity objectives across full system, taxonomic, habitat,
feeding, and size-based aggregations. Species complexes were best able to meet both objectives
when species with broadly similar productivity, environmental sensitivity and species interactions
were aggregated into the complex. The impacts of simulated environmental variability on BRPs
were substantial for certain species and aggregates, so including the combined impacts of environ-
mental variation and species interactions in precautionary reference points appears critical to EBFM.

KEY WORDS:  Ecosystem-based fishery management · Multiple objectives · Surplus production
models · Biological reference points · Predation · Competition · Species complexes

Resale or republication not permitted without written consent of the publisher

Contribution to the Theme Section ‘Comparative analysis of marine fisheries production’



Mar Ecol Prog Ser 459: 275–292, 2012

in fisheries research distinguished it from other
approaches in population biology in the emerging
field of ecosystem-based fisheries management
(EBFM: Wagner 1969). In their classic monograph on
the dynamics of exploited fish populations, Beverton
& Holt (1957) provided an elegant treatment of the
harvesting problem with an emphasis on production
of individual species at the cohort and population
levels. However, Beverton & Holt (1957) clearly rec-
ognized the broader dimensions of the problem, not-
ing that, ‘This is a generalization of what is perhaps
the central problem in fisheries research: the investi-
gation not merely of the reactions of particular popu-
lations to fishing, but also of the interactions between
them and the response of each marine community to
man’s activity’ (p. 24).

Traditionally, fish stock status and management
advice has been stock-specific, often assuming that
the demographic rates (e.g. natural mortality) or
functions (e.g. stock-recruitment) of stocks are fixed
or stationary. Ecologically, this ignores the influence
of interspecific interactions on stock dynamics noted
by Beverton & Holt (1957). These interactions may
result in compensatory dynamics among stocks that
lead to assemblage dynamics that are more stable
than those of the constituent species, i.e. a portfolio
effect (e.g. Duplisea & Blanchard 2005). A corollary
of this effect is generally lower maximum sustainable
yields at the aggregate level compared to the
summed yields over all species in an aggregation
(Brown et al. 1976, Walters et al. 2005). It also means
that realized rates of population change following
management actions may not follow simple single-
stock dynamics theory (e.g. Walters & Kitchell 2001,
Walters et al. 2008). From a management perspec-
tive, single-stock focus disregards technical interac-
tions in fisheries, where 2 or more stocks are cap-
tured jointly, possibly leading to greater risk of
overharvesting less productive stocks or differential
recovery rates following harvesting restrictions (e.g.
Paulik et al. 1967, Vinther et al. 2004, Murawski
2010). It also does not take full advantage of the
potentially greater simplicity of stock-aggregate
management and possible greater interannual pre-
dictability of the total amount of catch in mixed-stock
fisheries (e.g. Hightower 1990).

A more explicit treatment of multi-species interac-
tions is therefore one of several motivators behind
the adoption of EBFM. Amongst other things, imple-
mentation of EBFM requires a better understanding
of the consequences of stock-aggregate manage-
ment in achieving the manifold objectives for man-
agement. Two such common objectives are the max-

imization of sustainable fishery yields and the main-
tenance of biodiversity, i.e. the prevention of collapse
or extinction (Worm et al. 2009). A key goal of the
present study was to use simulation modelling of
hypothetical fish communities to explore how the
estimation of biological reference points (BRPs) at
different levels of species aggregation affect the
simultaneous achievement of these 2 goals.

The development of models in support of marine
ecosystem-based management can be arrayed along
a continuum of complexity involving tradeoffs in real-
ism, mechanistic detail, and parameter and/or model
uncertainty (Link 2002). Models of low to intermediate
complexity can often outperform more complicated
forms in forecast skill (Costanza & Sklar 1985, Walters
1986, Fulton et al. 2003, Hannah et al. 2010). At the
ecosystem level, surplus production models have
been shown to provide an effective approach to ad-
dressing data limitations (Graham 1935, T. Smith
1994) and to manage model complexity and parameter
uncertainty in multispecies models (Sugihara et al.
1984). These models can also accommodate simple
forms of environmental and climate forcing through
changes in the intrinsic growth rate (e.g. Rose 2004) or
the carrying capacity parameters (e.g. Jacobson et al.
2005). These models have fostered an improved un-
derstanding of overall ecosystem production in north-
east Pacific and northeast Atlantic fish stocks (Mueter
& Megrey 2006, Sparholt & Cook 2010), and provided
the first demonstration that aggregate system sustain-
able yield is smaller than the sum of estimated single-
species maximum sustainable yields (Brown et al.
1976). Collectively these prior works suggest that an
aggregated approach is not only feasible, but in many
instances provides improved scientific advice for
EBFM, especially via direct exploration of tradeoffs.

Here, we explore the potential strengths and
weaknesses of simple aggregate-species production
models in support of marine EBFM. We note that
management considerations based on simple exten-
sions of traditional single-species production models
provide one avenue for recasting the harvesting
problem in a context that is familiar to fishery man-
agers while accommodating a broader multispecies
perspective, particularly for those stocks that are
caught together in multispecies fisheries, interact
highly, or have similar production characteristics.
However, the risk of not accounting for differences in
life history characteristics of individual species and
structural elements leading to complex dynamics
must be fully evaluated. Our focus is on meeting dual
objectives of maximizing yield subject to the con-
straint of maintaining ecosystem structure (taken
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here to be indexed by biodiversity in a multispecies
fish community; sensu Worm et al. 2009). We take a
simulation approach akin to a simple management
strategy evaluation (MSE; A. Smith 1994, Sainsbury
et al. 2000), where a more complex operating model
is used to represent the true state of a system, and
then simpler assessment models are applied to data
generated by the operating model. Therefore, the
performance of our simple production-based assess-
ment models may be evaluated against the ‘truth’
from the operating model. In particular, we evaluate
both theoretically obtainable and assessment esti-
mated BRPs, as well as the proportion of aggregate
maximum sustainable yield (MSY) that can be
achieved without stock collapse for the interacting
species managed under an aggregate-species frame-
work. Additionally, we evaluate the effects of envi-
ronmental stochasticity on BRPs and the implications
on the species and aggregate groups.

METHODS

Modelling framework

We begin with a system of equations for an ex-
ploited community drawing from the work of
Schaefer (1954), Lotka (1925), and Volterra (1926) as
the operating model representing ‘truth’ for our MSE:

(1)

where Bi is the biomass of species i, Bj is the biomass
of interacting species j, ri is the intrinsic rate of
increase, αij is the effect of species j on species i, and
Fi is the fishing mortality rate. We implemented the
operating model using the multispecies production
modeling simulator MS-PROD (Gamble & Link
2009). In MS-PROD, overall net species interactions
(αij) are derived from separate specifications of com-
petition and predation interaction terms for each spe-
cies pair, as described in Gamble & Link (2009). Fur-
ther, the sign of the interaction term reflects the type
of interaction (e.g. negative for competitive interac-
tions; positive for effect of prey species on predator,
negative for predator effect on prey). In this simple
model we included only negative effects of competi-
tion and predation.

Isolating the intraspecific and interspecific interac-
tion terms for a particular species i, the operating
model can be written:

(2)

where αii is the effect of species i on itself. The
 equilibrium point for species i is given by:

(3)

and for the species to persist, the following condition
must hold:

(4)

These species-specific dynamics with multiple
interaction terms form the basis of our more complex
operating model.

To simulate the potential effects of environmental
variability, we extended the operating model for a
particular species (Eq. 2) to include stochasticity in
the intrinsic growth rate:

(5)

where is the growth rate for species i as taken
from a normal distribution. The value for is
given by:

(6)

where N is the normal distribution of ri with the mean
r– and standard deviation σ2.

We next consider the corresponding dynamics of
an aggregate group formed by summing the biomass
levels of individual species, which forms the basis of
our simple assessment model:

(7)

where the subscript T indicates the total for the
aggregate group and rT and αΤ are logistic growth
and self-interaction parameters for the group. To
keep our assessment approach as simple as possible,
we assume that there are no interaction terms
between aggregate groups within the ecosystem;
therefore αΤ represents the net effect of the aggre-
gate upon itself. The aggregate group is therefore
modelled analogously to an independent single spe-
cies with logistic growth, although the dynamics
comprising the aggregate group are more complex.
The equilibrium point for the aggregate group is
therefore given by:

(8)

For the aggregate as a whole to persist, the
intrinsic rate of increase of the group (rT) must
exceed FT.
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Aggregations

Our interest centers on the effects of species inter-
actions and environmental fluctuations on fishing
mortality reference points derived from the aggre-
gate production models, and also whether these
 reference points will result in stock collapse of indi-
vidual species within the aggregate. For species
interactions, a critical issue is whether:

(9)

Our ultimate goal is to determine whether simple
aggregation rules might be applied across ecosystems
to simplify fishery management. Therefore, we evalu-
ate the extent to which predation, competition, and
environmental stochasticity affect yield (MSY) and
biodiversity (species richness) using many different
aggregate reference points. We examined 5 ap-
proaches to assembling aggregate species complexes
with groups defined according to (1) taxonomic affin-
ity, (2) habitat preference (pelagic vs. demersal), (3)
feeding functional group, (4) size class (based on av-
erage adult length), and (5) combining over all
species. These might be considered reasonable candi-
date groupings for management in different situations.
For example, habitat preference and size class could
be appropriate for mixed-species fisheries (i.e. similar
availability). Taxonomic affinity combines species
with similar life histories (at least in some circum-
stances), and therefore similar productivities. Feeding
functional groups combine species with a similar prey
base. Combining all species into an aggregate could
be appropriate in data-poor situations and where sys-
tem-wide reference points are desirable. In the spirit
of MSE, for each of these approaches we present op-
erating model ‘true’ results and ‘assessment’ results
for 2 simulated ecosystems.

Simulated systems

To test the performance of different criteria for ag-
gregation, we created 2 virtual multispecies systems
using MS-PROD (Gamble & Link 2009). The 2
systems were broadly based on Georges Bank in the
Atlantic Ocean, and the Gulf of Alaska in the Pacific
Ocean to represent distinctive fish communities, cli-
mate impacts, and exploitation histories within north-
ern hemisphere ecosystems. Further, the 2 systems
were parameterized to emphasize competitive inter-
actions (Georges Bank) versus predation interactions
(Gulf of Alaska), although both systems had both

types of interactions. We used parameters provided
by Gamble & Link (2009) that were intended to be
broadly representative of 10 dominant species present
on Georges Bank for part or all of an annual cycle
(Table S1 in the supplement at www.int-res. com/
articles/suppl/m459p275_supp.pdf). A similar set of
10 dominant species was selected for Gulf of Alaska
with parameters derived from Gaichas et al. (2010)
and Aydin et al. (2007) (Table S2 in the supplement).
We emphasize that these simulated ecosystems and
our simulated assessments are used to examine gen-
eral properties of production for interacting species,
and are not intended to represent the actual multi-
species dynamics or stock assessments used in federal
waters off the USA, which are far more complex.

Operating model analyses

We applied a series of F rates increasing from 0 to
1.0 in 0.025 increments to all species in the system for
50 yr each and used the biomass and yield in Year 50
(the year by which equilibrium had been reached in
all simulations) to develop ‘true’ equilibrium yield
curves and trace biomass trajectories for each aggre-
gation in the simulated Georges Bank and Gulf of
Alaska. To simplify interpretation of fishing versus
species interaction effects in these simulations and to
facilitate comparison between ecosystems, we did not
attempt to account for differences in catchability be-
tween species, bycatch, or other more realistic fishing
conditions; these refinements could easily be included
in applications for particular systems. These simula-
tions were performed with competitive and predatory
species interactions, and the resulting MSYs were es-
timated. We then calculated the proportion of MSY at-
tainable with no species collapses for each aggrega-
tion. We used 2 collapse definitions: species below
10% or 25% of unfished biomass. The latter definition
roughly coincides with the legal definition of ‘over-
fished’ in the USA (Federal Register 2008).

Stochastic results were compared with deterministic
results for Georges Bank. We simulated the effects of
environmental stochasticity by setting the coefficient
of variation of ri (Eq. 5) for each species to 0.25. The
base growth rate (which was set to the deterministic
model’s growth rate) for each species was modified in
each year (Eq. 6). We then applied the same series of F
values (from 0 to 1.0 in increments of 0.025) to all spe-
cies, using 1000 runs for each F increment (40 000
runs total), to develop yield curves with stochastic ‘en-
velopes’ representing environmental variability, and
to calculate ranges of MSYs with means.

r r Bi ij j
i

T > +
≠
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1
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Assessment model analyses

We evaluated the ability to estimate biological ref-
erence points based on time series of aggregate bio-
mass levels simulated by the model. Our operating
model first simulated the unfished trajectories of the
individual interacting species comprising the group
using Eq. (1) and then we summed the biomass of
each species to generate the aggregate group trajec-
tory. This created the ‘data’ to which an aggregate
production and biomass ‘assessment’ model could be
fit. Solving the logistic growth equation (Eq. 7), with
F = 0, the predicted aggregate biomass at time t
equals:

(10)

where

(11)

and B0 is the input initial biomass for the assessed
group. Thus, based on the time series of BT with no
fishing, the parameters rT and αT were estimated by
nonlinear least squares through a regression of BT on
t using the nls function in R (R Development Core
Team 2008). This simulated assessment approach is
admittedly simpler than most real-world production
model-based assessments which fit to time series of
catch and biomass (as unfished biomass is rarely
available). Our goal was to examine the combined
effects of aggregation and of ignoring species inter-
actions and environmental fluctuations on assess-
ment-estimated parameters and BRPs. Therefore, we
chose a simpler assessment method to distinguish the
effects of interest from additional effects introduced
by simulating catch and biomass time series (with
error) and fitting production models in the conven-
tional manner, although this is a clear next step.

Biological reference points for the aggregate group
can be readily determined. MSY is:

(12)

and the fishing mortality rate at MSY is:

(13)

Parameters and resulting BRPs were estimated by
the assessment model for individual species and
aggregations from deterministic simulations for both
the Gulf of Alaska and Georges Bank, and from a
random sample of 5 stochastic realizations for
Georges Bank. Then, we simulated fishing in the
(deterministic) operating model with the assessment-

estimated FMSY values for each species and complex
to compare the realized equilibrium biomass and
yield of each species across aggregation strategies.
Finally, we compared the operating model-derived
‘true’ BRPs with both the assessment-estimated BRPs
and the realized equilibrium biomass and yields.

RESULTS

Operating model (‘true’) results

The wide variation in life history characteristics of
the species considered in these simulations leads
to sharply divergent production characteristics and
 levels of vulnerability to multispecies harvesting in
Georges Bank and Gulf of Alaska (Fig. 1). In both sim-
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Fig. 1. Yield curves for simulated 10-species interacting fish
communities: (a) Georges Bank and (b) Gulf of Alaska; com-
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ulated systems, the low productivity of the elasmo-
branch species (skates and dogfish) with their charac-
teristically delayed maturation, low fecundity, and
relatively slow growth rates leads to a low FMSY

around 0.1 (Table 1). Similarly, both Georges Bank
redfish and Gulf of Alaska Pacific ocean perch (POP)
(both long-lived, slow growing Scorpaenids) have
generally low FMSY and resilience to exploitation.
Conversely, cod and herring had the highest produc-
tion rates in both systems, along with haddock in
Georges Bank and walleye pollock in the Gulf of
Alaska, resulting in relatively high FMSY at 0.3 or
above. However, production of flatfish differed be -
tween systems; Georges Bank species (yellowtail,
winter, and windowpane flounder) had productivity
similar to cod and herring, while Gulf of Alaska spe-
cies (arrowtooth flounder, halibut, and flathead sole)

had productivity more similar to elasmobranchs and
scorpaenids. The relatively low production to biomass
ratios for both Georges Bank Atlantic mackerel and
Gulf of Alaska sablefish result in low to intermediate
FMSY. With these contrasts as a basis, we next compare
aggregate properties of the simulated systems.

Our simulated systems are ‘cartoons’ of the actual
systems, but parameters were based on data from
each ecosystem such that broad productivity compar-
isons are possible. Overall, the simulated Georges
Bank system has higher MSYs than the simulated
Gulf of Alaska system on a per unit area basis, with a
full system MSY of 3.40 t km−2 compared with 1.96 t
km−2, respectively (Table 1). Results from both sys-
tems support previous findings that the sum of single
species yield exceeds total system yield (with single
species sums of 4.174 and 2.586 t km−2, respectively).

280

Aggregation                           Species          FMSY      MSY
                                               ID no(s).                    (t km–2)

Georges Bank
Species grouping

Cod                                            1               0.325     1.069
Haddock                                    2               0.25       0.877
Yellowtail fl.                              3               0.35       0.306
Winter fl.                                    4               0.375     0.129
Windowpane fl.                         5               0.3         0.036
Redfish                                       6               0.1         0.129
Herring                                      7               0.325     0.973
Mackerel                                   8               0.15       0.124
Skates                                        9               0.1         0.487
Dogfish                                     10              0.1         0.044
Full system                             1–10           0.275     3.398

Taxonomic affinity                       
Groundfish                            1, 2, 6           0.275     1.924
Flatfish                                     3–5            0.35       0.470
Foragea                                    7, 8             0.275     1.015
Elasmobranchs                       9, 10            0.1         0.532

Habitat                                          
Pelagicsa                                  7, 8             0.275     1.015
Demersals                           1–6, 9, 10       0.275     2.383

Feeding functional group            
Piscivores                                   1               0.325     1.069
Benthivores                           2–5, 9          0.15       1.395
Zoopivores                              6, 10            0.1         0.174
Planktivores                            7, 8             0.275     1.015

Average adult body length          
Large                                   1, 2, 9, 10        0.275     1.925
Medium                                   3–5            0.35       0.470
Small                                        6–8            0.25       1.028

Aggregation                           Species          FMSY      MSY
                                               ID no(s).                    (t km–2)

Gulf of Alaska
Species grouping

P. cod                                        11              0.3         0.234
Sablefish                                   12              0.1         0.085
Arrowtooth fl.                           13              0.125     0.633
P. halibut                                   14              0.075     0.019
Flathead sole                            15              0.15       0.059
P. ocean perch                          16              0.05       0.052
Herring                                     17              0.35       0.565
Walleye pollock                       18              0.325     0.879
Skates                                       19              0.1         0.045
Dogfish                                     20              0.05       0.015
Full system                            11–20          0.2         1.955

Taxonomic affinity                       
Groundfish                         11, 12, 16        0.15       0.254
Flatfish                                   13–15          0.125     0.705
Foragea                                  17, 18           0.325     1.440
Elasmobranchs                      19, 20           0.075     0.056

Habitat                                          
Pelagicsa                                17, 18           0.325     1.440
Demersals                        11–16, 19, 20    0.125     1.006

Feeding functional group            
Piscivores                            11, 13, 14        0.15       0.809
Benthivores                           15, 19           0.125     0.101
Zoopivores                             12, 20           0.1         0.093
Planktivores                          16–18          0.325     1.440

Average adult body length          
Large                             11, 12, 14, 19, 20  0.125     0.291
Medium                           13, 15, 16, 18     0.175     1.299
Small                                         17              0.35       0.565

Table 1. ‘True’ FMSY (F, fishing mortality rate; MSY, maximum sustainable yield) and MSY with species interactions, for each
species and aggregation of the various 10-species simulation models. fl.: flounder; zoopivore: consumes shrimp and other 

small crustacean prey; P.: Pacific

aThese categories (Forage and Pelagics) contained the same species aggregations for their respective locations
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Much of the difference in full-system MSYs is driven
by the relatively high MSYs for Georges Bank cod,
haddock, and herring, which equal or exceed the
highest Gulf of Alaska MSY for walleye pollock.
Among taxonomic aggregates, Georges Bank
groundfish (cod, haddock, and redfish) had much
higher FMSY and MSY than Gulf of Alaska groundfish
(cod, sablefish, and POP). In the simulations, flatfish
could be fished at a higher FMSY but to a lower MSY
on Georges Bank relative to the Gulf of Alaska.
Despite similarities in productivity and FMSY between
systems, elasmobranch MSY is an order of magni-
tude greater on Georges Bank.

Habitat, size, and feeding guild aggregations show
clear contrasts in system structure and productivity
through the reference points for each simulation,
suggesting that fishing similar species complexes
may have contrasting results across ecosystems.
Whereas pelagics (herring in both systems and
Georges Bank mackerel or Gulf of Alaska walleye
pollock) have roughly similar FMSY and MSY
between systems, demersal (groundfish + elasmo-
branchs) aggregate FMSY and MSY on Georges Bank
is double that of the Gulf of Alaska (Table 1). Size-
based aggregations produced mixed results across
systems: MSY is highest for Georges Bank large (cod,
skates, haddock, and dogfish) and small (herring,
mackerel, and redfish) size groups, but highest for
the medium (arrowtooth, walleye pollock, POP, flat-
head sole) Gulf of Alaska size group. In both systems,
planktivores (herring in both systems, Georges Bank
mackerel, or Gulf of Alaska walleye pollock and
POP) have similar FMSY and MSYs. However, plankti-
vores have the highest MSY in the Gulf of Alaska,
while they rank third behind benthivores (skates,
haddock, and flatfish) and piscivores (cod) on
Georges Bank. The MSY of the Gulf of Alaska ben-
thivore group (skates and flathead sole) is an order of
magnitude lower than that for Georges Bank; the low
Gulf of Alaska skate MSY drives the large contrast
between the 2 systems.

The full system maximum sustained yields are pro-
duced at levels of fishing mortality F that have differ-
ent impacts on individual species and species aggre-
gates. The Georges Bank full system multispecies
MSY (MMSY) occurs at F = 0.275 (Table 1), but at this
level of fishing, 40% of the stocks are classified as
collapsed (less than 10% of their maximum biomass
level; Fig. 2). Similarly, the Gulf of Alaska MMSY is
found at F = 0.20, where 40% of stocks are collapsed.
Based on the contrasting structure and productivity
described above, each aggregation of the 2 systems
has different properties with respect to the propor-

tion of collapsed species over a range of fishing mor-
tality rates (Fig. 3). For example, the elasmobranch
complex looks very similar between the 2 systems
with respect to BRPs, and collapses occur above FMSY.
The flatfish complexes between the 2 systems have
contrasting FMSY rates, but none of the species in
either system is collapsed at the MSY for the com-
plex. The pelagic complexes have similar FMSY and
MSY reference points between systems, but the col-
lapse of one component happens at FMSY on Georges
Bank, and at F rates well above pelagic FMSY in the
Gulf of Alaska.

In operating model simulations, the collapse curve
combined with the yield curve can be used to define
a multi-objective optimal F rate for each complex. If
the fishing mortality rate on Georges Bank system as
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a whole is reduced to 0.15, 95% of the MMSY is
obtained (Fig. 4). At this fishing mortality rate, none
of the stocks would be classified as collapsed using
the 10% definition. Accordingly, reducing fishing
mortality from the limit reference point to a precau-
tionary exploitation rate results in little loss of yield
(and a probable increase in profits since less effort is
expended to obtain nearly the same catch). The pro-
portion of MMSY theoretically obtainable without
collapse is generally high (above 80%) for all
Georges Bank and Gulf of Alaska aggregates
(Table 2). The exception is Gulf of Alaska plankti-

vores, which combines 2 of the most productive spe-
cies (herring and walleye pollock) with one of the
least productive species (POP), such that only 56% of
aggregate MMSY can be taken without collapse. In a
comparison of biodiversity objectives where collapse
is defined as biomass <10% of unfished, or as <25%
of unfished, the proportion of MMSY remained rela-
tively high for all aggregates except Gulf of Alaska
planktivores. However, reductions from MMSY were
larger in the Gulf of Alaska simulations where col-
lapse was defined as <25% of unfished biomass. The
only aggregate that achieved 100% of MMSY across
systems and biodiversity objectives was the elasmo-
branch complex, which combined species with

nearly identical life history traits.
The addition of stochasticity (which

we used to simulate non-autocorre-
lated environmental variability) pre-
dictably did little to alter the average
reference points in the operating
model, but produced asymmetric en-
velopes around yield curves (Fig. 5),
and differentially affected species in
the simulated Georges Bank (Table 3).
The shapes of the yield curve en-
velopes show maximal uncertainty in
yield after fishing mortality rates ex-
ceed the average FMSY, with less un-
certainty in yield below average FMSY.
While the range of FMSY for redfish,
skates, and dogfish in 40 000 stochas-
tic runs reflected exactly the range of
variability simulated in intrinsic
growth rates (25%), the range of FMSY
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Georges Bank (% MSY) Gulf of Alaska (% MSY)
Biomass Biomass Biomass Biomass 
<10% <25% <10% <25%

Full system 95 86 82 69
Groundfish 94 83 100 88
Flatfish 100 100 100 94
Elasmobranchs 100 100 100 100
Pelagics/Forage 100 98 100 100
Demersals 98 92 96 85
Piscivores 100 100 100 91
Benthivores 100 98 100 100
Zoopivores 100 100 100 97
Planktivores 100 98 56 38
Large 98 93 96 85
Medium 100 100 94 71
Small 99 91 100 100

Table 2. Percent of maximum sustainable yield (% MSY) achievable without
species collapse for each aggregated species complex, where collapse is defined

as <10% of unfished biomass or <25% of unfished biomass
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rates was amplified to 50% or more for haddock, win-
dowpane, yellowtail, and cod, with the remainder in-
termediate. MSY estimates were more affected by
stochasticity; skates and dogfish had the lowest range
of MSY estimates in 1000 stochastic runs (35 and
42%), while cod and winter flounder had the highest
MSY ranges (82 and 79%).

Assessment results

Our simple ‘assessment’ estimated logistic growth
parameters for each species and aggregate complex
using the F = 0 runs from the Georges Bank and the
Gulf of Alaska simulations (Table 4; see also Figs. S1
& S2 in the supplement at www.int-res.com/ articles/
suppl/m459p275_supp.pdf). Parameters were esti -
m able for all Georges Bank species and aggregates,
but even with ‘perfect’ data we were unable to esti-
mate parameters for Gulf of Alaska halibut, flathead
sole, and benthivores (which include flathead sole).
This is likely due to the shapes of these trajectories
(Fig. S2), which arise from the combination of input
parameters for these species. Since these parameters
were based on data from the system and were incor-
porated into the operating model without difficulty,
we chose not to revise them for these simulations. In
the absence of assessment-estimated FMSY rates, we
applied fishing mortality rates of 0.2 for halibut and
flathead sole in the single-species FMSY simulation,
and of 0.15 for benthivores in the feeding guild FMSY

simulation. These proxy FMSY rates for both flatfish
were derived from the estimated cur-
rent harvest rate of 0.2 for halibut
(Hare 2010), and the benthivores
FMSY rate is an average of 0.2 and the
estimated skate FMSY is ~0.1. Only the
realized equilibrium biomasses and
yields (Figs. S3 & S4 in the Supple-
ment) depend on these assumptions.

The BRPs estimated in assessments
for both the Gulf of Alaska and
Georges Bank were generally lower
than the operating model-derived
‘true’ values of FMSY and MSY pre-
sented above (Figs. 6 & 7), with some
exceptions. In the Gulf of Alaska,
arrowtooth flounder had an assess-
ment-estimated FMSY rate greater
than true rate, while POP and sable-
fish had only slightly higher esti-
mated FMSY. Similarly, Georges Bank
windowpane flounder, herring, and
the pelagics/planktivores complexes
had assessment-estimated FMSY rates
greater than true rates, with redfish
slightly higher. In both systems, elas-
mobranchs showed good agreement
between estimated and true BRPs.
Where the remaining estimates are
close to the true values for FMSY, this
may simply reflect a difference be -
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Species Species System Taxonomic Habitat Feeding Size

Georges Bank
Cod 0.300 0.096 0.155 0.102 0.300 0.091
Haddock 0.061 0.096 0.155 0.102 0.072 0.091
Yellowtail fl. 0.300 0.096 0.285 0.102 0.072 0.285
Winter fl. 0.354 0.096 0.285 0.102 0.072 0.285
Windowpane fl. 0.399 0.096 0.285 0.102 0.072 0.285
Redfish 0.112 0.096 0.155 0.102 0.103 0.138
Herring 0.366 0.096 0.470 0.470 0.470 0.138
Mackerel 0.076 0.096 0.470 0.470 0.470 0.138
Skates 0.099 0.096 0.089 0.102 0.072 0.091
Dogfish 0.024 0.096 0.089 0.102 0.103 0.091

Gulf of Alaska
P. cod 0.197 0.104 0.060 0.058 0.100 0.064
Sablefish 0.103 0.104 0.060 0.058 0.084 0.064
Arrowtooth 0.159 0.104 0.025 0.058 0.100 0.167
P. halibut –a 0.104 0.025 0.058 0.100 0.064
F. H. sole –a 0.104 0.025 0.058 –b 0.167
POP 0.058 0.104 0.060 0.058 0.200 0.167
Herring 0.292 0.104 0.287 0.287 0.200 0.292
W. pollock 0.291 0.104 0.287 0.287 0.200 0.167
Skates 0.099 0.104 0.073 0.058 –b 0.064
Dogfish 0.049 0.104 0.073 0.058 0.084 0.064

Table 4. ‘Assessment’ FMSY (F, fishing mortality rate; MSY, maximum sustain-
able yield) for each species and aggregation (see Table 1 for assignment of
each species to the various model aggregations). fl.: flounder; P.: Pacific; F.H.:
flathead; W.: walleye; POP: Pacific ocean perch. –: assessment model estima-
tion failed; values of a = 0.2 and b = 0.15 were applied in the simulation (see 

‘Assessment results’)

Species Mean Min.–max. range
FMSY MSY FMSY (%) MSY (%)

Cod 0.325 44.63 69 82
Haddock 0.25 36.81 50 61
Yellowtail fl. 0.35 12.87 64 70
Winter fl. 0.4 5.39 31 79
Windowpane fl. 0.3 1.50 58 73
Redfish 0.1 5.44 25 39
Herring 0.3 40.64 42 65
Mackerel 0.15 5.20 33 52
Skates 0.1 20.56 25 35
Dogfish 0.1 1.86 25 42

Table 3. Summary of stochastic results (1000 simulations) for
Georges Bank simulation (F, fishing mortality rate; MSY, 

maximum sustainable yield). fl.: flounder

http://www.int-res.com/articles/suppl/m459p275_supp.pdf
http://www.int-res.com/articles/suppl/m459p275_supp.pdf


Gaichas et al.: Simulating aggregate species production

tween the fishing mortality increments we selected
for the true simulations and the estimated values
from the assessment. However, this could also reflect
a bias in the estimation procedure, which then gets
magnified for MSY estimates. Assessment estimates
of BMSY were nearly always indistinguishable from
true estimates (not shown), suggesting that the carry-
ing capacity parameter was well estimated by our
simple assessment.

Environmental variability implemented as stochas-
ticity in the intrinsic growth rate in the simulated
Georges Bank ecosytem led to a wider range of
‘assessment’ results and amplified contrasts with the
‘true’ results (Fig. 7). The contrasts in stochastic
assessment-estimated and true FMSY rates are most
pronounced for herring among the single species,
where true FMSY was 0.325 but assessment-estimated

FMSY ranged from 0.3 to 0.6. Assessments performed
for the aggregated groups, including herring (forage,
pelagics, and planktivores), were generally biased
towards higher values by environmental variation,
with ranges of aggregate FMSY from 0.4 to 0.9, com-
pared with ‘true’ FMSY of 0.275 and the deterministic
assessment FMSY of 0.470 (Tables 1, 3, 4, Fig. 7).
Assessments from stochastic realizations were close
to both the deterministic assessment and the true
FMSY rates for redfish, skates, and the elasmobranch
and zoopivores (shrimp and other crustacean-eating)
complexes. Stochastic and deterministic assessments
agreed with each other, but differed from the true
FMSY for haddock, mackerel, dogfish, and many ag -
gregates, including the full system, groundfish, dem-
ersals, benthivores, large, and small.

Equilibrium biomass and yield resulting from simu-
lated fishing under alternative assessment-estimated
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FMSYs showed that some aggregation strategies re -
sulted in extinctions. Georges Bank mackerel went
extinct under the under the taxonomic, habitat, and
feeding guild aggregate FMSY strategies, and Gulf of
Alaska POP went extinct under the feeding guild
strategy. Gulf of Alaska POP also essentially collapsed
under the size-based FMSY strategy. Among species
without collapses, the most contrast in biomass and
yield between strategies was for Georges Bank cod,
yellowtail flounder, and herring, and for Gulf of
Alaska arrowtooth flounder, pollock, and herring.
Equi librium yields for skates and dogfish in both sys-
tems were very similar across aggregation strategies
due to low contrast between FMSY values (Table 4). We
note that our application of 0.2 as the Gulf of Alaska
halibut single species FMSY resulted in very low halibut
biomass and catch under the single species strategy
(see Figs. S3 & S4 in the Supplement for all results.)

Comparisons between ‘assessment’-predicted MSY,
‘true’ MSY, and realized equilibrium yield demon-
strate the effects of applying the fishing strategies
simultaneously in the simulated systems (Fig. 8). The
realized equilibrium yields are close to the assess-
ment-predicted MSY for most individual species, and
generally below or equal to the true MSY, but differ-
ences are larger for aggregated species complexes in
both the simulated Georges Bank and Gulf of Alaska.
In many cases across systems, realized equilibrium
yields were higher than assessment-predicted MSYs,
especially where true MSY was underestimated by
the assessment. The realized equilibrium yields ag -
reed particularly well with true MSY in cases where
the assessment-estimated MSY greatly ex ceeded the
true MSY (Georges Bank pelagics/planktivores, and
to a lesser extent herring, and Gulf of Alaska arrow-
tooth and medium size complex). No realized equi-
librium yields were higher than true MSYs for any
species or aggregate.

DISCUSSION

Based on our results, we draw 4 main conclusions
that are summarized here and discussed in detail
below. First, we were able to define multi-species
reference points to meet both yield and biodiversity
objectives across full system, taxonomic, habitat,
feeding, and size-based aggregations. Second, spe-
cies complexes were best able to meet both objec-
tives when species with broadly similar productivity,
environmental sensitivity and species interactions
were aggregated into the complex. Third, the im -
pacts of simulated environmental variability on bio-
logical reference points were substantial for certain
species and aggregates, so including the combined
impacts of environment and species interaction in
precautionary reference points appears critical. Fin -
ally, our simple assessment method estimated BRPs
reasonably well for many species and aggregates
without explicitly including species interactions but
showed some bias even with the high-quality simu-
lated ‘data’ we used.

Multi-objective BRPs from simple models

Our simulations demonstrate that we can define
multi-objective multispecies reference points by
combining a minimum biomass threshold level with
aggregate species yield, as suggested in Worm et al.
(2009). We used this as a measure of performance for
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various aggregation strategies where the best aggre-
gates minimized the reduction in MSY to preserve
biodiversity. However, most of the aggregation
strategies we examined worked well in this simple
case, with minimal tradeoffs between yield and bio-
diversity objectives across systems. One explanation
for these minimal tradeoffs may be that the ‘true’
BRPs we estimated here already included the effects
of species interactions in our operating model. Gam-
ble & Link (2009) found that considering species
interactions in these models generally resulted in
lower MSYs relative to models with species interac-
tions ‘turned off’. Larger tradeoffs between yield and
biodiversity might therefore be observed in compar-
isons of BRPs estimated without consideration of spe-
cies interactions.

The differences in performance between systems
may reflect the set of more productive stocks in
Georges Bank relative to the Gulf of Alaska combined
with our parameterizations emphasizing competition
on Georges Bank versus predation in the Gulf of
Alaska. We note that while these differences between
ecosystems help us understand differences in re-
sponses to fishing aggregates, they do not necessarily
reflect actual differences between the systems. How-
ever, the results from just these 2 simulated systems
suggest that strong predation interactions combined
with lower overall productivity may amplify tradeoffs
between yield and biodiversity, especially at the full
system level. Management of this tradeoff at the
ecosystem scale has been examined for Antarctic sys-
tems, where fisheries for krill are managed both for
yield and to preserve forage for predators (May et al.
1979, Constable 2001). Our operating model did not
include bottom-up effects of prey on predators, but
adding this interaction may either allow for compen-
sation which lessens this tradeoff (i.e. fishing reduces
predators, releases prey and may then benefit fished
predators; see Walters et al. 2005), or lead to more
complex dynamics with unpredictable effects. Fuller
consideration of this interaction seems warranted
(Tyrrell et al. 2011), and could be simulated using
larger datasets of species productivity (e.g. Walters et
al. 2008, Eero & MacKenzie 2011).

Aggregation: developing species complex
 assembly rules

The species complexes best able to balance yield
and biodiversity objectives are those that combine
species with similar productivity rates, environmental
sensitivity and species interactions. Conversely, the

poorest performing complex combined species with
high contrast in productivity rates (Gulf of Alaska
planktivores). This accounts in part for the good per-
formance of many taxonomic aggregations, as
closely-related taxa often share life history character-
istics (Winemiller & Rose 1992) and maximum rates of
population growth (Myers et al. 1999). The influence
of life-history on productivity is not a surprising
result, but our simulations show how both species in-
teractions and environmental stochasticity combine
to further enhance or compromise the effects of fish-
ing on individual species and aggregations. For ex-
ample, elasmobranchs combined dogfish with skates
in both systems, and MSY was always obtainable
from this complex without population collapses
across both simulated systems, despite differences in
the biomass distribution between systems. Assess-
ments also performed well for this complex, if not al-
ways for each species in it, and even the introduction
of environmental stochasticity did not greatly affect
BRP estimates. Therefore, the productivity of these
species, combined with broadly similar species inter-
actions and response to environmental variability,
made elasmobranchs a very good complex for man-
agement in our simulations. However, caution is war-
ranted even within the elasmobranchs. The mixture
of life history traits between smaller and larger skate
species has led to apparent population stability for
the aggregated ‘skate’ group in many areas where
fisheries occur, and this, combined with the common
practice of managing skate species within aggregate
complexes, has masked the decline of individual
skate species in European fisheries (Dulvy et al.
2000). Similarly, in the Atlantic off New England,
substantial shifts in species dominance have oc curred
within the skate complex over time (Sosebee 2006).

Other aggregates showing mixed performance ex-
hibit the effects of system characteristics, life history
and species interactions, indicating that assembly
rules and assessments for aggregates still need fine-
tuning within specific ecosystems. Habitat group ings
showed mixed results when considering operating
model ideals versus assessment realities. For exam-
ple, demersals, with 8 species in each system having
a wide range of productivity, interactions, and ex-
ploitation susceptibilities, worked surprisingly well in
terms of both balancing management goals and as-
sessment performance. The pelagic aggre ga tions in
both systems worked well in balancing management
goals in the operating model results. However, as-
sessment results for the Georges Bank pela gic habitat
aggregate consistently overestimated productivity for
this complex (an effect that was magnified in stochas-
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tic realizations of the assessment), resulting in the ex-
tinction of mackerel. The underlying differences in
productivity and initial biomass in this simulation be-
tween Georges Bank mackerel and herring led to ag-
gregate biomass trajectories which were apparently
difficult to fit, contributing to poor performance in
the pelagic habitat aggregation, as well as the plank-
tivore feeding-guild aggregation which also com-
bined herring and mackerel. While this result may re-
flect the poor performance of our simple assessment
model as much as the performance of the pelagic
habitat aggregate, real management applications will
require examination of interactions between potential
assessment methods and proposed aggregate groups
within an extended MSE framework to optimize as-
sessment-estimated BRPs.

Feeding mode and size groupings also generally
worked well for theoretically balancing management
objectives in the operating model results, with one
clear exception. By adding the very low productivity
POP to the simulated Gulf of Alaska pelagic habitat
group to form the planktivore feeding group, a sub-
stantial loss of performance was noted. This suggests
that unlike taxonomic groupings, aggregates by
feeding mode may be less likely to have similar pro-
ductivity. Further refinements to the feeding cate-
gories might be useful in addressing this problem.

Our fairly optimistic outcomes may reflect the fact
that we had a maximum of 10 species in a complex.
In practice, species complexes may contain more
than 10 species, many of which are data poor. For
example, in the Gulf of Alaska Fishery Management
Plan (FMP) there are 12 species complexes identi-
fied, with over 10 species in the non-target com-
plexes other skates (11), other slope rockfish (17),
and sculpins (39; NPFMC 2011). In the New England
and Mid-Atlantic regions, there are 9 and 7 FMPs,
respectively, with several managed as various stock
complexes, including 7 skate species in a complex, 5
hake stocks in a small-mesh plan, 4 small pelagic in a
plan, and 19 groundfish in a multispecies plan. These
plans contain 27 and 13 managed species, respec-
tively, excluding any state-managed, non-target or
protected species. These are mainly taxonomic
aggregates, so the species within them should be
broadly comparable in terms of productivity. Perhaps
future simulations exploring the effect of the number
of interacting species in a community could provide
further insight, although the cumulative effect of spe-
cies interactions on BRPs may not increase with com-
plex size if not all interact strongly (sensu Gamble &
Link 2009). However, based on our results we sus-
pect that the tradeoff between yield and biodiversity

could increase as complexes include more species,
magnifying potential differences in productivity, spe-
cies interactions, and sensitivity to environmental
variability.

Our results support the recent definition of ap -
propriate management aggregates for US fisheries,
where ‘stock complex’ is defined as ‘a group of stocks
in an FMP that are sufficiently similar in geographic
distribution, life history, and vulnerability to the fish-
ery that the impacts of management actions on the
stocks in the complex is similar (Federal Register
2008). For example, the ‘other species’ complex in
the Gulf of Alaska which contained all species of
skates, sharks, sculpins, squids, and octopuses
(Reuter et al. 2010) was recently split into taxonomic
complexes to better manage these species with
widely divergent productivity. Based on our results,
we suspect there will be additional benefits of this
action in improving yield and protecting biodiver -
sity because elasmobranchs, sculpins, and cephalo -
pods also have very different sensitivities to environ-
mental change and roles as predators, prey, and
competitors.

Environmental impacts

Our simple form of simulated environmental forc-
ing showed considerably varied effects across spe-
cies and aggregates, in some cases dwarfing the
effects of species interactions. In particular, assess-
ments conducted on individual stochastic runs re -
sulted in widely divergent BRPs for several Georges
Bank species and aggregates, such that including the
combined impacts of environment and species inter-
action in precautionary reference points appears crit-
ical. Environmental variability also exaggerated the
assessment bias which overestimated some BRPs for
pelagics (see discussion above of aggregate perfor-
mance). However, the asymmetry in the stochastic
envelopes around yield curves suggests that low fish-
ing mortality rates in general can buffer against envi-
ronmental uncertainties, whereas high fishing mor-
tality rates exacerbate environmental uncertainty. In
surplus production models, this can be explained by
the fact that the intrinsic rate of growth r, and there-
fore also its variability, increasingly influence the
rate of population change for a stock the further that
stock is from its carrying capacity. In nature, both
fishing alone (Hsieh et al. 2006) and fishing com-
bined with environmental fluctuations (Shelton &
Mangel 2011) have been shown theoretically to
increase the variability in exploited fish stock bio-
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mass. Changes in demographic rates were found to
be the most likely explanation for the effect of fishing
alone (Anderson et al. 2008), and environmentally-
driven biomass variability increased further as fish-
ing neared FMSY (Shelton & Mangel 2011), both con-
sistent with our simulation results. The magnifying
effect of fishing on variation caused by environmen-
tal variability and downstream impacts on BRPs
could be further investigated with refinements to our
operating and assessment models. In particular, the
effects of more complex and realistic forms of envi-
ronmental variability (e.g. temporal autocorrelation,
regime shifts) may have more dramatic effects on
productivity and resulting BRPs. These studies com-
bined with ours show that without at least consider-
ing environmental or ecological effects, single spe-
cies or aggregate BRPs run the risk of misinforming
the status of stocks, with stocks potentially being
unknowingly overfished.

Simple assessment performance

The simple stock assessment method we employed
generally underestimated the ‘true’ FMSY rate based
on the intrinsic growth rate, but estimated carrying
capacity well for most groups. Although the assess-
ments did not explicitly attempt to account for spe-
cies interactions, the F = 0 species trajectories in -
cluded these effects. It is encouraging that these
aggregate models, fit in ignorance of species interac-
tions, tended to underestimate rather than overesti-
mate FMSY for deterministic assessments; however,
we do not suggest that this will always be the case
(see for example the discussion of the Georges Bank
pelagic habitat group above). Further, aggregated
models can show resilience not present in full models
of all interactions including weak diet links (Pinnegar
et al. 2005); this optimism may not always be appro-
priate to the underlying dynamics. In particular, our
stochastic results discussed above demonstrate how
an assessment under environmental variability may
greatly overestimate biological reference points for
certain species and aggregates. Therefore, it remains
important to test the results of multiple assessments
simultaneously within the larger system to evaluate
system-wide effects, whether the assessments are for
single species (Walters et al. 2005) or for aggregates.

We note also that the simulated ‘data’ we had to fit
our assessment model was vastly better than what
may exist in reality for data-poor stocks, yet it was
still unable to estimate all parameters and showed
slight bias. Surplus production models are most often

fit to time series of catch and biomass (as in Bundy et
al. 2012, Lucey et al. 2012, and Holsman et al. 2012,
all in this Theme Section), in contrast to our method.
We simulated time series of species biomass with no
fishing such that populations recovered to carrying
capacity, and then we fit logistic models to these
curves to focus on aggregation effects. Clearly, this
situation is rare in practice. Before implementing
management based on aggregate groups in a partic-
ular ecosystem, further simulation testing with more
realistic ‘data’ and assessments is recommended.

Management applications

Managing a few well-designed species complexes
may be much simpler than tracking the status of
many (even hundreds of) individual species, espe-
cially if fisheries are managed on short temporal
scales. For practical applications which may further
simplify fishery management, at least one additional
aggregation type should be considered: fishery-
 specific aggregations. Many species are caught to -
gether in fishing gear that is not equally effective at
catching all species it encounters; this type of infor-
mation could be included in future analyses. Fishery-
specific BRPs could then be developed that account
for the reality of mixed-species fisheries as well as
the ensemble of productivities and interactions in the
catch. In addition, for a particular ecosystem, simu -
lations should include environmental variability re -
flecting the in situ observations to give more specific
advice on appropriate reference points and manage-
ment aggregations.

In ecosystems with fewer data resources, our
approach could be modified to provide more general
advice on aggregating species to balance yield and
biodiversity. For example, predictions of the simula-
tion models could be made more general by parame-
terizing hypothetical fish communities and their
interactions using allometric-trophic-network princi-
ples (Berlow et al. 2009). Reasonable trophic network
structures can be simulated based on macroecologi-
cal patterns relating species’ body sizes, abundances,
and trophic positions (e.g. Cohen et al. 2003, Jonsson
et al. 2005, Hall et al. 2006, Romanuk et al. 2011),
with species interactions strengths based on meta-
bolic theory (e.g. Yodzis & Innes 1992) and empirical
consumer-resource, body-size relationships (e.g.
Brose et al. 2006). Added to this would be different
species productivities, constrained by empirical pat-
terns relating life histories to body size (e.g. Wine-
miller & Rose 1992, Patrick et al. 2010).
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CONCLUSIONS

Our simulations suggest that it is possible to
achieve multiple EBFM objectives by managing
aggregate species groups. The general strategy of
aggregating species into complexes based on taxon-
omy, habitat, foraging, size or other rules can work
well for balancing the objectives of yield and biodi-
versity under certain conditions. Most importantly,
species of similar productivity, interactions, and sen-
sitivity to environmental perturbations should be
aggregated to optimize both management objectives.
In this simple example, all aggregation types per-
formed reasonably well, with taxonomic aggregates
performing better than other aggregates across both
simulated ecosystems. Our very simple assessments
generally underestimated the ‘true’ MSY when we
didn’t explicitly account for species interactions.
Realized equilibrium yields based on these assess-
ments generally fell at assessed MSY or at the oper-
ating model ‘true’ MSY if the assessment overesti-
mated MSY relative to truth.

However, caution is warranted with applying
aggregate BRPs, as also shown by our results and as
noted by many previous authors (e.g. Ricker 1975,
Larkin 1976, Mace 2001). Poor aggregations sacrifice
biodiversity for yield, leading to severely depleted (or
extinct) stocks within the aggregate, as well as more
subtle effects such as loss of genetic diversity (e.g.
Smith et al. 1991). In particular, expecting similar
performance of aggregation types across ecosystems
without some basic knowledge of the species life his-
tory, interaction strengths, and environmental sensi-
tivity is a poor strategy. For example, the plankti-
vores group displayed either poor theoretical or
assessment performance in each of our simulated
systems. Therefore, we recommend careful attention
to the basics in assembling species complexes: com-
bine similar productivity, followed by consideration
of potential environmental sensitivity and strength of
species interactions. Then, in managing species com-
plexes, our results show that modest reductions from
aggregate FMSY have the dual benefits of maintaining
biodiversity and buffering against environmental
uncertainty.
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INTRODUCTION

Ecosystem-based fisheries management (EBFM)
has become a dominant paradigm of fisheries science
and management, with calls and justifications for

EBFM (Link 2002a,b, Garcia et al. 2003, Pikitch et al.
2004) being increasingly replaced by evaluations of
and practical suggestions for its implementation (Link
2010, Ellis et al. 2011, Essington & Punt 2011, Hilborn
2011, Rice 2011). It is now clearly recognized that the
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sound management of fisheries requires a considera-
tion of broader factors that influence marine ecosys-
tems. As such, an improved understanding of the
drivers of ecosystem dynamics that can influence
fisheries resources is required.

Although there are multiple drivers that can influ-
ence ecosystem dynamics, we focus here on 3 main
processes that affect marine fish productivity: biophy -
sical (environmental), exploitative (fisheries), and
trophodynamic (species interactions) factors (Link et
al. 2010a). We refer to these as the production ‘triad’
of drivers because they represent dominant themes of
research to understand variation in productivity
within and across ecosystems (Fig. 1). Although each
is clearly important individually, rarely has the im pact
of these multiple drivers been assessed simultane-
ously. The work synthesized here results from several
workshops (Link et al. 2010a, Gaichas et al. 2012a,
this Theme Section [TS]), all of which used the triad as
a central, operating hypothesis questioning how eco-
system dynamics influence fisheries production.

Fisheries production is an important marine ‘eco-
system service’ worldwide, with economies and social
fabrics constructed around that production (Holm-
lund & Hammer 1999, Allison et al. 2009, Bar ange et
al. 2010, Garcia & Rosenberg 2010, Coult hard et al.
2011, Longhurst 2010). Estimating the productivity of
fish populations is an important step in the sound
management of fisheries targeting those species.
Integrating information on key covariates of produc-
tion and how production scales across different levels
of biological information are therefore key steps
toward implementing EBFM. Several studies have

already explored those features that can influence
fisheries production individually (e.g. Beaugrand et
al. 2003, Platt et al. 2003, Koen-Alonso & Yodzis 2005,
Lehodey et al. 2006, Chassot et al. 2007, Mueter et al.
2009, Steele et al. 2011). We suggest that extending
these approaches to compare the impact of multiple
factors simultaneously is one way to improve our
understanding of such production.

An essential element of comparative ecosystem
analysis is the development of a common analytic
platform that produces a standardized measure to
enable adequate comparisons across ecosystems.
The need for such a standardized method precludes
the application of complex, detailed models tailored
to the specifics of any particular ecosystem and in -
stead  favors simpler, abstract representations of key
ecolo gical processes. In ecology, simple density-
dependent population models have commonly proved
to be use ful in this type of application; in fisheries
ecology, these approaches are easily adapted to also
account for removals from fisheries, using models
commonly called surplus production models (SPMs).
These models relate the production of a population to
the current population size, intrinsic rates of produc-
tivity, and density-dependent effects. Although there
has been debate about the applications of such mod-
eling approaches, particularly regarding assump-
tions or perceptions of equilibrium and lack of age-
structured  dynamics (Mohn 1980, Ludwig & Walters
1985, 1989, Punt 2003), there is consensus that they
play a useful and important role in ecology in general
(Mangel et al. 2006) and fisheries science in particu-
lar (Ludwig & Walters 1985, 1989, National Research
Council 1998). Other benefits of SPMs are noted by
Gaichas et al. (2012a). Importantly for this applica-
tion, the data inputs to conduct SPM are relatively
simple and often readily available across ecosystems.
Moreover, SPMs are often used to derive common
biological reference points (BRPs); classic examples
include maximum sustainable yield (MSY) and the
biomass or fishing rates at MSY (BMSY and FMSY

respectively), which are used to assess the status of
exploited stocks. Thus, the reference points gener-
ated by these models provide familiar outputs that
serve as a consistent platform for comparison of fish-
eries production across ecosystems and at different
levels of ecosystem aggregation (e.g. species, aggre-
gated foraging guild or habitat group, or full system).

Marine ecosystems are complex and respond to ex-
ternal drivers at multiple temporal, spatial, and orga-
nizational scales. This inherent complexity precludes
an experimental approach at appropriate spatio-tem-
poral scales; thus, to explore the questions addressed
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here, a comparative approach is required (Murawski
et al. 2010). Placing ecosystem responses into a
broader context enables the elucidation of both com-
mon, generic patterns and processes that are unique
to particular ecosystems. Our objectives here are to
highlight the fundamental features of marine ecosys-
tems that emerged from the comparative ana lyses
presented in this TS. Here, we synthesize that body of
work, highlighted as major themes in the sections be-
low, to emphasize major findings that are apt to be
valuable and in for ma tive for EBFM and may indeed
be fundamental features of marine ecosystems.

PATTERNS IN EMPIRICAL INFORMATION

In compiling the database of catch, biomass, and
environmental time series for this comparative work
(for data descriptions, see Bundy et al. 2012, Fu et al.
2012, Pranovi et al. 2012, Gaichas et al. 2012a, all in
this TS) (Table 1 lists the main species con sidered),
several key empirical relationships were identified
across the ecosystems (Fig. 2) prior to the application
of production models. Fu et al. (2012) com pared the
relative importance and effect of fisheries, trophody-
namic, and biophysical drivers on a range of metrics
across ecosystems. The results indicate that each
component of the triad of drivers was important for
all of the studied ecosystems, as found in other stud-
ies (e.g. Coll et al. 2010, Link et al. 2010a,b); how-
ever, the relative importance of each driver and the
indicators they most affected varied among ecosys-
tems, suggesting that an examination of a suite of
indicators and drivers is required. Temporal variabil-
ity in derived metrics of fish biomass and fisheries
catches across ecosystems indicated distinct differ-
ences between the Pacific and Atlantic Ocean basins
for many but not all ecosystem indicators (Fu et al.
2012). Some similarity among these and related eco-
systems within an ocean basin has been shown
before, with coherency in basic biological responses
readily and repeatedly observed (e.g. Link et al.
2009, Megrey et al. 2009, Nye et al. 2010).

A fundamental feature derived from these data is
the sigmoidal relationship of cumulative biomass
curves across trophic levels (Pranovi et al. 2012). It
appears from the generality of the patterns observed
that biomass tends to accumulate, either proportion-
ally or in absolute magnitude, at middle trophic lev-
els; this is apt to be a common feature in most marine
ecosystems. As biomass accumulates across trophic
levels, the sigmoidal shape appears to be robust
across ecosystems, time, and many very distinct

types of taxa. This common feature could potentially
be used as a system-level BRP. For instance, as per-
turbations occur in a given ecosystem, the inflection
point and steepness parameters reflect such changes
by flattening out the curve (Fig. 3) (Pranovi et al.
2012), indicative of a potential system-level threshold
similar to that presented in other attempts to define
ecosystem overfishing (e.g. Gascuel et al. 2005, Link
2005, Tudela et al. 2005, Coll et al. 2008, Libralato et
al. 2008). The value of modelling sigmoidal biomass
accumulation curves is that it is a simple derivation of
readily extant data, not re quiring involved multi-spe-
cies, food web, or ecosystem models. As such, this
might be an important fundamental feature that
could be useful for fisheries management, especially
EBFM.

PROMINENCE AMONG DRIVERS

No single driver emerged as consistently dominant
across all ecosystems, based on both direct empirical
descriptions (Fu et al. 2012, Pranovi et al. 2012) and
statistical modeling (Bundy et al. 2012, Holsman et al.
2012, this TS). Measures of exploitation and broad-
scale climate indices were some of the more consis-
tently prominent drivers that emerged across all eco-
systems, but no single factor was the most dominant
across all ecosystems. However, while not the domi-
nant signal, temperature affected production in
nearly all systems based on both empirical and full-
system SPM approaches (Bundy et al. 2012, Fu et al.
2012). These observations are consistent with similar
empirical studies of some of these and other ecosys-
tems (Coll et al. 2010, Link et al. 2010b).

Including environmental covariates in the SPM
similarly exhibited no obvious pattern indicating the
major driver influencing fisheries production (Bundy
et al. 2012, Holsman et al. 2012). The prominence
among environmental, tro phic, and fishing metrics
all varied across the eco systems, levels of aggrega-
tion, and type of model fitting. However, inclusion of
such covariates almost always lowered estimates of
key BRPs, especially MSY (e.g. Bundy et al. 2012,
Holsman et al. 2012). Simulation studies (Gai chas et
al. 2012b, Gamble & Link 2012, both in this TS) also
exhibited lower MSY and associated BRP estimates,
albeit with higher variances about them, when envi-
ronmental or eco logical factors were in cluded. Fur-
thermore, simulations showed that climate change
can have larger effects than species interactions,
which can have larger effects than fisheries removals
(Gaichas et al. 2012b, Gamble & Link 2012).
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                                          EBS    GOA    HS                                                        NL    SGOSL   ESS   WSS   GOM   GB    North   BS       Norw.

Pacific Ocean                                                             Atlantic/Arctic Ocean                                                                                                         
Alaska plaice                      X                                    Aesop shrimp                      X                                                                                              
Arrowtooth flounder          X         X        X             Alewife                                             X          X                                                                    
Curlfin sole                                                X             American lobster                             X          X        X                                                         
Dover sole                                       X        X             American plaice                 X          X          X                    X        X                                   
Dusky rockfish                               X                        Atlantic argentine                                         X                                                                    
English sole                                                X             Atlantic butterfish                                                                          X                                   
Flathead sole                      X                    X             Atlantic cod                        X          X          X        X         X        X         X       X             
King crab                            X                                    Atlantic hagfish                                            X                                                                    
Lingcod                                                      X             Atlantic halibut                   X          X          X                    X        X                                   
Northern rock sole             X                                    Atlantic herring                  X          X                     X         X        X         X       X            X
Northern rockfish                           X                        Atlantic mackerel                                                    X         X        X                                  X
Pacific cod                           X         X        X             Atlantic redfishes (NS)                    X          X        X         X        X                                   
Pacific halibut                     X         X        X             Atlantic wolffish                 X          X                                 X        X                                   
Pacific herring                    X         X        X             Beaked redfish                   X                                                                              X             
Pacific ocean perch                        X                        Blue hake                            X                                                                                              
Pacific salmon                                X                        Blue whiting                                                                                                                       X
Pacific sanddab                                         X             Capelin                                X          X                                                                 X             
Petrale sole                                                X             Common sole                                                                                             X                       
Quillback rockfish                                     X             Cusk                                                              X        X                                                         
Rex sole                                           X        X             Eelpouts (NS)                      X                                                                                              
Rougheye rockfish                         X                        European plaice                                                                                         X                       
Sablefish                             X         X        X             Fourspot flounder                                                                X                                              
Sand sole                                                    X             Golden redfish                                                                                                     X             
Silvergray rockfish                                    X             Goosefish                                                       X        X         X        X                                   
Slender sole                                               X             Greenland cod                                 X                                                                                 
Southern rock sole                                    X             Greenland halibut              X          X          X                                                    X             
Spotted ratfish                                           X             Haddock                             X          X          X        X         X        X         X       X             
Tanner crab                        X                                    Jonah crab                                                     X                                                                    
Walleye pollock                  X         X        X             Lesser sandeel                                                                                           X                       
Yellowfin sole                     X         X                        Longfin squid                                                                      X        X                                   
Yellowtail rockfish                                    X             Longhorn sculpin                                          X        X                                                         
                                                                                   Lumpfish                             X                        X                                                                    
                                                                                   Northern prawn                 X                                                                                              
                                                                                   Norway pout                                                                                              X                       
                                                                                   Ocean pout                                                    X                    X        X                                   
                                                                                   Pandalid shrimps (NS)                                 X                                                    X             
                                                                                   Pollock                                                           X        X         X        X         X       X             
                                                                                   Rainbow smelt                                 X                                                                                 
                                                                                   Red hake                                                       X        X         X        X                                   
                                                                                   Rock crab                                         X          X                                                                    
                                                                                   Roughhead grenadier        X                                                                                              
                                                                                   Roundnose grenadier         X                                                                                              
                                                                                   Saithe                                                                                                                   X             
                                                                                   Scup                                                                                     X                                              
                                                                                   Sea scallop                                                    X        X                                                         
                                                                                   Sea raven                                                                                                                             
                                                                                   Shad                                                               X                                                                    
                                                                                   Shortfin squid                                  X                                 X        X                                   
                                                                                   Silver hake                                                    X        X         X        X                                   
                                                                                   Smooth dogfish                                                                              X                                   
                                                                                   Spotted wolffish                 X                                                                                              
                                                                                   Squids (NS)                                                   X        X                                                         
                                                                                   Summer flounder                                                                X        X                                   
                                                                                   Toad crabs (NS)                               X                                                                                 
                                                                                   White hake                         X          X          X        X         X        X                                   
                                                                                   Whiting                                                                                                       X                       
                                                                                   Windowpane                                    X                                 X        X                                   
                                                                                   Winter flounder                               X          X                    X        X                                   
                                                                                   Witch flounder                    X          X          X                    X        X                                   
                                                                                   Wolffishes (NS)                                             X        X                                                         
                                                                                   Yellowtail flounder             X          X          X                    X        X                                   

Both oceans                                                               Both oceans                                                                                                                         
Butter sole                                                  X             Butter sole                                                                                                            X             
Skates (NS)                                                X             Skates (NS)                                                   X        X         X        X                                   
Snow crab                           X                                    Snow crab                           X          X          X                                                                    
Spiny dogfish                                             X             Spiny dogfish                                                X        X         X        X                                   

Table 1. Species list for each ecosystem used in the sum of the single-species (SS) maximum sustainable yield (MSY) analysis shown in
Fig. 4 (cf. Bundy et al. 2012, their Table A1 and Pranovi et al. 2012, their Table 2 for more details). EBS: Eastern Bering Sea; GOA: Gulf
of Alaska; HS: Hecate Strait; NL: Newfoundland; SGOSL: southern Gulf of St. Lawrence; E/WSS: eastern/western Scotian Shelf; 

GOM: Gulf of Maine; GB: Georges Bank; North: North Sea; BS: Barents Sea; Norw.: Norwegian Sea. NS: species not specified
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Fig. 2. Locations of the ecosystems included in the present comparative analyses
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Fig. 3. Example of changes to the biomass accumulation curves across trophic levels over time for the Gulf of St. Lawrence ecosystem
(adapted from Pranovi et al. 2012). Vertical dotted (green) line: trophic level intercept, or inflection point; horizontal dotted (orange) 

line: biomass intercept or starting biomass level; diagonal dotted (red) line: tangent of the curve through the inflection point
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One fundamental feature that did emerge from this
work is that, despite the lack of a consistent dominant
driver across all ecosystems, the addition of biophys-
ical or ecological covariates often improved the fit of
SPMs (Bundy et al. 2012, Holsman et al. 2012). This
implies that multiple factors, in addition to fishing,
can influence fisheries production, and those factors
should no longer be omitted from exploration, model-
ing, and provision of fisheries management advice,
consistent with calls for EBFM. Moreover, although
the inclusion of the covariates improved model fits,
they also altered estimated reference points. This
suggests not only that environmental variability can
be an important source of observation error affecting
survey data, but also that failure to include biophysi-
cal and trophodynamic covariates can be an impor-
tant source of process error in assessments.

Clearly, further work is warranted to determine if
there are major, dominant, consistent drivers as a
fundamental feature of all marine ecosystems (Long -
hurst 2010). It may very well be that all facets of the
triad can be important under any given situation, that
they have different time scales, that they all have the
potential to be dominant at any given time, and that
all are occurring at various levels of magnitude
within an ecosystem (Hunt & McKinnell 2006). How-
ever, determining what conditions make one set of
drivers more prominent than others, and why, re -
mains to be more fully elucidated. For now, the pres-
ent work clearly indicates that including covariates
in investigations of fishery production is important,
but that the covariates must be tailored to individual
systems. Temperature data in particular are widely
available and have improved fits in many situations
across systems; thus, perhaps future investigations
could include a thermally related and relevant co -
variate as a matter of course.

AGGREGATION OF FISHERIES PRODUCTION

This TS is some of the first work to systematically
examine production at intermediate levels of aggre-
gation between single species (SS) and full systems
using a comparative approach. Using both simulation
and SPM fitting approaches, the relative productivity
of aggregated groups becomes apparent. For exam-
ple, aggregate pelagic habitat groups nearly always
had higher MSYs than the aggregate demersal
groups (Gaichas et al. 2012b, Lucey et al. 2012, this
TS). Similarly and not surprisingly, planktivores were
nearly always the most productive feeding aggre-
gate. However, the size-based groups performed

counter-intuitively, with aggregates of small species
showing generally higher productivity than large
species, but with medium species less productive
than larger sizes. Similarly, simulation results based
on parameters for Georges Bank showed large spe-
cies as the most productive. Overall, habitat-based
groups had the most consistent production patterns
in the SPM fitting study (Lucey et al. 2012), while tax-
onomic aggregates appeared to perform well to bal-
ance dual management objectives of maximal yield
and minimal depletion (Gaichas et al. 2012b; see next
section).

Aggregate groups at intermediate levels of organi-
zation may also provide effective ecosystem indica-
tors. Changes in aggregate biomass for particular
groups (gadoids or clupeids) were more indicative of
ecosystem or fishery change than total system bio-
mass in empirical studies (Fu et al. 2012). This infor-
mation on the productivity of aggregate groups may
be useful in setting BRPs in areas or for groups where
information is limited; the patterns in relative pro-
ductivity reported here could generally inform such
data-poor situations.

IMPLICATIONS FOR ECOSYSTEM-BASED 
FISHERIES MANAGEMENT

An emergent fundamental feature from simulation
modeling is that enforcing tradeoffs across ecosys-
tem-use objectives may not be as bad as was once
thought. Management strategy evaluation simula-
tions demonstrate that the loss in yield required to
maintain conservation objectives is usually small, on
the order of <10% of the maximal system yield
(Gaichas et al. 2012b, their Fig. 2). This is consistent
with prior studies of some of these and other ecosys-
tems (Worm et al. 2009). A key implication is that
avoiding stock collapse and maximizing yield do
indeed form a set of contrasts, but the differences in
optimizing both goals may be rather small. Foregoing
a small fraction of yield to avoid endangering tar-
geted (or even non-targeted or endangered) species
has other benefits as well, including market dynam-
ics that may compensate (in terms of value) for what
was not landed (in terms of volume) (Edwards et al.
2004). Clearly, further simulations, analytical model-
ing, empirical evaluations, and ultimately fitting to
multiple objective-function frameworks with explicit
social implications are warranted, but these pre -
liminary results indicate a probable win-win scenario
for fisheries management, consistent with calls for
EBFM.
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A significant finding from the modeling work re-
ported in this TS is that the ranges of system-level
MSY values across these ecosystems are usually
within 1 to 5 t yr–1 km−2 (Bundy et al. 2012, their
Fig. 5). This may also be a key fundamental feature of
northern hemisphere, boreal or temperate ecosys-
tems. Certainly, a 4 to 5-fold difference can be impor-
tant, but it is a previously unspecified range and
likely represents a range of production within which
these types of ecosystems may be bound. Estimates of
other BRPs, especially BMSY, appear to be similarly
constrained within a re latively limited range of values
(5 to 20 t yr–1 km−2). Although this represents poten-
tially up to a 4-fold difference, our point in highlight-
ing it is that this range is still within an order of mag-
nitude, not across several. Whether this observation
will hold for other northern hemisphere, temperate or
boreal ecosystems is unknown. Future efforts to ex-
tend and explore this approach should certainly in-
clude southern hemisphere and tropical examples.
Yet, we suspect the range will not greatly expand for
3 reasons. First, as we conducted the workshops,
when we added other ecosystems into this body of
work, they tended to fall within this reported range.
Second, global meta-analyses that have examined
landings data (slightly distinct from the biomass and
landings data used here) all tended to estimate
annual yields within similar ranges when examined
on an areal basis (Ryther 1969, Pauly & Christensen
1995, Ware & Thomson 2005, Chassot et al. 2010), al-
though the range presented here is smaller than
those of other studies. Third, the primary production
to support fisheries production in these
mid- to higher latitude systems gener-
ally falls within a similarly limited
range and, although variable, has not
fundamentally changed (orders of)
magnitude over time. We do not know
whether this observation will hold for
other types of marine ecosystems; this
finding clearly merits further examina-
tion. Additionally, the spatial extent of
the ecosystems examined here was
generally quite large; whether these
patterns would be retained in smaller
ecosystems similarly merits examina-
tion, particularly to ensure that major
production features or locales are not
omitted. Given these caveats, if this
pattern holds, it represents a sig ni fi -
cant basis for developing limits to fish-
ery removals from ecosystems, even if
only for the northern ecosystems in -

cluded in the studies in this TS (Gaichas et al. 2012a).
This empirically confirmed range should serve as one
of the more robust system-level BRPs, ultimately lim-
iting what can be produced, and thus harvested, from
an ecosystem. Ultimately, if further research supports
this limited range of sustainable harvests, expecta-
tions of fisheries yields from all stakeholders should
be tempered accordingly.

Another major finding is that with increasing levels
of aggregation, the summation of yields at lower lev-
els of aggregation is almost always higher than yield
estimates executed at the higher levels (Fig. 4)
(Bundy et al. 2012, Holsman et al. 2012, Lucey et al.
2012. For instance, total system-level estimates of
yield are always lower than sums of similar estimates
at the functional guild or habitat aggregated levels.
Further, the total system-level estimates of yield are
always lower than the sum of such yields estimates at
the SS level. Certainly the types and levels of inter-
mediate aggregations can be important and alter the
results (Gaichas et al. 2012b, Lucey et al. 2012), and
some of the aggregate group summations can exceed
the SS sums (due to vagaries of how productivity is
allocated across reinforcing species in an aggregate
group), but certainly at the system level and SS level,
the fundamental pattern remains. Although noted
multiple times in the past (e.g. May 1975, Pope 1975,
1979, Brown et al. 1976, Fukuda 1976, May et al.
1979) and more recently (Walters et al. 2005, Steele
et al. 2011, Tyrrell et al. 2011), this fundamental
inequality holds:

�SSMSY > EcosystemMSY
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We recognize that from an energetics perspective
this is not surprising, as the more aggregated levels
already account for species and technical inter -
actions (Brown et al. 1976, May et al. 1979, Tyrrell et
al. 2011). However, we assert that further empirical
demonstration of the robustness of this pattern
should reinforce to both managers and stakeholders
that ecosystem-based approaches to management
will inevitably involve addressing trade-offs (Link
2010). Moreover, this fundamental feature also rep-
resents a way to further augment and refine system-
level BRPs for a specific ecosystem beyond the 1 to
5 t yr−1 km−2 rule of thumb noted above. Applying
this approach would require consideration of the spe-
cies mixes involved, such that managers are cog-
nizant of the level of fishing those species and the
system had already experienced, and of the need for
any particular tradeoffs or compensation among spe-
cies and ag gregate groups. This would need to be
done to ensure functional redundancies as well as
affording specific stocks or aggregate groups ade-
quate protection, particularly if the stocks were
fished at low levels of abundance or productivity or
otherwise warranted special consideration (Gaichas
et al. 2012b). This in equality is one of the most con-
sistent emergent features synthesized from these
studies, as estimating total system-level yields is now
demonstrated to be quite feasible, consistent with
calls for EBFM. Continuing to estimate SS yields still
has its place, but doing so without recognizing the
system-level limitations and aggregated properties
of a fished community is no longer defensible.

A final key finding from comparing the results of
production models to other models in the Gulf of
Maine is that production models can give similar
results as more complex age-structured models (Fo -
garty et al. 2012, this TS). This suggests that apply-
ing the SPM approach to data-poor species or entire
ecosystems with limited sampling resources can
give reasonable advice for ecosystem-based fishery
management.

SUMMARY

We reiterate the value of comparative studies
(Murawski et al. 2010), as few marine ecosystems at
these scales are amenable to experimental work, and
even ecosystem modeling has its limitations, espe-
cially regarding the copious data required to validate
a wide set of scenarios. We also note the value of sim-
pler, integrative approaches, such as SPM. Keeping
comparison platforms to approaches that are rela-

tively simple and feasible and that leverage extant
data are critical for conducting ecosystem compar-
isons. Here, the features that emerged from the con-
trasts and comparisons across the studied ecosystems
shed insight into some common patterns and pro-
cesses of marine ecosystems but would likely have
not emerged from examination of those systems in
isolation, via process-oriented studies or similar
methods.

We note that all parts of the triad of drivers (envi-
ronment, fisheries, and trophodynamics) (Fig. 1) can
be important. Clearly, all have the potential to be
important, and all operate to some degree in each
system. Which drivers dominate under which condi-
tions is still undetermined. Further work to elucidate
a set of ‘assembly rules’ under which specific drivers
are most prominent is warranted.

Several fundamental features emerge from this TS
and related works. We particularly note the sig-
moidal biomass accumulation curves across trophic
levels, the improvement of model fits by inclusion of
environmental or ecological covariates, the inequal-
ity of system MSY versus aggregated sums and SS
sums of MSY, the 1 to 5 t yr−1 km−2 yield rule of
thumb, and that tradeoffs among fishery- sector and
protected-resources objectives may not be as harsh
as was originally thought. Certainly, there may be
other features that will emerge from future compara-
tive ecosystem studies, and the ones noted here merit
continued examination. Yet, we assert that these
emergent features have the potential to alter our
understanding of marine ecosystem dynamics and
improve how we manage fisheries production therein.
As practitioners continue to implement EBFM (Pitcher
et al. 2009, Link 2010, Essington & Punt 2011), a
robust data set of the features and properties of eco-
systems and how they influence fisheries production
shall be increasingly important. We trust that what
we have synthesized here represents one step
toward that goal.
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