
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 409: 267–300, 2010
doi: 10.3354/meps08607

Published June 23

INTRODUCTION

Over the past decades an intensive collaboration be-
tween chemists and ecologists has resulted in an in-
creasing number of studies which have combined mod-
ern chemical techniques with ecologically relevant
experiments and theories (Pawlik 2000, Hay 2009).
Thousands of marine secondary metabolites have been
identified (Hay 1996). These compounds have been
shown to play a major role in mediation of diverse eco-
logical interactions (Dworjanyn et al. 1999). Chemical
ecology has provided significant insights into the ecol-
ogy, evolution and organization of marine populations,
communities, and also into the function of marine

ecosystems (Hay 2009). Selected aspects of marine
chemical ecology have been frequently reviewed with
a focus on specific taxonomic groups or systems (see
Hay 2009 and references therein). Thus, the establish-
ment and composition of communities on surfaces and
on bodies of organisms (epibiosis, biofouling) and the
processes involved have been described by several au-
thors (Wahl 1989, 2008, Krug et al. 2006, Qian et al.
2007, Harder 2009, Hay 2009). Sessile invertebrates
such as tunicates, cnidarians, bryozoans, barnacles,
and sponges were the model systems for these experi-
ments. With respect to the chemical ecology of algae,
investigations were focused either on the capabilities of
the macroalgae for chemical defense against grazers or
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on the communication between algae, e.g. for repro-
ductive purposes (see Cronin & Hay 1996, Paul &
Puglisi 2004, Amsler 2008 and references therein,
Macaya & Thiel 2008, Paul & Ritson-Williams 2008). A
few interesting studies have been presented on fungi,
microalgae and protozoa as associates of macroalgae
(see Harder 1999, Hellio et al. 2002, Raghukumar 2002,
Kohlmeyer & Volkmann-Kohlmeyer 2003, Lam et al.
2008b). Detailed knowledge of the interaction of algae
with their associated microbes and among microbes on
algal surfaces and tissues is still lacking (Steinberg et
al. 1997, Steinberg & de Nys 2002, Kubanek et al. 2003).
Therefore, this review will focus on specific interactions
between macroalgae and bacteria.

COLONIZATION OF MACROALGAL SURFACES 
BY MARINE MICROBES

Microbial epibiosis

Microorganisms are an essential component of
earth’s biosphere (Whitman et al. 1998). Their number
in aquatic environments is enormous. Seawater con-
tains up to 107 viruses, 106 bacteria, 103 fungi, 103

microalgae, and 10 to 100 microscopic larvae and
spores per ml (Cole 1982, Jensen & Fenical 1994, Engel
et al. 2002, Harder 2009). The aquatic environment
favors the development of microbes and the formation
of biofilms on surfaces (Weinberger 2007). Macroalgae
are especially susceptible to epibiosis because they
live in an environment with strong competition for
space amongst benthic organisms (Hellio et al. 2001,
Harder et al. 2004, Potin et al. 2002, Lam et al. 2008b).
In addition, algal surfaces provide a habitat rich in
organic material. Macroalgae release large amounts
of organic carbon into the surrounding environment,
providing nutrients for microorganisms (Khailov &
Burlakova 1969, Kong & Chan 1979, Bouvy et al. 1986,
Armstrong et al. 2001, Lane & Kubanek 2008) and trig-
gering chemotactic behaviour of bacteria (Bell &
Mitchell 1972, Paul & Puglisi 2004). Most primary
metabolites such as carbohydrates, amino acids, pep-
tides, and proteins are inducers of microbial coloniza-
tion (Steinberg et al. 2002). Hence, the surface of a
macroalga provides a protected microniche favorable
for bacterial colonization and reproduction (Byappana-
halli et al. 2003, Beleneva & Zhukova 2006, Mahmud et
al. 2007, Englebert et al. 2008). For this reason, marine
macroalgae are continuously challenged by microor-
ganisms as well as by grazers (Weinberger et al. 1997,
Bouarab et al. 2001).

The resulting marine microbial communities cover-
ing macroalga are complex and highly dynamic
ecosystems, consisting of a diverse range of organisms

(Holmström et al. 2002, Honkanen & Jormalainen
2005, Krug et al. 2006). Bacteria are dominant among
the primary colonizers of algal surfaces, followed by
diatoms and fungi (Qian et al. 2007, Lam et al. 2008a).

While some macroalgae are heavily colonized, other
algal species in the same habitat remain almost free of
epibionts. Such differences may even be found in
closely related species living in the same habitat, e.g.
in Fucus evanescens which show little epibiosis and F.
vesiculosus which are heavily fouled (Wikström &
Pavia 2004). This indicates the presence of an estab-
lished antifouling defense in only some macroalgal
species (de Nys et al. 1993, Steinberg & de Nys 2002,
Bhadury & Wright 2004, Nylund & Pavia 2005) and, on
the other hand, species-specific contact mechanisms
between algae and bacteria.

Bacterial communities associated with macroalgae

Descriptive studies of bacteria isolated from the sur-
face of macroalgae were reported as early as 1875
(Johansen et al. 1999). The interest in bacterial popula-
tions living in association with macroalgae has
increased during recent decades. We found 107 stud-
ies on bacterial communities associated to a total of 148
macroalgae (36 Chlorophyta, 46 Phaeophyceae, 55
Rhodophyta, 12 undetermined algae) within the last
40 yr (Table 1 & Appendix 1). Bacterial–macroalgal
associations were shown to be widely distributed in
marine habitats (Appendix 1). The number and com-
plexity of these studies increased significantly during
the past decade. This increase can be attributed to the
combined use of improved methods in bacterial cul-
ture, microscopy and molecular biology (Fig. 1). How-
ever, many questions concerning the occurrence, dis-
tribution, persistence and ecological function of the
associated bacteria remain unresolved.
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Fig. 1. Worldwide studies of bacterial communities associated
with macroalgae in the last 4 decades, showing the methodol-
ogy used for the analysis. Data refers to Table 1 & Appendix 1
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Macroalga Bacterial species Source

Chlorophyta
Acrosiphonia sonderi (Kütz.) Kornm. Algibacter lectus Nedashkovskaya et al. (2004e)

Formosa agariphila Nedashkovskaya et al. (2006a)
Mesonia algae Nedashkovskaya et al. (2003)
Pibocella ponti Nedashkovskaya et al. (2005a)
Winogradskyella epiphytica Nedashkovskaya et al. (2005c)
Zobellia russellii Nedashkovskaya et al. (2004b)

Avrainvillea riukiuensis Yamada Tenacibaculum amylolyticum Suzuki et al. (2001b)
Capsosiphon fulvescens (Agardh) Setchell & Gardner Aequorivita capsosiphonis Park et al. (2009)
Caulerpa sp. Microbulbifer epialgicus Nishijima et al. (2009)
Enteromorpha linza (L.) J. Agardh Erythrobacter longus Shiba & Simidu (1982)
Ulva fenestrata Ruprecht Algibacter lectus Nedashkovskaya et al. (2004e)

Arenibacter certesii Nedashkovskaya et al. (2004a)
Arenibacter palladensis Nedashkovskaya et al. (2006b)
Maribacter ulvicola Nedashkovskaya et al. (2004d)
Pseudozobellia thermophila Nedashkovskaya et al. (2009)
Roseivirga ehrenbergii Nedashkovskaya et al. (2005b)
Ulvibacter litoralis Nedashkovskaya et al. (2004c)

Ulva lactuca L. Pseudoalteromonas ulvae Egan et al. (2001a)

Heterokontophyta, Phaeophyceae
Chorda filum (L.) Stackhouse Arenibacter latericius Ivanova et al. (2001)

Winogradskyella thalassocola Nedashkovskaya et al. (2005c)
Ecklonia kurome Okamura Croceitalea dokdonensis Lee et al. (2008b)

Croceitalea eckloniae Lee et al. (2008b)
Flagellimonas eckloniae Bae et al. (2007)

Fucus evanescens C. Agardh Bacillus algicola Ivanova et al. (2004a)
Brevibacterium celere Ivanova et al. (2004b)
Formosa algae Ivanova et al. (2004c)
Pseudoalteromonas issachenkonii Ivanova et al. (2002b)

Fucus serratus L. Cellulophaga baltica Johansen et al. (1999)
Cellulophaga fucicola Johansen et al. (1999)

Kjellmaniella crassifolia Miyabe ‘Fucobacter marina’ Sakai et al. (2002)
Laminaria japonica Areschoug Pseudoalteromonas bacteriolytica Sawabe et al. (1998b)

Winogradskyella eximia Nedashkovskaya et al. (2005c)
Zobellia laminariae Nedashkovskaya et al. (2004b)

Lessonia sp. Alteromonas atlantica Akagawa-Matsushita et al. (1992)
Padina sp. Roseibacillus ponti Yoon et al. (2008)
Pocockiella sp. Microbulbifer variabilis Nishijima et al. (2009)
Saccharina latissima (L.) Lane et al. Kiloniella laminariae Wiese et al. (2009a)
Undaria pinnatifida (Harvey) Suringar ‘Gracilibacillus sp.’ Tang et al. (2009)

Rhodophyta
Delesseria sanguinea (Huds.) Lamour Zobellia galactanovorans Barbeyron et al. (2001)
Gigartinaceae Lacinutrix algicola Nedashkovskaya et al. (2008)

Lacinutrix mariniflava Nedashkovskaya et al. (2008)
Jania sp. Shewanella alga Simidu et al. (1990)
Polysiphonia japonica Harvey Maribacter polysiphoniae Nedashkovskaya et al. (2007)
Porphyra sp. ‘Phycisphaera mikurensis’ Fukunaga et al. (2009)
Unidentified red algae Luteolibacter algae Yoon et al. (2008)

Unidentified macroalgae
Aeromicrobium tamlense Lee & Kim (2007)
Agarivorans gilvus Du et al. (in press)
Agrococcus jejuensis Lee (2008)
Ferrimonas marina Katsuta et al. (2005)
Flavobacterium algicola Miyashita et al. (2010)
Koreibacter algae Lee & Lee (in press)
Labedella gwakjiensis Lee (2007)
Mesonia phycicola Kang & Lee (2010)
Nitratireductor kimnyeongensis Kang et al. (2009)
Paracoccus zeaxanthinifaciens Berry et al. (2003)
Phycicoccus jejuensis Lee (2006)
Phycicola gilvus Lee et al. (2008a)

Table 1. Macroalgae as source of new bacterial species. Quotation marks indicate proposed but not yet validated species
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Phylogenetic studies of epiphytic bacteria provided
an insight into the complex bacterial communities
associated with macroalgae (Penesyan et al. 2009).
Bacterial communities living on marine macroalgae
differ in number and composition of species from those
occurring in seawater (Kong & Chan 1979, Lemos et al.
1985, Mow-Robinson & Rheinheimer 1985, Johnson et
al. 1991, Steinberg et al. 2002, Longford et al. 2007). In
most cases, the epiphytic bacterial communities are
highly specific. Some microbes are found consistently
as epiphytes, e.g. Leucothrix mucor (Bland & Brock
1973). Recently, the variability and abundance of the
epiphytic bacterial community associated with Ulva
australis was investigated using molecular methods.
The results showed that members of the Alphapro-
teobacteria and the Bacteroidetes were a stable part of
the associated bacterial population (Tujula et al. 2010).
Bacterial–macroalgal associations comprised a num-
ber of new bacterial species, genera and even orders,
proving that macroalgae represent a distinct and rich
source of new microbial taxa (Genilloud et al. 1994).
From 36 macroalgal species, 56 new bacterial species
have been isolated (32% from Chlorophyta, 35% from
Phaeophyceae, 12% from Rhodophyta, and 21% from
undetermined algae) (Table 1).

Considering all available evidence, including our
own observations (Staufenberger et al. 2008, Lachnit et
al. 2009, Wiese et al. 2009a,b), it is reasonable to con-
clude that a highly specific association of bacterial
communities with marine macroalgae exists. It has
been proposed that the physiological and biochemical
properties of macroalgae predetermine the composi-
tion of the adhering microbial communities (Beleneva &
Zhukova 2006). Different species of marine algae grow-
ing under the same environmental conditions bear
different bacterial communities, varying in number and
composition. This assumption was investigated, using a
molecular approach, by Lachnit et al. (2009) regarding
the bacterial populations on Delesseria sanguinea, Fu-
cus vesiculosus, Saccharina latissima (formerly Lami-
naria saccharina), and Ulva compressa growing in 2 dif-
ferent habitats. In that study, it was demonstrated that
bacterial communities derived from macroalgae be-
longing to the same species but originating from a
different habitat were more similar than those from dif-
ferent species inhabitating the same ecological niche.
Similar results were obtained by Nylund et al. (2010),
who analyzed 2 localities on the west coast of Sweden
with respect to the bacteria associated with the red
macroalgal species Bonnemaisonia asparagoides, Lo-
mentaria clavellosa and Polysiphonia stricta.

In general, a stable association between host and
microorganisms is observed (Kong & Chan 1979, Shiba
& Taga 1980, Lewis et al. 1985, Johnson et al. 1991);
however, over the seasons or over the life span of the

basibiont the composition of the bacterial communities
may change (Laycock 1974, Hornsey & Hide 1976a,
Sakami 1996, Staufenberger et al. 2008). This has been
demonstrated for bacteria associated with Ascophyl-
lum nodosum, Fucus vesiculosus, Sargassum natans
and Ulva australis (Sieburth & Conover 1965, Sieburth
& Tootle 1981, Hellio et al. 2004, Tujula et al. 2010).
Furthermore, it was reported that the composition of
the bacterial communities varies on different parts of
the thallus, e.g. for Ascophyllum nodosum (Cundell et
al. 1977), Chara vulgaris (Ariosa et al. 2004), and Sac-
charina latissima (Staufenberger et al. 2008) (Fig. 2). In
addition to different structural features of the specific
parts of the algal thallus, these differences may be
explained by a lack of vascular connections in the algal
tissue and by the resulting deficit in efficient resource
translocation (Honkanen & Jormalainen 2005). Various
biological activities (for example antibacterial and
antiherbivory activities) were found in extracts from
different parts of macroalgae which was shown by
unequal concentrations of the different secondary
metabolites throughout the thallus (Hornsey & Hide
1976b, Meyer & Paul 1992, Vlachos et al. 1999, Freile-
Pelegrin & Morales 2004, Macaya et al. 2005). This
effect was shown for a number of metabolites, such as
soluble phlorotannins and halogenated organic com-
pounds (Mehrtens & Laturnus 1997, Koivikko et al.
2005). In the brown alga Dictyota ciliolata, for exam-
ple, the secondary metabolites pachydictyol A, dictyol
B acetate, dictyodial, and sterols were shown to be pre-
sent in higher concentrations in older, less palatable
tissues than in apical meristem (Cronin & Hay 1996).
The same phenomenon was observed in the red
macroalga Neorhodomela larix regarding its content of
bromophenols such as lanosol (Phillips & Towers 1982,
Carlson et al. 1989). Therefore, different allocation and
concentration of the chemical compounds may lead to
different microbial communities at the different parts
of macroalgae (Fig. 2).

Although some of the bacterial–algal interactions
have been discussed earlier, the ecological relevance
of most naturally occurring bacterial communities on
macroalgae remains unclear and in most cases the bac-
terial species involved have not yet been identified
(Duan et al. 1995, Ivanova et al. 2002a). For example,
many coenocytic green macroalgae such as Caulerpa,
Codium, Bryopsis and Penicillus spp. have been shown
to harbour endosymbiotic bacteria, as shown by micro-
scopic studies (Burr & West 1970, Turner & Friedmann
1974, Dawes & Lohr 1978, Rosenberg & Paerl 1981).
However, only in Caulerpa taxifolia could it be shown,
using molecular approaches, that Herbaspirillum sp.-
related bacteria are host-specific endosymbionts
(Meusnier et al. 2001, Delbridge et al. 2004). The char-
acterization of microorganisms associated with algae is
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still at an early stage of development and detailed mol-
ecular studies on microbial communities associated
with macroalgae are rare (Staufenberger et al. 2008).
Studies of macroalgal–microbial interactions have
lagged, mainly for methodological reasons (Largo et al.
1997, Kohlmeyer & Volkmann-Kohlmeyer 2003). Suit-
able tools for the analysis of epiphytic bacterial com-
munities including culture-independent approaches
were not available until molecular techniques were
introduced to this field of research (Fig. 1) (Ashen &
Goff 1998, 2000, Meusnier et al. 2001, Ohkubo et al.
2006, Tujula et al. 2006, Weinberger 2007, Burke et al.
2009). Until now, most of the available information
about bacterial–macroalgal interactions was obtained
from culture studies (Fisher et al. 1998, Skovhus et al.
2004). If we consider that only ca. 1 to 10% of the asso-
ciated bacteria have been cultivated (Jensen et al.
1996), it is reasonable to assume that most of the eco-
logically relevant bacteria are not known so far. The
same is true for their possible susceptibility to naturally

released algal metabolites (Paul et al. 2006). However,
an increasing number of results demonstrate that
chemical interactions determine the bacterial–algal
relationships. The substances on the surface of a
macroalga include exuded secondary metabolites and
extracellular exopolymers. As soon as algal metabo-
lites are degraded by the associated bacteria, the
chemical cocktail may be further enriched (Lachnit et
al. 2010). Many bacterial taxa obtained from algal tis-
sue are able to degrade sugars produced by algae,
such as alginate, cellulose and manitol (Table 2). They
are considered to be involved in the decay process of
algal fronds (Johnson et al. 1971, Lewis et al. 1985,
Uchida & Nakayama 1993, Jensen et al. 1996, Sakami
1999, Ivanova et al. 2005). Probably, this is one reason
for specific macroalgal–bacterial interactions (Kong &
Chan 1979, Lu et al. 2008).

Numerous studies on antifouling activity of extracts
and isolated substances from macroalgae have shown
that algae are a rich source of bioactive compounds
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Fig. 2. Saccharina latissima. A brown
alga with scanning electron micrographs
(SEM) of associated epiphytic bacteria
growing on 3 different parts. (a) Older
thallus. Disrupted mucilage and single
rod-form bacteria are visible. (b) Young
thallus. Cocci, rods and spirilli are pre-
sent. (c) Rhizoid. Cocci in clusters are
present. (Modified after Staufenberger
et al. 2008). Courtesy of Dr. Rolf Schmal-

johann (IFM-GEOMAR)
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Enzyme Bacteria Source

Agarases Acinetobacter sp.
Agarivorans spp.
Alterococcus spp.
Alteromonas spp.*
Bacillus sp.
Cellulophaga baltica*, C. fucicola*
Cytophaga spp.
Flavobacterium spp
Glaciecola agarilytica
Marinilabilia spp.
Microbulbifer spp.*
Microscilla spp.
Phycisphaera mikurensis*
Pseudoalteromonas agarivorans*
P. antarctica*, P. gracilis*
Pseudomonas atlantica*
Persicobacter spp.
Pseudozobellia thermophila*
Saccharophagus spp.
Thalassomonas spp.
Vibrio spp.*
Zobellia galactanovorans*, Z. laminariae*, Z. russellii*

Carrageenases Alteromonas fortis
Cytophaga (Cytophaga drobachiensis*)
Marinilabilia spp.
Microbulbifer sp.* CMC-5
Microbulbifer elongates*
Pseudoalteromonas carrageenovora*
Zobellia galactanivorans*

Alginases Alcaligenes spp.*
Alginomonas spp.
Alginovibrio (A. aquatilis)
Alteromonas atlantica*, A. carrageenovora*, A. sp.*
Cytophaga diffluens
Deleya marina*
Flavobacterium sp.*
Glaciecola sp.
Gracilibacillus spp.* G halotolerans*
Halomonas marina, H. sp. AW4*
Moraxella sp.*
Ochrobactrum sp.*
Pseudoalteromonas sp.*
Pseudomonas alginovora*
Streptomyces sp. ALG-5*
Vibrio spp. (V. fischeri*, V. harveyi*)

Fucoidanases Arenibacter spp.*
Flavobacterium algicola*
Fucobacter marina*
Fucophilus fucoidanolyticus*
Gramella sp.
Maribacter sp.
Mesonia algae*
Pseudoalteromonas citrea*
P. issachenkonii*
Sphingomonas paucimobilis
Vibrio sp.
Zobellia sp.*

Fucanases Alteromonas sp. SN-1009
Mariniflexile fucanivorans

Mannanase Aeromonas sp. F-25
Bacillus subtilis
Pseudomonas sp. PT-5*
Streptomyces lividans
Vibrio sp.*

Cellulases Acinetobacter spp.
& pectinases Alteromonas spp.

Flavobacterium spp.
Pseudoalteromonas sp.*
Vibrio spp.*

Table 2. Enzymatic activities detected in marine bacteria that are relevant to the degradation of macroalgal cell walls. *Bacteria 
isolated from algae

Yaphe (1957), Quatrano & Caldwell (1978), Vera
et al. (1998), Allouch et al. (2003), Johansen et al.
(1999), Romanenko et al. (2003), Schroeder et al.
(2003), Nedashkovskaya et al. (2004b), Jam et al.
(2005), Michel et al. (2006), and literature therein,
Flament et al. (2007), Yong et al. (2007), Fuku-
naga et al. (2009), Nedashkovskaya et al. (2009),
Fu & Kim (2010)

Yaphe & Baxter (1955), Sarwar et al. (1983), Potin
et al. (1991), Nakagawa & Yamasato (1996),
Barbeyron et al. (1998, 2000), Michel et al. (2006),
and literature therein, Jam et al. (2005), Khamb-
haty et al. (2007), Jonnadula et al. (2009)

Ando & Inoue (1961), Davidson et al. (1976),
Stevens & Levin (1977), Quatrano & Caldwell
(1978) and references therein, Preston et al.
(1986), Boyen et al. (1990), Brown et al. (1991),
Tseng et al. (1991), Akagawa-Matsushita et al.
(1992), Ramaiah & Chandramohan (1992),
Sawabe et al. (1992), Uchida & Nakayama (1993),
Uchida et al. (1995), Sakami (1999), Sawabe et al.
(1997, 1998a), Kraiwattanapong et al. (1999),
Ivanova et al. (2002a,b), Uchida et al. (2002),
Wang et al. (2006), Sawabe et al. (2007), An et al.
(2008, 2009), Tang et al. (2008), Zhou et al.
(2008), Kim et al. (2009), Tang et al. (2009)

Furukawa et al. (1992), Bakunina et al. (2000,
2002), Ivanova et al. (2002a), Sakai et al. (2002,
2003, 2004), Kusaykin et al. (2006), Urvantseva et
al. (2006), Kim et al. (2008), Miyashita et al. 2010)

Colin et al. (2006), Descamps et al. (2006),
Barbeyron et al. (2008)
Yamaura et al. (1990), Moreira & Filho (2008),
Tanaka et al. (2009)

Araki et al. (1992), Ramaiah & Chandramohan
(1992), Yamasaki et al. (1998), Ivanova et al.
(2002a), Yoshimura et al. (2006)
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against colonizing organisms (see section below on
antibiotic activities of macroalga-associated bacteria
and Table 5) (Steinberg et al. 1998, Bhadury & Wright
2004, Dobretsov et al. 2006b, Lane & Kubanek 2008,
and references therein, Nylund et al. 2008). In addition
to being defense mechanisms, these substances can
trigger specific interactions between macroalgae and
colonizers. Macroalgae without their own chemical
defense are considered to rely on the secondary meta-
bolites produced by their associated bacteria (Holm-
ström et al. 1992, Egan et al. 2000 and references
therein). Dobretsov & Qian (2002) showed that the
antifouling mechanisms of Ulva reticulata (Chloro-
phyta) rely not only on compounds released from the
alga itself but also on those produced by epibiotic bac-
teria, e.g. by a thallus-associated Vibrio sp. (Harder et
al. 2004).

Fouling organisms have negative effects on host
growth and reproduction. Hence, evolutionary pres-
sure on marine macroalgae has favored the develop-
ment of mechanisms to defend their surfaces against
biofilms (Wahl 1989, Steinberg & de Nys 2002).

DETRIMENTAL BACTERIAL–MACROALGAL
INTERACTIONS — DISEASES

Quantification of bacterial epiphytes on different
marine macrophytes showed that healthy individuals
carry 104 to 7 ×105 bacteria per gram algal fresh weight
(Laycock 1974, Jensen et al. 1996). By contrast, the
number of bacteria and saprophytes was increased by
more than 2 orders of magnitude (440 times) in dis-
eased macroalgae (Weinberger et al. 1994). Despite
some beneficial aspects of epibiosis (see Wahl 1989,
2008), biofilm formation produces a permanent threat
to macroalgae (Steinberg et al. 1997, Potin et al. 2002,
Honkanen & Jormalainen 2005, Nylund & Pavia 2005,
Medeiros et al. 2007). Epibiosis may lead to increased
hydrodynamic drag on the basibiont. It may reduce the
buoyancy and elasticity of the tissue, attract grazers,
and thereby increase tissue loss of the host or may
even result in its destruction. In additon, bacteria com-
pete with algae for nutrients and may even be more
efficient in uptake and assimilation of nutrients
(Berland et al. 1972). Biofilms may also inhibit gaseous
exchange as well as reducing incident light and
thereby decrease photosynthetic activity (Provasoli &
Pintner 1980, Sieburth & Tootle 1981, Wahl 1989, 2008,
Steinberg et al. 1997, Mindl et al. 2005). Bacterial bio-
films may enhance the attachment and growth of a
range of other fouling organisms, such as diatoms,
invertebrate larvae, and algal spores (Joint et al. 2002,
Tait et al. 2005, Huggett et al. 2006). The host may
even be damaged directly by the bacterial community

due to the production of toxins, digestive enzymes,
inhibitors or waste products (Weinberger et al. 1997,
Ivanova et al. 2002a,b, Patel et al. 2003, Rao et al. 2006)
(Table 2).

Microorganisms that are common on the surface of
macroalgae might become detrimental if they are able
to enter the algal tissue. In order to attack the frond tis-
sues, a pathogen must penetrate the cuticle layers of
the macroalga (Craigie et al. 1992). Algal cell walls and
cuticles contain a great diversity of polysaccharides,
which make them chemically and structurally more
complex and heterogeneous than those of terrestrial
plants (Polne-Fuller & Gibor 1987). Bacteria capable of
degrading the macroalgal cell wall are important fac-
tors for the damage of algal tissue and provide an
entrance for pathogenic and opportunistic bacteria
(Buschmann et al. 1997, Ivanova et al. 2005). Not only
bacteria but also algal endophytes are able to breach
the cuticula and cell wall and facilitate secondary
infections. An example of this is the green endophytic
alga Acrochaete operculata. It causes cellular damage
to Chondrus crispus (Rhodophyta) and leads to sec-
ondary bacterial infections by facultative pathogens
from the Cytophaga/Flavobacterium group (Correa &
McLachlan 1994, Craigie & Correa 1996). Vibrio spe-
cies have been reported as one of the opportunistic
pathogens from diseased Porphyra and Laminaria
fronds (Wang et al. 2008). Usually, the secondary bac-
terial infection contributes to further disintegration of
the infected tissue, finally leading to thallus rupture.

Bacterial decomposition of dead and drying macroal-
gae on the beaches is rapid, indicating the abundant
presence of decomposing bacteria in the living algal
community (Uyenco et al. 1981, Delille & Perret 1991).
A large proportion of bacteria in coastal waters are
able to decompose macroalgal thalli (Uchida 1995,
Uchida et al. 2002, Yoshimura et al. 2006). As bacteria
are able to utilize algal nutrients selectively, they play
a key role in the biotransformation (Chesters et al.
1956, Ramaiah & Chandramohan 1992). They release a
variety of compounds which are subsequently used by
other organisms (Yaphe & Baxter 1955, Yaphe 1962,
Dimitrieva & Dimitriev 1996, Sawabe et al. 1998b,
Ivanova et al. 2002a,b, Sakai et al. 2002, Romanenko et
al. 2003). Biotransformation and nutrient recycling is
initiated by bacterial enzymes such as cellulases, algi-
nases, fucoidanases, pectinases and agarases. Many of
these enzymes have biotechnological applications
(Yamasaki et al. 1998, Wong et al. 2000, Descamps et
al. 2006, Wang et al. 2006, Kim et al. 2009). Despite the
large number of associated bacteria, these lytic activi-
ties have been found only in a small number of genera
(Table 2).

Pathogenic bacteria in host-associated biofilms
cause significant mortality to their hosts or cause sig-

273



Mar Ecol Prog Ser 409: 267–300, 2010

nificant degradation of algal host tissue (Littler & Lit-
tler 1995, Correa & Sánchez 1996, Steinberg et al.
1997). Despite the prevalence of microbes in the ocean
and the nature of pathogen-borne epidemics, diseases
among marine macroalgae are rare (Table 3). This is
even more remarkable, considering that algae do not
have cell-based immune systems (Potin et al. 1999,
Kubanek et al. 2003). However, evidence for induced
defense reactions of algae upon pathogen recognition
is emerging (Potin et al. 2002, Steinberg & de Nys
2002, Weinberger et al. 2005, Weinberger 2007).

Bacterial infections of macroalgae may cause obvious
but non-necrotic changes in morphology, appearance
of holes in the thallus, or discolorations causing light or
dark areas. It is also possible that they may not affect

the visible appearance of the alga at all (Andrews 1976,
Uyenco et al. 1981, Correa 1997). The association of
bacteria with abnormal tissue growth (galls) on marine
macroalgae is well known and has been found in more
than 20 species of red and brown macroalgae (McBride
et al. 1974, Tripodi & Beth 1976, Tsekos 1982, Apt 1988
and literature therein). For example, bacterial sym-
bionts of the Roseobacter group are able to cause such
gall formations in the red macroalga Prionitis spp.
(Ashen & Goff 2000). The metabolic consequences of
gall formation for the macroalgae and its bacterial in-
habitants remain unknown. But apparently the hyper-
trophic growth of gall-induced algal cells provides a
suitable microhabitat for proliferation of the ‘symbiont’
(Apt & Gibor 1989, Ashen & Goff 1998).
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Macroalgae Disease Pathogen Source

Heterokontophyta, Phaeophyceae
Cystoseira nodicaulis – Unidentified Proteobacteria Pellegrini & Pellegrini (1982)

Laminaria japonica Hole-rotten disease Pseudoalteromonas, Wang et al. (2008)
Vibrio, Halomonas

Laminaria japonica Summer sporelings Micrococcus sp. Wu (1990)
disease

Laminaria japonica Red spot disease Pseudoalteromonas Ezura et al. (1988), Sawabe et al. 
bacteriolytica (1998b), Yumoto et al. (1989a,b)

Laminaria japonica Spot-wounded fronds Pseudoalteromonas elyakovii Sawabe et al. (2000)

Undaria pinnatifida Green decay diseases Vibrio logei Jiang et al. (1997)

Rhodophyta
Chondrus crispus – Cytophaga/Flavobacterium Correa & McLachlan (1994),

group Craigie & Correa (1996)

Gracilaria conferta – Cytophaga/Flavobacterium Weinberger et al. (1997), 
and Vibrio group Weinberger & Friedlander (2000b)

Gracilaria gracilis – Undetermined bacteria Jaffray & Coyne (1996)

Gracilaria gracilis – Pseudoalteromonas gracilis Schroeder et al. (2003)

Gracilaria sp. Rotten thallus syndrome Vibrio sp. Lavilla-Pitogo (1992)

Gracilaria verrucosa Rotten thallus syndrome Vibrio sp. Beleneva & Zhukova (2006)

Hydrolithon, Sporolithon, Thallus holes Plectonema terebrans Ghirardelli (1998, 2002), Tribollet 
Lithophyllum,Titanoderma & Payri (2001)
and other coralline algae

Kappaphycus alvarezii Ice-ice whitening Cytophaga-Flavobacterium Largo et al. (1995, 1999), 
group-Vibrio group Vairappan et al. (2008)

Mazzaella laminarioides Deformative disease Pleurocapsa sp. Buschmann et al. (1997), 
Correa et al. (1993)

Porolithon onkodes Coralline lethal orange – Aeby (2007), Littler & Littler 
and other coralline algae disease (CLOD) (1994, 1995) 

Porphyra leucosticta White rot disease Vibrio sp. Tsukidate (1977, 1983)

Porphyra leucosticta Suminori Flavobacterium sp. Kusuda et al. (1992)

Porphyra yezoensis Green spot rotting Vibrio sp., Pseudomonas sp. Fujita et al. (1972), Nakao 
et al. (1972)

Porphyra yezoensis Anaaki Flavobacterium sp. Sunairi et al. (1995)

Table 3. Macroalgal diseases caused by bacteria. (–) not specified
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BENEFICIAL BACTERIAL–MACROALGAL
INTERACTIONS

The role of epiphytic bacteria in maintaining the
health of the host has received little attention. Though
beneficial associations between bacteria and their host
have been identified (Cole 1982, Weinberger et al.
1997, Dobretsov & Qian 2002, Rao et al. 2006), the
advantages for algae are less obvious (Marshall et al.
2006).

Nutritional aspects and growth factors

Beneficial relationships may be based on the algal
capacity to produce organic compounds and oxygen
which are utilized by bacteria (Brock & Clyne 1984,
Coveney & Wetzel 1989). In turn, bacteria mineralize
organic substrate, supplying the algae with carbon
dioxide, minerals and growth factors (Croft et al. 2005,
2006). Several studies indicated that marine epiphytic
bacteria are important sources of fixed nitrogen for
algae. Diverse epiphytic Cyanobacteria (Calothrix sp.,
Anabaena sp., and Phormidium sp.) that fix nitrogen
and supply it to Codium species (Chlorophyta) have
been described from certain locations (Dromgoole et
al. 1978, Rosenberg & Paerl 1981). Another nitrogen
fixer, Dichothrix fucicola, was located in association
with populations of Sargassum natans and S. fluitans
in the Sargasso Sea and the Gulf Stream (Carpenter
1972, Carpenter & Cox 1974). The nitrogen supply of
Caulerpa taxifolia is provided by an endosymbiotic
bacterium from the Agrobacterium-Rhizobium group,
living in the algal rhizoids (Chisholm et al. 1996). A
significant nitrogenase activity was attributed to the
nitrogen-fixing Azotobacter sp., present on the
macroalga Codium fragile subsp. tomentosoides (Head
& Carpenter 1975), indicating nitrogen fixation within
the association.

These associations secure the supply of dinitrogen to
the macroalgae and might be one of the reasons for the
successful invasion of these noxious macroalgae (like
Caulerpa taxifolia or Codium fragile) into oligotrophic
environments (Chisholm et al. 1996). Indeed, in other
aquatic environments, some epiphytic Cyanobacteria
like Nostoc sp., Calothrix sp. and Anabaena sp., living
on the green macroalga Chara vulgaris seem to be the
main nitrogen contributors (Ariosa et al. 2004).

In addition to nitrogen fixation, microbes play a role
in the protection of the macroalga against toxic com-
pounds such as heavy metals (Riquelme et al. 1997,
Dimitrieva et al. 2006) or crude oil (Semenova et al.
2009). Microorganisms are able to detoxify, for exam-
ple, heavy metals by precipitation, adsorption, or trans-
formation to less toxic forms (Yurkov & Beatty 1998).

Bacteria also supply macroalgae with growth factors,
e.g. by involvement in the production and turnover 
of various phytohormones and biostimulators of cell
growth and development (Berland et al. 1972, Bol-
inches et al. 1988, Meusnier et al. 2001). For example,
a favorable growth-promoting effect by the bacterium
Pseudoalteromonas porphyrae was observed on Lami-
naria japonica (Dimitrieva et al. 2006). Plant hormone
production seems to be widespread in various genera
of marine bacteria. Maruyama et al. (1990) demon-
strated that bacteria produce more cytokinin-type and
auxin-type hormones when associated with macro-
algae as compared to planktonic bacteria. Previous
studies showed the ability of bacteria living on Ulva
spp. (formerly Enteromorpha) to convert tryptophan
into the phytohormone indole-3-acetic acid (IAA)
(Fries 1975). In the macroalga Prionitis lanceolata, the
gall formation mentioned above is associated with a
bacterium of the Roseobacter group. IAA is overpro-
duced in those algal galls in comparison to the rest of
the thallus. Although the role of the bacterium in the
physiology of the macroalga is not well understood, a
coevolution has been suggested (Ashen et al. 1999,
Ashen & Goff 2000).

Impact on macroalgal morphology

Beside nutrititional and growth promoting effects,
bacteria affect the morphology and life cycle of macro-
algae. Marine foliaceous green macroalgae such as
Ulva spp. drastically lose their typical morphology
when cultured aseptically (Fries 1975, Provasoli & Pint-
ner 1980, Tatewaki et al. 1983). This phenomenon was
also observed in the red macroalgae Dasya pedicellata
C. Agardh and Polysiphonia urceolata (Dillwyn) Gre-
ville (Provasoli & Pintner 1972). Addition of adequate
marine bacteria or their culture filtrates restored the
typical morphology of these macroalgae (Nakanishi et
al. 1999). Actually, morphogenesis in such macroalgae
(Ulvaceae and Monostromaceae) is controlled by a re-
stricted group of bacteria of the Bacteroidetes phylum,
mainly Cytophaga and Flavobacterium spp. (Hanzawa
et al. 1998, Nakanishi et al. 1999, Matsuo et al. 2005,
Marshall et al. 2006). Furthermore, morphogenic ef-
fects on macroalgae were also demonstrated for mem-
bers of the genera Caulobacter, Vibrio, Pseudomonas,
Deleya, Escherichia and some Gram-positive bacteria
(Nakanishi et al. 1996). These bacteria lose their ability
to induce morphogenic effects when grown alone for
several generations in marine media containing rich
organic sources, but regain it under co-cultivation with
Ulva in synthetic mineral media. Both ‘partners’ appar-
ently depend on the metabolites produced by the other
(Provasoli & Pintner 1980).
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Thallusin was the first compound identified to
induce thallus differentiation in macroalgae. It was
produced from an epiphytic marine bacterium isolated
from the alga Monostroma sp. (Matsuo et al. 2003). In
order to maintain the common algal morphology, this
compound has to be constantly supplied by the bac-
terium. Thallusin exemplifies a fundamental symbiotic
chemical communication between macroalgae and
epiphytic bacteria in the marine environment (Matsuo
et al. 2005). However, the mechanism of modulation of
algal morphology by thallusin is not yet understood
(Marshall et al. 2006).

Effect on spore germination and macroalgal
colonization

Recently, it was discovered that bacterial biofilms
play a role in spore germination and subsequent colo-
nization of new substrates by algae. A set of diverse
bacterial species isolated from marine surfaces colo-
nized by Ulva spp. either stimulated or inhibited the
zoospore settlement of this green macroalgae (Patel
et al. 2003, Tait et al. 2005). Phylogenetic analysis
revealed that the isolated bacteria belonged to the
Gammaproteobacteria, the Cytophaga-Flavobacteria-
Bacteroidetes group and Alphaproteobacteria. Most of
these microorganisms revealing stimulating effects
were strains of Vibrio and Shewanella species. Effects
on spore settlement were strain- but not species-spe-
cific, and the activity varied with the age of the biofilm.
A positive correlation between zoospore settlement of
Ulva linza and bacterial biofilm density indicates the
important role of bacterial biofilms in the development
of algal communities (Marshall et al. 2006).

It appears that these are not isolated cases. Of the
192 bacterial strains isolated from the surfaces of sea-
weeds from China, 63 isolates were shown to be
inhibitory against the settlement of algal spores (Ma et
al. 2009). Also, a number of diverse bacterial metabo-
lites affect the germination of spores of various
macroalgae (Egan et al. 2001b, Matsuo et al. 2003,
Dimitrieva et al. 2006) (Table 4). For example, an
antialgal peptide that inhibited spore germination was
produced by Pseudoalteromonas tunicata isolated
from Ulva australis (Egan et al. 2001b). The fatty acids
cis-9-oleic acid and 2-hydroxymyristic acid produced
by the bacterium Shewanella oneidensis (Bhattarai et
al. 2007) as well as a peptidic compound produced by
the bacterium Alteromonas sp. (isolated from the red
alga Rhodymenia sp.) exhibited activity against spores
of U. lactuca (Silva-Aciares & Riquelme 2008).

As mentioned, bacterial biofilms play an important
role in initiation of colonization processes. A preferen-
tial settlement of spores on specific bacterial biofilms

producing morphogenic compounds may facilitate a
close association of the developing macroalgae with
these specific bacterial ‘episymbionts’ (Joint et al. 2002,
Patel et al. 2003). As we discuss later, these epibionts
play a protective role by releasing compounds into the
surrounding seawater that prevent extensive biofoul-
ing of the surface or act against microbial pathogens
(Armstrong et al. 2001, Wiese et al. 2009b).

CHEMICAL INTERACTIONS

Since the 1970s it has been known that chemical
compounds are the basis of many aspects of communi-
cation and molecular interaction between aquatic
organisms (Bhakuni & Silva 1974, Scheuer 1978, Hay
2009). However, studies on these chemical interactions
within marine communities are relatively new as com-
pared to the analyses of feeding relationships (Paul &
Puglisi 2004). More intense investigations of the large
variety of interactions between hosts and microbes and
between different microbes should reveal the different
communication pathways, which include the produc-
tion of defensive or deterrent compounds, phero-
mones, attractants and other signal substances. Some
of these compounds act in a general way while others
have highly specific modes of action (Davies et al.
1998, Rasmussen et al. 2000, Da Gama et al. 2002).
Chemically mediated interactions like fertilization,
allelopathy, and prey detection between macroalgae
and other marine organisms fundamentally depend on
the sensing of chemicals at or near surfaces (Steinberg
& de Nys 2002). It has been demonstrated that the
microbial colonization of various host organisms might
be controlled by host-derived molecules (Wahl et al.
1994, Rao & Fujita 2000). However, little is known
about the potential role of secondary metabolites in the
regulation and development of associations. Other
chemically mediated types of microbial behaviors such
as chemotaxis, adhesion, swarming and biofilm forma-
tion are much better understood (Parsek & Greenberg
2000, Ren et al. 2002, Qian et al. 2007).

Antibiotic activities of macroalga-associated bacteria

Antimicrobial activity is widespread among alga-
associated bacteria. Wiese et al. (2009b) showed that
almost 50% of a total of 210 isolates of the epiphytic
bacterial community of Saccharina latissima (Baltic
Sea, Germany) inhibited the growth of at least one
microorganism from a panel covering Gram-negative
and Gram-positive bacteria. Burgess et al. (1999) dem-
onstrated that 35% of the surface-associated bacteria
isolated from various macroalgae and invertebrates in
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Scottish waters produced antimicrobial substances.
From a total of 280 strains isolated from 7 macroalgae,
21% showed antibacterial activity (Boyd et al. 1999b).
Of the isolates from 9 brown macroalgae, 20% were
antibiotically active as were 33% of the isolates from 9
red algae collected from Japanese waters of the Pacific
Ocean (Kanagasabhapathy et al. 2006, 2008). Penes-
yan et al. (2009) obtained 325 bacterial isolates from
the surface of Delisea pulchra and Ulva australis in
Australia and demonstrated antibiotic activity of 12%
of the strains. Microbulbifer sp. was the dominant bio-
logical active bacterium in this study.

Antimicrobial active isolates from all mentioned
macroalgae were phylogenetically assigned to diverse
genera comprising Pseudomonas, Pseudoalteromonas,
Stenotrophomonas, Vibrio, Aeromonas, Shewanella,
Streptomyces and Bacillus species (Wiese et al. 2009b).
Many Bacillus species are efficient producers of
antimicrobial compounds and therefore highly suc-
cessful colonizers of macroalgal surfaces (Trischman et
al. 2004, Kanagasabhapathy et al. 2006). Most of the
isolates with high antifouling activity obtained by Bur-
gess et al. (2003) were identified as Bacillus species,
i.e. B. pumilus, B. licheniformis and B. subtilis. Besides

277

Compound Chemical class Activity Producing bacterium Macroalgae Source

2,4 dibromo-6- Halogenated GPI Pseudoalteromonas Padina australis Jiang et al. (2001)
chlorophenol phenol luteoviolacea

2,4-diacetyl Phenol GPI Pseudomonas sp. Ceratodyction Isnansetyo et al. 
phloroglucinol spongiosum (2001)

Chlorophyll d Pyrrole PH Acaryochloris sp. Ahnfeltiopsis Murakami et al. 
flabelliformis (2004)

Cyclo-[isoleucyl- Tetrapeptide GPI Pseudoalteromonas Digenea sp. Rungprom et al. 
prolylleucyl-alanyl] sp. (2008)

Cyclo-(L-prolyl- Diketopiperazines GPI Pseudoalteromonas Padina australis Jiang et al. (2001)
L-glycine) luteoviolacea

Cyclo-(L-phenyl alanyl-4R)- Diketopiperazines GPI Pseudoalteromonas Padina australis Jiang et al. (2001)
hydroxy-L-proline luteoviolacea

Haliangicin β-methoxyacrylate AF Haliangium luteum Undetermined Fudou et al. (2001)
algae

Korormicin γ-lactone derivate GNI Pseudoalteromonas Halimeda sp. Yoshikawa et al. 
sp. F-420 (1997)

Macrolactines G, M Lactones GPI Pseudomonas sp. Red algae Gerard et al. 
(1997)

Macrolactines G, M, A, F Lactones GPI Bacillus sp. Schizymenia Nagao et al. (2001)
PP19-H3 dubyi

Massetolide A Lipopeptide GPI Pseudomonas sp. Red algae Gerard et al. 
(1997)

Pelagiomycin A Phenazine GPI, Pelagiobacter Pocockiella Imamura et al. 
GNI variabilis variegata (1997)

– Peptide AS Pseudoalteromonas Ulva lactuca Egan et al. (2001b)
tunicata

– Peptide AS Alteromonas sp. Rhodymenia sp. Silva-Aciares & 
Ni1-LEM Riquelme (2008)

Protein 30,7 kDa Protein GPI Bacillus Fucus serratus Jamal et al. (2006)
licheniformis

Thallusin Pyridine MG Cytophaga/ Monostroma sp. Matsuo et al. 
Flavobacterium/ (2003)
Bacteroidetes group

Violacein Alkaloid AP Pseudoalteromonas Ulva australis Matz et al. (2008)
tunicata, P. ulvae

YP1 Tambjamine AF Pseudoalteromonas Ulva australis Franks et al. (2006)
tunicata

Table 4. Bioactive compounds produced by macroalgal associated bacteria. AF = antifungal activity, AP = antiprotozoal activity,
AS = antisettlement activity, GNI = antibiotic activity against Gram-negative bacteria, GPI = antibiotic activity against Gram-

positive bacteria, MG = morphogenesis activity, PH = photosynthetic compound
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Bacillus species, Pseudoalteromonas spp. are com-
monly found on marine macroalgae (Wang et al. 2008).
Many of them also produce biologically active mole-
cules (Holmström et al. 1998, Kalinovskaya et al. 2004,
Skovhus et al. 2007). For example, 3 epiphytic strains
of Pseudoalteromonas sp. isolated from Ulva lactuca
were able to inhibit the growth of a variety of bacteria
and fungi (Egan et al. 2000, 2001a,b): P. tunicata was
able to prevent biofouling by growth inhibition of other
surface-associated microorganisms. For this purpose, it
produced at least 5 target-specific compounds (Holm-
ström et al. 1992, James et al. 1996) (Table 4), including
a large antibacterial protein (James et al. 1996), a small
polar heat-stable anti-larval molecule (Holmström et
al. 1992), a putative antialgal peptide (Egan et al.
2001b), an antifungal alkaloid (Franks et al. 2006) and
also violacein, a purple pigment that inhibits protozoan
grazing (Matz et al. 2008). This chemical arsenal has
been shown to be important for the survival of P. tuni-
cata in its highly competitive marine surface environ-
ment (Rao et al. 2005, 2007, Thomas et al. 2008, and
references therein). Production of a range of com-
pounds active against a variety of target organisms is a
characteristic feature of these bacteria and may largely
promote their competition and colonization of algal
surfaces (Holmström & Kjelleberg 1999, Patel et al.
2003, Rao et al. 2005).

Bacteria producing antibiotic substances reflect an
important part of bacterial communities on surfaces of
marine organisms as compared to free-living bacterial
communities (Mearns-Spragg et al. 1998, Zheng et al.
2005, Kanagasabhapathy et al. 2008). However, we
still have a long way to go in understanding how bac-
teria really protect their hosts and what kind of com-
pounds they may produce under the multifactorial nat-
ural conditions in situ (Bode et al. 2002). For example,
a marine actinomycete (SS-228) was shown to produce
an antibiotic compound only when the growth medium
was supplemented with Laminaria sp., a macroalgae
common in the habitat from which the strain was
obtained (Okazaki et al. 1975). Inhibitory activities
against other epiphytic bacteria are of great impor-
tance in microhabitats such as an algal surface, where
competition for an attachment site is frequent (Lemos
et al. 1985, Mearns-Spragg et al. 1998, Yan et al. 2002,
Rao et al. 2007).

Chemical defense of macroalgae against 
microorganisms

The defending interaction of macroalgae with
biofilms is well documented and the surfaces of many
macroalgae remain relatively free of epibiosis. How-
ever, few studies have investigated if secondary

metabolites are released from macroalgae and affect
planktonic bacteria directly (Nylund & Pavia 2005,
Paul et al. 2006, Dubber & Harder 2008, Lam et al.
2008a). Lu et al. (2008) showed that macroalgae like
Ulva clathrata have an inhibitory effect on Vibrio
anguillarum, a fish and mussel pathogen, although not
reducing the total amount of heterotrophic bacteria.
This effect was explained by some unknown chemical
substances, either released from U. clathrata or pro-
duced by the alga-associated microorganisms. Recently,
Pang et al. (2006a) observed that in polycultures with
the red macroalga Gracilaria textorii the total num-
ber of Vibrio species (V. alginolyticus and V. logei )
was controlled. Even more, after inoculation of V.
parahaemolyticus into cultures of the red macroalga
Grateloupia turuturu, the bacterium was inhibited in
its growth and finally disappeared from the cultures
(Pang et al. 2006b).

Antibiotic activities of macroalgal extracts and
metabolites

Given that algae lack cell-based immune responses
and are continuously exposed to a broad array of
potentially deleterious microorganisms, it is reason-
able to hypothesize that the production of bioactive
secondary metabolites acts as a fundamental mecha-
nism of antimicrobial defense to deter microbial attack
(Engel et al. 2002). Macroalgae may secrete anti-
fouling compounds into the surrounding seawater
and retain antigrazing compounds within the thallus
structure (Armstrong et al. 2001). The production of
inhibitory substances from macroalgae was noted as
early as in 1917 (Ara 2001) and since then the antibac-
terial activity of extracts of macroalgae has been
described in many studies around the world (Yan et al.
2003, Bhakuni & Rawat 2005, Puglisi et al. 2007, Dub-
ber & Harder 2008, and literature therein) (Table 5).
Many different compounds produced by macroalgae
exhibit antibiotic activity, for example fatty acids, phe-
nols, acetylenes, various terpenes, coumarins, car-
bonyls, and polysaccharides (Bhakuni & Silva 1974,
Hoppe et al. 1979 and literature therein, Ballantine et
al. 1987, Lustigman et al. 1992, Lobban & Harrison
1996, Steinberg et al. 1997, Potin et al. 1999, Ara 2001,
Sandsdalen et al. 2003; Table 5). These biological
activities might have a protective function by elimina-
tion or control of the number of pathogens, epiphytes
or endophytes (Hornsey & Hide 1976b, Hoppe et al.
1979, Smit 2004, Plouguerne et al. 2008).

While a large proportion of the literature deals with
antimicrobial activities of marine macroalgal extracts
and secondary metabolites (Table 5), little is known
about how these compounds act in an ecological con-
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text (Engel et al. 2002). Engel et al. (2006) explored the
antimicrobial effects of extracts from several marine
macroalgae against algal saprophytes, parasites, and
pathogens. It was concluded that the antimicrobial
metabolites selectively target marine microorganisms,
although the susceptibility of ecologically relevant
bacteria has rarely been studied (Yoshikawa et al.
1997, Puglisi et al. 2007, Kanagasabhapathy et al. 2008).

From an ecological perspective, antimicrobial de-
fense mechanisms of marine macroalgae may reduce
epibiosis, inhibit premature decomposition and directly
provide resistance to infectious diseases (Engel et al.
2006). The required defense substances may be ex-
pressed constitutively or may be induced in response

to contact with the target organisms and their chemical
signals, respectively (Cronin & Hay 1996, Amsler &
Fairhead 2005). The inducible defense allows meta-
bolic cost savings and is advantageous due to a lower
risk of autotoxicity and resistance adaptation (Macaya
et al. 2005, Medeiros et al. 2007, Macaya & Thiel 2008).
An increasing number of studies is related to the in-
duced defense mechanisms of macroalgae against
herbivores. Research on the induced defense mecha-
nisms against microbial pathogens or epibiosis is still
limited. Recently, Vairappan et al. (2010) were the first
to demonstrate the highly selective antibiotic activity
of extracts from the epiphytic macroalga Laurencia
majuscula against 6 algal pathogenic bacteria. They
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Macroalga Compounds Activity Source

Chlorophyta
Avrainvillea nigricans 5’-hydroxy isoavrainvilleol GPI Colon et al. (1987)
Caulerpa spp. Sesquiterpenoids GPI, GNI Paul et al. (1987)
Codium iyengarii Iyengaroside-A, clerosterol galactoside GPI, GNI Ali et al. (2002)
Penicillus capitatus Capisterones A, B AF Puglisi et al. (2004)
Tydemania expeditionis Sulphated triterpenoids AF Jiang et al. (2008)
Ulva fasciata Labdane diterpenoids GNI Chakraborty et al. (2010)

Heterokontophyta, Phaeophyceae
Canistrocarpus cervicornis Diterpenes AE Bianco et al. (2009)
Cystoseira spinosa var. squarrosa Tetraprenyltoluquinol GPI, GNI Amico et al. (1988)
Cystoseira tamariscifolia Methoxybifurcarenone GNI Bennamara et al. (1999)
Dictyotaceae Dolabellane derivatives AF Tringali et al. (1986)
Dictyopteris zonarioides Zonarol & isozonarol AF Fenical et al. (1973)
Dictyota menstrualis Dictyol D, pachydictyol A AE Schmitt et al. (1995)
Dilophus guineensis Dilophic acid GPI Schlenk & Gerwick (1987)
Dilophus okamurai Spatane-type diterpenes AE Kurata et al. (1988)
Fucus vesiculosus Polyhydroxylated fucophlorethol GPI, GNI Sandsdalen et al. (2003)
Landsburgia quercifolia 1,4-naphthoquinone GPI, AF Perry et al. (1991)
Lobophora variegata Lobophorolide AF Kubanek et al. (2003)
Sargassum spp. Polyphenols AE, GNI Sieburth & Conover (1965)
Stoechospermum marginatum Spatane diterpenoids GPI De Silva et al. (1982)
Stoechospermum marginatum Sulfated fucan AV Adhikari et al. (2006)

Rhodophyta
Asparagopsis armata Halomethanes, haloether, haloacetales GPI, GNI Paul et al. (2006)
Bonnemaisonia hamifera Poly-brominated 2- heptanone GNI Nylund et al. (2008)
Callophycus serratus Bromophycolides AF Lane et al. (2009
Dasya pedicellata var. stanfordiana P-hydroxybenzaldehyde GPI, GNI Fenical & McConnell (1976)
Delesseriaceae Almazole D GNI N’Diaye et al. (1996)
Delisea pulchra Halogenated furanones AE Maximilien et al. (1998)
Delisea pulchra Halogenated furanones GPI, GNI Wright et al. (2006)
Grateloupia indica Galactan sulphate AV Chattopadhyay et al. (2007)
Laurencia chilensis 3-hydroxi-4-methyl acetophenone GPI, GNI Valdebenito et al. (1982)
Laurencia majuscula Brominated sesquiterpenes GPI, GNI Vairappan et al. (2010)
Laurencia pannosa Pannosanol, pannosane GNI Suzuki et al. (2001a)
Laurencia spp. Laurinterol, isolaurinterol GNI Vairappan et al. (2001b)
Laurencia spp. Brominated sesquiterpenes GPI, GNI Bansemir et al. (2004)
Osmundaria serrata Lanosol ethyl ether GPI, GNI, AF Barreto & Meyer (2006)
Rhodomela confervoides Bromophenols GPI, GNI Xu et al. (2003)
Sphaerococcus coronopifolius Bromosphaerone, GPI Etahiri et al. (2001)

12S-hydroxybromosphaerodiol

Table 5. Examples of antimicrobial and antifouling compounds isolated from macroalgae. AV = antiviral, AE = antifouling, AF =
antifungal activity, GNI = antibiotic activity against Gram-negative bacteria, GPI = antibiotic activity against Gram-positive 

bacteria
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were able to identify 4 halogenated compounds whose
concentration increased more than 120% during an
ice-ice disease outbreak in the host basibiont, the
macroalga Kappaphycus alvarezii (Table 5). Inter-
estingly, in another species of these red macroalgae,
Laurencia obtusa, the dynamics of vesicle transport
from corps en cerise (specific structures where those
macroalgae accumulate these halogenated secondary
metabolites) and their eventual exocytosis were shown
to be induced in relation to bacterial biofilms (Paradas
et al. 2010). The authors suggested a direct correlation
with this process and the inhibition of microfouling on
the macroalgal surface.

Oxidative burst—an antibacterial response of
macroalgae

In addition to the production of antibiotic com-
pounds, macroalgae are able to use oxidative burst as
a defense mechanism as described for higher plants
(Weinberger et al. 1999, 2002, Dring 2005, Ar Gall et al.
2008). This process is a non-specific defense response
against surface colonization typically characterized by
a rapid activation of reactive oxygen species causing
death of the pathogen (Bouarab et al. 1999, Wein-
berger & Friedlander 2000a,b, Steinberg & de Nys
2002, Potin 2008). The oxidative burst is triggered by
cell-cell recognition, involving the perception of signal
molecules or cell wall compounds from the invading
organism by the algal cell membrane (Küpper et al.
2006). Common elicitors of non-specific host responses
are oligosaccharides, glycoproteins, and glycopeptides
(Küpper et al. 2001). Recently, other compounds such
as methyl jasmonate and free fatty acids (in particular
arachidonic and linolenic acid) were also found to be
strong triggers of an oxidative burst in Laminaria digi-
tata (Küpper et al. 2009). In particular, the elicitation of
defense mechanisms by oligosaccharides has been
studied in macroalgae (e.g. Potin et al. 1999, Ar Gall et
al. 2008). This involves the degradation of the host cell-
wall polysaccharides by enzymes released from vari-
ous pathogens, comprising epiphytic bacteria (Wein-
berger et al. 1999, Weinberger & Friedlander 2000a,b,
Küpper et al. 2002) and algal endophytes (Bouarab et
al. 1999, Küpper et al. 2002). This was shown for the
brown alga L. digitata, where oligosaccharides derived
from alginate elicit a distinct oxidative burst in the cor-
tical cells of sporophytes and thereby control the pop-
ulations of epiphytic bacteria (Küpper et al. 2001).
Küpper et al. (2002) investigated 45 species of brown
algae with regard to their ability to respond to oligo-
alginates with an oxidative burst. They found that a
total of 15 macroalgal species reacted, all of them
belonging to an alginate-rich group with complex thal-

lus morphology. But there is also evidence for a consti-
tutive release of hydrogen peroxide in red macroalgae
e.g. Solieria chordalis, as a mechanism to prevent both
the establishment of bacterial biofilms and the subse-
quent development of algal epiphytes (Ar Gall et al.
2008). In addition to algal elicitors, Küpper et al. (2006)
demonstrated that components of the outer mem-
branes of Gram-negative bacteria may be considered
as exogenous elicitors in brown macroalgae. In the red
agarophyte Gracilaria conferta bacterial elicitors are
presumably represented by a low-molecular weight
peptide (Weinberger & Friedlander 2000a).

These results demonstrate that defense pathways
exist in marine macroalgae which are similar to those
known from animals and land plants (Bouarab et al.
2004, Weinberger 2007). Interestingly, the oxidative
burst is known to direct a variety of secondary defense
responses like the generation and release of volatile
halogenated compounds and the peroxidation of fatty
acids (Küpper et al. 2001, 2006, Weinberger et al. 2002,
Cosse et al. 2007, Potin 2008). Induction of the oxida-
tive burst within red and brown macroalgae is fol-
lowed by a rapid increase in emission of iodine-con-
taining halocarbons, molecular iodine, and also in the
brominating activity (Weinberger et al. 1999, Palmer et
al. 2005).

Quorum sensing and its role in bacterial–macroalgal
interactions

Quorum sensing (QS) is a cell to cell communication
mechanism that allows bacteria to coordinate swarm-
ing, biofilm formation, stress resistance, and produc-
tion of secondary metabolites in response to an excess
of the threshold of QS signals (Paul & Ritson-Williams
2008, Dobretsov et al. 2009). Gram-negative bacteria,
such as Pseudomonas or Vibrio strains, produce N-acyl
homoserine lactones (AHLs) as signalling compounds.
Pseudomonas spp. are also known to produce dike-
topiperazines acting as QS signals (Dickschat 2010).
The signal molecules γ-butyrolactones and oligopep-
tides are known to be synthesized by Gram-positive
bacteria, e.g. members of the genera Streptomyces or
Bacillus (reviewed by Dobretsov et al. 2009).

The interaction between zoospores of eukaryotic
green macroalgae (Ulvales) with Vibrio anguillarum
indicates algal susceptibility to quorum sensing AHL
molecules (Joint et al. 2002, Wheeler et al. 2006).
Although the specific mechanism regulating these
responses to AHLs is not known, it was shown that the
AHL molecules affect the calcium influx into the spores
of Ulva sp., affecting their motility towards the surfaces
where they eventually settle (Diggle et al. 2007, Joint
et al. 2007). In addition, it has been demonstrated that
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life cycle completion and spore release in the red epi-
phytic alga Acrochaetium sp. strongly depend on
AHLs, which are produced by bacteria associated with
the algal basibiont Gracilaria chilensis (Weinberger et
al. 2007). These findings of AHL perception in green
and red algae confirm that AHL signalling is more
widespread among eukaryotes than previously thought.
This indicates a more general importance of the associ-
ated microbial communities in interactions with macro-
algae. As we mentioned before, bacterial biofilms play
an important role in the development of macroalgal
communities. Hence, the ability to exploit a bacterial
sensory system makes an important contribution to the
ecological success of macroalgae (Tait et al. 2005, Joint
et al. 2007).

Algae reduce harmful effects by controlling bacterial
colonization by interfering with the bacterial QS sys-
tems, which regulate several bacterial traits related to
colonization (Gram et al. 1996, Steinberg et al. 1997,
Dworjanyn et al.1999). During the past decade it has
been shown that various macroalgae are able to stimu-
late, inhibit or inactivate QS signals in bacteria by pro-
ducing QS inhibitors or analogues thereof (Maximilien
et al. 1998, Joint et al. 2007, Kanagasabhapathy et al.
2009, Table 6). The Australian red macroalga Delisea
pulchra produces halogenated furanones, structural
analogues to N-acyl homoserine lactones. These fura-
nones protect the algal surfaces by interfering with
AHL-regulated processes and selectively inhibit bacte-
rial colonization and biofilm formation (Maximilien et
al. 1998, Rasmussen et al. 2000, Manefield et al. 2002).
In addition to the furanones of D. pulchra, a variety of

bacteria and eukaryotes have been shown to produce
cyclic dipeptides that can act as AHL mimics and affect
QS-regulated behaviour in other bacteria (Dobretsov
et al. 2009, Dickschat 2010). Recently, Kanagasabhap-
athy et al. (2009) suggested that certain epibiotic bac-
teria from the brown macroalgae Colpomenia sinuosa
may play a role in defense mechanisms and suppress
the settlement of other competitive bacteria by produc-
ing quorum sensing inhibitors (QSI) or QSI-like com-
pounds. AHL-antagonists and inhibitors of the AHL
regulatory system lead to an inhibition of bacterial col-
onization in an entirely different way from antibiotic
substances (Givskov et al. 1996, Manefield et al. 1999,
2002). Their action results in lower bacterial abun-
dance on the algal surface relative to other surfaces
that are not controlled by such or similar mechanisms
(Maximilien et al. 1998, Steinberg & de Nys 2002).

BIOSYNTHETIC ORIGIN OF BIOLOGICALLY
ACTIVE METABOLITES

Macroalgae are prolific natural product synthesizers.
Until now, approximately 2000 secondary metabolites
have been isolated from these algae, most of them
displaying biological activities (Medeiros et al. 2007).
Nevertheless, marine microorganisms have also been
shown to be an important source for novel natural
products (Fenical 1993, Penesyan et al. 2010). Consid-
ering that so far virtually all macroorganisms collected
and extracted for chemical studies include the associ-
ated microorganisms, questions about the true biosyn-
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Algae Compound Activity Source

MICROALGAE
Chlorophyta
Chlamydomonas reinhardtii Lumichrome Mimic AHL signals Rajamani et al. (2008), 

Teplitski et al. (2004)

MACROALGAE
Chlorophyta
Caulerpa sp. Not identified (algal extract) AHL inhibitors Skindersoe et al. (2008)

Heterokontophyta, Phaeophyceae
Laminaria digitata Hypobromous acid Deactivates AHL by Borchardt et al. (2001) 

interfering with QS genes
Rhodophyta
Ahnfeltiopsis flabelliformis Betonicine, floridoside Compete with AHL signals Kim et al. (2007)

and isethionic acid

Delisea pulchra Halogenated furanones Mimic AHL signals, Manefield et al. (1999)
inhibit gene expression

Galaxauraceae Not identified (algal extract) AHL inhibitors Skindersoe et al. (2008)

Laurencia sp. Not identified (algal extract) AHL inhibitors Skindersoe et al. (2008)

Unidentified red algae Not identified (algal extract) AHL inhibitors Skindersoe et al. (2008)

Table 6. Quorum sensing (QS) inhibitors observed in algae (modified from Dobretsov et al. 2009). AHL = N-acyl homoserine lactones
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thetic origin of molecules isolated from macroalgae
need to be addressed. In several cases, it has already
been proven that metabolites initially assigned to the
basibionts are in fact of microbial origin (Jensen &
Fenical 1994, Schmidt 2005, Dobretsov et al. 2006a,
König et al. 2006, Egan et al. 2008, Jones et al. 2008,
Lane & Kubanek 2008, Rungprom et al. 2008). Chloro-
phyll d, for example, is not a constituent of red algae as
was described for more than 60 yr. In fact, it does not
even occur in eukaryotes at all, but is produced by the
cyanobacterium Acaryochloris spp. (Murakami et al.
2004, Larkum & Kühl 2005; Table 4). Further studies
like this including labelling experiments and genetic
studies of biosynthetic genes will reveal the producing
part of the association for other macroalga-epibiont-
systems.

APPLIED ASPECTS OF
BACTERIAL–MACROALGAL INTERACTIONS

The development and expansion of macroalgal farm-
ing stresses the need for understanding the relation-
ship between macroalgae and symbiotic as well as
pathogenic microorganisms in both wild and culti-
vated populations (Correa 1996). The extensive farm-
ing of brown, red and green macroalgae in Asia has
shown that all are susceptible to disease (Craigie &
Correa 1996). In aquaculture, secondary bacterial
infections contribute to disintegration of the infected
tissue, finally leading to thallus rupture, breaking-off
of macroalgae from culture lines and massive biomass
loss (Vairappan et al. 2001a, 2008). Infectious diseases
in macroalgae might be highly destructive as in the
case of the green spot rot of Undaria spp. and the white
rot in Nereocystis spp. (Lavilla-Pitogo 1992, Correa et
al. 1993, Park et al. 2006, and references therein). Red
rot disease is caused by the fungal pathogen Phytium
porphyrae affecting different Porphyra species, one of
the most popular edible and extensively cultivated
macroalga, especially in Asia. In Japan, the disease
causes losses of about 40 to 60 million US$ every year
(Woo et al. 2002). Despite some knowledge of the
pathogens and diagnosis of the diseases, little is
known concerning the ecology of microbial pathogens
of these macroalgae (Andrews 1976, Jaffray & Coyne
1996, Correa 1997; Table 3). The growing use of
macroalgae and their products enforces the need to
understand the nature and severity of diseases that can
be anticipated in macroalgal mariculture (Apt 1984).
The development of appropriate strategies will provide
adequate and improved protection of the macroalgae
in order to lower commercial risks (Park et al. 2006).
For this purpose, pathogens of macroalgae have to be
identified and characterized at the species level and

strategies have to be developed to prevent infection of
macroalgae by such pathogens.

On the other hand, there is an increasing interest in
algae-associated microorganisms as a source for nat-
ural bioactive substances (Egan et al. 2008). Alga-
associated bacteria represent an important potential
source of new substances and have been identified as
a promising source of new bioactive and antimicrobial
metabolites (Yan et al. 2002, Penesyan et al. 2009).
Novel infectious diseases of humans, reemerging dis-
eases, and the widespread distribution of multidrug-
resistant pathogenic bacteria clearly indicate a strong
need to develop new antibiotics (Fenical 1993, Skinder-
soe et al. 2008). Table 4 provides a comprehensive
overview of compounds produced by macroalga-
associated bacteria. Most of these compounds includ-
ing peptides or diketopiperazines were produced by
members of Pseudoalteromonas.

CONCLUSIONS AND PERSPECTIVES

Epibiotic bacteria are fast colonizers, highly adapta-
tive and capable of rapid metabolization of algal exu-
dates, and therefore play a key role in the colonization
and biofouling process on macroalgae (Lachnit et al.
2009). Chemical interactions between different species
of bacteria affect the production and secretion of sec-
ondary metabolites in these microorganisms (Jensen &
Fenical 1994, Burgess et al. 1999, Rao et al. 2005). The
competition for space between epibiotic bacteria based
on compounds may provide an antifouling protection
to the algal basibiont (Armstrong et al. 2001, Rung-
prom et al. 2008). Since symbiotic bacteria, pathogens,
and foulers first select, then settle, and finally attach to
the host, macroalgae may prevent damage by also pro-
ducing secondary metabolites that inhibit one or all of
these steps. Such metabolites represent the chemical
first line of defense against microbial challenge. If the
bacterial attachment is not stopped successfully, other
secondary metabolites may inhibit the growth, sur-
vival, virulence, or reproduction of possibly invading
organisms. These second line compounds may be pro-
duced by the macroalgae or by epiphytic and endo-
phytic microbes associated with them (Egan et
al. 2000, Than et al. 2004, Rao et al. 2007, Lane &
Kubanek 2008). A mutualistic relationship can be pos-
tulated in which the bacterial community protects the
host from biofouling, while the host surface may pro-
vide nutrients and physical protection to the bacteria
(Penesyan et al. 2010). The selection of these ‘symbi-
otic’ microorganisms might also be chemically medi-
ated (Lachnit et al. 2010). However, after more than
20 yr of research on this topic, there is still no experi-
mental evidence demonstrating if or how host organ-
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isms selectively attract and harbor such epibionts
(Harder 2009). There is an enormous variety of differ-
ent metabolites as possible mediators of interspecies
interactions in the algal biosphere, including products
of the algal host, pathogens, foulers, and symbionts.
Although bacterial secondary metabolites are likely to
participate in such interactions, little is known about
the role of bacterial secondary metabolites in mediat-
ing such ecological interactions (Maximilien et al.
1998, Meusnier et al. 2001). An interesting aspect is the
chemical interaction between hosts and their sym-
bionts, the details, including host specificity, nutrients
and metabolite exchange, and cell–cell communica-
tion have to be revealed by further studies.

In order to develop a better understanding of chemi-
cally mediated communication on and with the alga, it
is important to detect the allocation of secondary
metabolites within the host tissues (Dworjanyn et al.
1999, 2006, Sudatti et al. 2008). For such investigations,
it is essential to measure the in situ concentrations and
the methods of release of putative deterrents (Krug et
al. 2006, Paradas et al. 2010). Only a few analyses have
attempted to measure the concentration of these com-
pounds in seawater and host tissues (de Nys et al. 1998,
Maximilien et al. 1998, Dworjanyn et al. 1999, Mane-
field et al. 1999, Kubanek et al. 2003, Paul et al. 2006,
Sudatti et al. 2006). The recent improvement of tech-
niques for detecting natural products on tissue sur-
faces, such as desorption electrospray ionization mass
spectrometry (DESI-MS), will provide new sensitive
and effective approaches to resolve localization and
origin of these compounds (Lane et al. 2009, Nyadong
et al. 2009). Improved chemical and molecular biologi-
cal methods coupled with ecologically relevant bioas-
says are likely to lead to new discoveries (Hay 2009)
and to a better understanding of the development of
complex chemical defense mechanisms against micro-
bial threats. The results will enforce our knowledge of
distinct functions of bacteria in various kinds of inter-
actions between macroalgae and bacteria, as well as
within the bacterial community.

In addition to the chemical point of view, we also
need more detailed studies of the bacterial communi-
ties and their development, using new molecular
approaches. Until now, most investigations have
focussed on 1 or 2 different techniques to describe
communities. From our point of view, a synopsis be-
tween culture-dependent and -independent methods
is needed. Various authors have already shown that
the diversity of a given bacterial community cannot be
described by applying either genetic or culture-based
methods (Jensen et al. 1996, Tujula et al. 2006, Long-
ford et al. 2007, Penesyan et al. 2009). Since most stud-
ies presented qualitative information but did not ana-
lyze abundances and ratios that occur in situ, the

application of quantitative or semi-quantitative meth-
ods is required, such as cloning techniques, cytoge-
netic fluorescence in situ hybridization (CFISH), real
time quantitative PCR (qPCR), denaturing gradient gel
electrophoresis (DGGE), and terminal restriction frag-
ment length polymorphism of DNA (T-RLFP), as well
as metagenome studies. The genes used for these
investigations should comprise phylogenetic markers
as well as functional genes in order to obtain insight
into biosynthetic pathways and their regulation, in par-
ticular of those used in the production of the interact-
ing small molecules. Community description should be
extended by studying the geographic distribution
among different host populations with respect to the
associated bacterial communities, which are necessary
to clarify eventual effects (Wright et al. 2000).

To sum up, there is a strong need to integrate aspects
of ecology, cell biology, and chemistry in further stud-
ies (Steinberg & de Nys 2002) in order to understand
the production and the distribution of the bioactive
molecules in situ as well as their ecological impact on
the macroalgal–bacterial interactions.
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Chlorophyta
Chlorophyta spp. STE San Juan Island, USA Bland & Brock (1973)
Caulerpa cupressiodes DGGE, SEM Tampa Bay, USA Delbridge et al. (2004)
Caulerpa mexicana DGGE, SEM Tampa Bay, USA Delbridge et al. (2004)
Caulerpa prolifera DGGE, SEM Tampa Bay, USA Delbridge et al. (2004)

EM, STE Tampa Bay, USA Dawes & Lohr (1978)

Appendix 1. Studies of bacterial communities attached to the surface of different macroalgae over the last 40 yr. CUD = culture
dependent methods. Microscopical methods: EPF = epifluorescence microscopy, EM = electron microscopy, SEM = scanning
electron microscopy, STE = stereoscopic microscopy, TEM = transmission electron microscopy. Molecular techniques: CLO =
cloning, CFISH = cytogenetic fluorescence in situ hybridization, DGGE = denaturing gradient gel electrophoresis, FISH = fluo-
rescence in situ hybridization, IFN = immunofluorescent detection, RQT = real time quantitative PCR, RFLP = restriction fragment 

length polymorphism, TRFLP = terminal restriction fragment length polymorphism of DNA
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Caulerpa racemosa TRFLP, SEM Hong Kong Dobretsov et al. (2006b)
Caulerpa sertulariodes DGGE, SEM Tampa Bay, USA Delbridge et al. (2004)
Caulerpa taxifolia RFLP Mediterranean, Tahiti, 

Philippines, Australia Meusnier et al. (2001)
Chaetomorpha brachygona CUD Tolo, Hong Kong Kong & Chan (1979)
Chaetomorpha media CUD Anjuna & Baga, India Ramaiah & Chandramohan (1992)
Chaetomorpha sp. CUD Vellar Estuary, India Lakshmanaperumalsamy & 

Purushothaman (1982)
Chara aspera FISH Baltic Sea, Germany Hempel et al. (2008)
Cladophora rupestris CUD France Barbeyron & Berger (1989)
Codium cylindricum CUD Tolo, Hong Kong Kong & Chan (1979)
Codium fragile CUD Scotland Boyd et al. (1999a,b)
Enteromorpha compressa CUD Ria de Arosa & Pontevedra, Spain Lemos et al. (1985)
Enteromorpha intestinalis CUD Ria de Arosa & Pontevedra, Spain Lemos et al. (1985)
Enteromorpha linza CUD Japan Shiba & Taga (1980)
Enteromorpha sp. CUD Vellar Estuary, India Lakshmanaperumalsamy & 

Purushothaman (1982)
IFN Auckland, New Zealand Booth & Hoppe (1985)

Halimeda copiosa CUD, EPF Bahamas Islands Jensen et al. (1996)
Halimeda tuna SEM, EM Lecce, Italy Colombo (1978)
Monostroma nitidum CUD Japan Shiba & Taga (1980)
Monostroma undulatum CUD Puerto Deseado, Argentina Gallardo et al. (2004)
Udotea petiolata SEM, EM Sardinia, Italy Colombo (1978)
Ulva australis DGGE, CLO Shark Point, Australia Longford et al. (2007)

DGGE,CFISH Shark Point, Australia Tujula et al. (2010)
DGGE, CLO Sydney, Australia Burke et al. (2009), Delbridge et al. (2004)
CUD, EPF Sydney, Australia Rao et al. (2006, 2007)
CUD Sydney, Australia Penesyan et al. (2009)

Ulva compressa DGGE Baltic & North Sea, Germany Lachnit et al. (2009)
TRFLP Chañaral, Chile Moran et al. (2008)

Ulva fasciata CUD Anjuna & Baga, India Ramaiah & Chandramohan (1992)
Ulva lactuca CUD Scotland Boyd et al. (1999a,b)

CUD Tolo, Hong Kong Kong & Chan (1979)
CUD Spain Lemos et al. (1985)
CUD, TEM Massachusetts, USA Waite & Mitchell (1976)
CUD, TEM Sydney, Australia Egan et al. (2000)
RTQ, DGGE Kattegat, Denmark Skovhus et al. (2004)
CFISH, DGGE Shark Point, Australia Tujula et al. (2006, 2010)

Ulva pertusa CUD, SEM Jiaozhou, China Duan et al. (1995)
CUD Tuandao Bay, China Wang et al. (2009)

Ulva reticulata CUD, SEM Malaysia Vairappan & Suzuki (2000)
CUD, SEM Hong Kong Dobretsov & Qian (2002)

Ulva rigida CUD Las Salinas Beach, Spain Bolinches et al. (1988)
CUD Pleubian, France Liot et al. (1993)

Ulva sp. CUD Japan Shiba & Taga (1980)
Ulva spp. RTQ, DGGE Kattegat, Denmark Skovhus et al. (2004)

CUD, EPF Uminokoven, Japan Uchida & Murata (2004)
Ulvaria fusca RTQ, DGGE Kattegat, Denmark Skovhus et al. (2004)

Heterokontophyta, Phaeophyceae
Ascophyllum nodosum CUD Trondheimsfjord, Norway Sieburth & Jensen (1967)

SEM Massachusetts, USA Cundell et al. (1977)
SEM Camp Varnum, RI, USA Sieburth & Tootle (1981)

Chordaria flagelliphormis CUD Sea of Japan, Russia Beleneva & Zhukova (2006)
Colpomenia sinuosa CUD Awaji Island, Japan Kanagasabhapathy et al. (2006, 2009)
Cystoseira sp. CUD San Sebastian, Spain Genilloud et al. (1994)
Desmarestia viridis CUD Sea of Japan, Russia Beleneva & Zhukova (2006)
Dictyota dichotoma CUD Gijon, Spain Genilloud et al. (1994)
Ecklonia cava CUD Awaji Island, Japan Kanagasabhapathy et al. (2006)

SEM Kommetjie, South Africa Koop et al. (1982)

Appendix 1 (continued)

Macroalga Methodology Location Source



Mar Ecol Prog Ser 409: 267–300, 2010298

Ecklonia maxima CUD Oudekraal, South Africa Mazure & Field (1980)
Ectocarpus siliculosus CUD Tolo, Hong Kong Kong & Chan (1979)
Eisenia bicyclis CUD Japan Shiba et al. (1979)

CUD, SEM Japan Sakami & Sugiyama (1994)
Fucus ceranoides CUD Spain Lemos et al. (1985)
Fucus serratus CUD Scotland Boyd et al. (1999a,b)

DGGE Baltic & North Sea, Germany Lachnit et al. (2009)
Fucus sp. EPF, CUD White Sea, Russia Semenova et al. (2009)
Fucus vesiculosus SEM Camp Varnum, RI, USA Sieburth & Tootle (1981)

CUD Gijon, Spain Genilloud et al. (1994)
CUD Las Salinas Beach, Spain Bolinches et al. (1988)
IFN Baltic Sea, Germany Booth & Hoppe (1985)
DGGE Baltic & North Sea, Germany Lachnit et al. (2009)

Himanthalia elongata CUD Scotland Boyd et al. (1999a,b)
CUD Gijon, Spain Genilloud et al. (1994)

Laminaria digitata CUD, SEM Bay of Brest, France Corre & Prieur (1990)
CUD Scotland Boyd et al. (1999a,b)
CUD Roscoff, France Salaün et al. (2010)

Laminaria hyperborea DGGE, EPF Bergen, Norway Bengtsson et al. (2010)
Laminaria japonica CUD, SEM Jiaozhou, China Duan et al. (1995)

CUD Primor’e, Russia Dimitrieva & Dimitriev (1996)
CUD Shandong Province, China Wang et al. (2008)
CUD Sea of Japan, Russia Beleneva & Zhukova (2006)
CUD Tuandao Bay, China Wang et al. (2009)

Laminaria longicruris CUD Nova Scotia, Canada Laycock (1974)
Laminaria pallida CUD Oudekraal, South Africa Mazure & Field (1980)
Laminaria saccharina DGGE Baltic & North Sea, Germany Lachnit et al. (2009)

DGGE, CLO Baltic & North Sea, Germany Staufenberger et al. (2008)
Lobophora variegata CUD, EPF Bahamas Islands Jensen et al. (1996)
Macrocystis integrifolia SEM Bamfield Inlet, Canada Roland (1975)
Nereocystis luetkeana SEM Bamfield Inlet, Canada Roland (1975)
Padina arborescens CUD Awaji Island, Japan Kanagasabhapathy et al. (2006)
Padina tetrastromatica CUD Anjuna & Baga, India Ramaiah & Chandramohan (1992)
Pelvetia canaliculata CUD Spain Lemos et al. (1985)
Petalonia fascia CUD Awaji Island, Japan Kanagasabhapathy et al. (2006)
Pilayella littoralis IFN Auckland, New Zealand Booth & Hoppe (1985)

IFN Baltic Sea, Germany Booth & Hoppe (1985)
Sargassum cinereum CUD Anjuna & Baga, India Ramaiah & Chandramohan (1992)
Sargassum filicinum CUD Awaji Island, Japan Kanagasabhapathy et al. (2006)
Sargassum fusiformis CUD Awaji Island, Japan Kanagasabhapathy et al. (2006)
Sargassum hemiphyllum CUD Tolo, Hong Kong Kong & Chan (1979)
Sargassum horneri CUD Japan Shiba & Taga (1980)
Sargassum linearifolium CFISH Shark Point, Australia Tujula et al. (2006)
Sargassum seratifolium CUD Awaji Island, Japan Kanagasabhapathy et al. (2006)
Sargassum sp. CUD Sao Paulo, Brazil Menezes et al. (in press)
Scytosiphon lomentaria CUD Awaji Island, Japan Kanagasabhapathy et al. (2006)
Undaria pinnatifida CUD Awaji Island, Japan Kanagasabhapathy et al. (2006)

CUD Wando, Korea Kim et al. (2008)
CUD Korea Lee et al. (2006)

Rhodophyta
Amphiroa anceps CFISH Shark Point, Australia Tujula et al. (2006)
Antithamnion plumula CUD France Barbeyron & Berger (1989)
Bonnemaisonia asparagoides TRFLP, EPF Skagerrak, Sweden Nylund et al. (2010)
Camphylaephora hyphaeoides CUD Sea of Japan, Russia Beleneva & Zhukova (2006)
Ceramium kondoi CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
Ceramium rubrum IFN Baltic Sea, Germany Booth & Hoppe (1985)
Ceramium virgatum CUD Skagerrak, Sweden Nylund et al. (2008)
Chondrus crispus SEM Camp Varnum, RI, USA Sieburth & Tootle (1981)

CUD Gijon & Vigo, Spain Genilloud et al. (1994)
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Chondrus oncellatus CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
Clathromorphum sp. STE Oudekraal, South Africa Johnson et al. (1971)

SEM, CUD Oudekraal, South Africa Johnson et al. (1991)
Coralline algae CUD, DGGE Shark Bay, Australia Huggett et al. (2006)
Corallina officinalis CUD Scotland Boyd et al. (1999a,b)

CFISH Shark Point, Australia Tujula et al. (2006)
Delesseria sanguinea DGGE Baltic & North Sea, Germany Lachnit et al. (2009)
Delisea pulchra DGGE, CLO Sydney, Australia Burke et al. (2009), Delbridge et al. (2004)

DGGE, CLO Bare Island, Australia Longford et al. (2007)
CUD Bare Island, Australia Penesyan et al. (2009)
CFISH Shark Point, Australia Tujula et al. (2006)

Gelidium amansii CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
Gelidium caulacantheum IFN Auckland, New Zealand Booth & Hoppe (1985)
Gelidium pusillum CUD Anjuna & Baga, India Ramaiah & Chandramohan (1992)
Gelidium sp. CUD San Sebastian, Spain Genilloud et al. (1994)
Gracilaria changii CUD Morib Beach, Malaysia Musa & Wei (2008)
Gracilaria conferta CUD Israel Weinberger et al. (1997)
Gracilaria corticata CUD Anjuna & Baga, India Ramaiah & Chandramohan (1992)
Gracilaria textorii CUD Tuandao Bay, China Wang et al. (2009)
Gracilaria verrucosa CUD Sea of Japan, Russia Beleneva & Zhukova (2006)
Gracilaria spp. EPF Philippines & Japan Largo et al. (1997)
Grateloupia filicina CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
Hormosira banksii IFN Auckland, New Zealand Booth & Hoppe (1985)
Hypnea charoides CUD Tolo, Hong Kong Kong & Chan (1979)
Hypnea sp. CUD Vellar Estuary, India Lakshmanaperumalsamy & 

Purushothaman (1982)
Hypnea valentiae CUD Anjuna & Baga, India Ramaiah & Chandramohan (1992)
Kappaphycus alvarezii EPF Philippines & Japan Largo et al. (1997)

INF Philippines Largo et al. (1998)
Laurencia distichophylla IFN Auckland, New Zealand Booth & Hoppe (1985)
Lithophyllum sp. CUD, SEM Bicheno, Tasmania Lewis et al. (1985)
Lomentaria catenata CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
Mesophyllum sp. CUD, SEM Bicheno, Tasmania Lewis et al. (1985)
Osmundaria serrata SEM South Africa Barreto & Meyer (2006)
Pachymeniopsis lauceolata CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
Palmaria palmata CUD Scotland Boyd et al. (1999a,b)

CUD Pleubian, France Liot et al. (1993)
Phycodrys rubens DGGE Baltic & North Sea, Germany Lachnit et al. (2009)
Plocamium telfairiae CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
Polysiphonia fucoides CUD Skagerrak, Sweden Nylund et al. (2008)
Polysiphonia lanosa CUD Tolo, Hong Kong Kong & Chan (1979)

SEM Camp Varnum, RI, USA Sieburth & Tootle (1981)
Polysiphonia nigrescens IFN Baltic Sea, Germany Booth & Hoppe (1985)
Polysiphonia urceolata CUD Tuandao Bay, China Wang et al. (2009)
Porphyra columbina CUD San Jorge Gulf, Argentina Estevao Belchior et al. (2003)
Porphyra haitanensis CUD, SEM Jiaozhou, China Duan et al. (1995)
Porphyra leucosticta CUD Oono-Chyo, Japan Tsukidate (1971)
Porphyra sp. CUD Japan Shiba & Taga (1980)

CFISH Shark Point, Australia Tujula et al. (2006)
Porphyra yezoensis CUD, SEM Jiaozhou, China Duan et al. (1995)

CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
CUD, DGGE China Yang et al. (2008)

Rhodomela confervoides CUD Skagerrak, Sweden Nylund et al. (2008)
Schizymenia dubyi CUD Awaji Island, Japan Kanagasabhapathy et al. (2008)
Sporolithon sp. STE Oudekraal, South Africa Johnson et al. (1971)

SEM, CUD Oudekraal, South Africa Johnson et al. (1991)
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