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ABSTRACT: High-throughput sequencing of small subunit ribosomal RNA (SSU rRNA) genes
from marine environments is a widely applied method used to uncover the composition of micro-
bial communities. We conducted an analysis of surface ocean waters with the commonly
employed hypervariable 4 region SSU rRNA gene primers 515F and 806R, and found that bacteria
belonging to the SAR11 clade of Alphaproteobacteria, a group typically making up 20 to 40 % of
the bacterioplankton in this environment, were greatly underrepresented and comprised <4 % of
the total community. Using the SILVA reference database, we found a single nucleotide mismatch
to nearly all SAR11 subclades, and revised the 806R primer so that it increased the detection of
SAR11 clade sequences in the database from 2.6 to 96.7 %. We then compared the performance of
the original and revised 806R primers in surface seawater samples, and found that SAR11 com-
prised 0.3 to 3.9 % of sequences with the original primers and 17.5 to 30.5 % of the sequences with
the revised 806R primer. Furthermore, an investigation of seawater obtained from aquaria re-
vealed that SAR11 sequences acquired with the revised 806R primer were more similar to natural
cellular abundances of SAR11 detected using fluorescence in situ hybridization counts. Collectively,
these results demonstrate that a minor adjustment to the 806R primer will greatly increase detec-
tion of the globally abundant SAR11 clade in marine and lake environments, and enable inclusion
of this important bacterial lineage in experimental and environmental-based studies.
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INTRODUCTION

The ability to deeply sequence microbial small sub-
unit ribosomal RNA (SSU rRNA) genes has provided
considerable insight into the structure, stability,
composition and dynamics of microbial populations
associated with aquatic environments (e.g. Sogin et
al. 2006, Huber et al. 2007, Gilbert et al. 2009, Nelson
et al. 2011, Vergin et al. 2013a). Primers that target
the hypervariable region 4 (V4) of the SSU rRNA
gene, especially 515F and 806R, are now commonly
employed in studies that investigate and compare
the taxonomic diversity of microbial communities

*Corresponding author: apprill@whoi.edu

(Caporaso et al. 2012, Kozich et al. 2013), including
the Earth Microbiome Project's exploration of the
global microbiome (Gilbert et al. 2014). The V4
primers are popular because they target Bacteria and
Archaea, and produce an appropriate amplicon size
for next-generation sequencing. Additionally, there
is now a growing abundance of V4 sequence data,
allowing for meaningful comparisons among and
across environments.

Our application of these commonly used V4 SSU
TRNA gene primers to surface seawater samples
revealed a surprisingly low detection of sequences
belonging to the SAR11 clade of Alphaproteobacte-

© Inter-Research 2015 - www.int-res.com



130 Aquat Microb Ecol 75: 129-137, 2015

ria (<4 % of the community). SAR11 constitutes about
1 in 3 microbial cells in the surface ocean, and can
comprise up to 1in 5 microbial cells in the mesopela-
gic ocean and some lakes (Morris et al. 2002, Carlson
et al. 2009, Salcher et al. 2011, Treusch et al. 2012,
Vergin et al. 2013b). The low detection of this domi-
nant bacterioplankton using the V4 SSU rRNA gene
primers could bias interpretation of experimental and
environmental microbial dynamics, particularly for
studies focused on understanding microbial pro-
cesses in surface seawater.

In any PCR- and primer-based taxonomic investi-
gation, members of a microbial community may be
omitted, distorted, and/or misrepresented, typically
due to primer mismatches or PCR biases (Acinas et al.
2005, Hong et al. 2009, Lee et al. 2012, Pinto & Raskin
2012, Logares et al. 2014). In fact, even a single base
mismatch within a primer can result in a significant
lack of detection of community members (Bru et al.
2008, Mao et al. 2012); thus, primers are frequently
and continually altered to better account for the tar-
geted community. In this study, we present evidence
of the 806R primer bias against most subgroups of the
SAR11 SSU rDNA using an in silico analysis of the V4
primers in relation to the recognized SAR11 subgroups
in the SILVA reference database. We also compare
the performance of the original 806R reverse primer
and a modified 806RB primer that was designed to
enhance the number of SAR11 sequences using a
head-to-head sequencing study of the same surface
seawater communities. In addition, we compare the
retrieval of SAR11 sequences with the 2 primer sets to
a PCR-independent survey of SAR11 cellular abun-
dances in aquaria seawater samples. Our results
demonstrate that a minor adjustment to the existing
806R primer will enhance the recovery of SAR11 pop-
ulations in aquatic environments.

MATERIALS AND METHODS
Primer coverage evaluation and re-design

The primers 515F (5'-GTG CCA GCM GCC GCG
GTA A-3') and 806R (5'-GGA CTA CHV GGG TWT
CTA AT-3') (Caporaso et al. 2011), targeting the V4
region of the SSU rRNA gene, were examined in
relation to SSU rRNA gene sequences publicly avail-
able in the non-redundant SILVA SSU Ref database
(v.115, released August 2013) (Quast et al. 2013)
using the ARB software (Ludwig et al. 2004). A total
of 3600 SAR11 sequences were specifically evalu-
ated in relation to the V4 primers. ARB software was

also utilized for the re-design of the 806R primer. In
addition, primer coverage of the original reverse
primer and the revised reverse primer was evaluated
using SILVA TestPrime 1.0 (Klindworth et al. 2013)
with version 117 of the SILVA SSU Ref database with
no mismatches allowed. Melting temperatures of
the primer sets were examined using OligoCalc
(Kibbe 2007), and primer dimers were evaluated
using OligoAnalyzer 3.1 (Integrated DNA Technolo-
gies; www.idtdna.com/calc/analyzer).

Seawater sample collection

Nucleic acids were collected from surface waters
along the coastline of the southeastern Red Sea and
from coral reefs surrounding the islands and atolls in
the Federated States of Micronesia (see Table S1
in Supplement 1 at www.int-res.com/articles/suppl/
a075p129_supp.pdf). Samples from an aquaria-based
experiment housed at the Bermuda Institute of Ocean
Sciences (BIOS) were also utilized in this study. Sea-
water from Ferry Reach, Bermuda (32.37035°N,
64.69545° W) was sampled from a direct inflow line.
In addition, this water was also held in separate aer-
ated 30 1 aquaria (similar to de Putron et al. 2011)
where it was sampled for nucleic acids (500 ml) and
fluorescence in situ hybridization (FISH) analyses
(50 ml) over the course of 12 d.

DNA analysis

Seawater collected from the Red Sea (20 1) and
Micronesia (2 1) was filtered onto 142 mm, 0.22 pm
Durapore membrane filters (Millipore) and 25 mm,
0.2 pm Supor polyethersulfone membranes (Pall),
respectively, and immediately frozen in liquid nitro-
gen. Total genomic DNA was extracted from these
samples using an extraction method employing bead
beating for 10 min with sucrose-EDTA lysis buffer
(0.75 M sucrose, 20 mM EDTA, 400 mM NaCl,
50 mM Tris) and 100 ml of 10% sodium dodecyl
sulfate, followed by a Proteinase K digestion for 4 h at
55°C, and finally purification with the DNeasy kit pu-
rification (Qiagen) (Santoro et al. 2010). Similarly, mi-
crobial biomass originating from the BIOS seawater
inflow line and aquaria seawater was concentrated
onto 0.2 pm Supor polyethersulfone membranes us-
ing a 47 mm support filter and a gelman rig under
gentle vacuum (~100 mm Hgq). Each filter was stored
in 1 ml of sterile sucrose lysis buffer (20 mM EDTA,
400 mM NacCl, 0.75 M sucrose, 50 mM Tris-HCI) at
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—-80°C. DNA was extracted by incubating the filter
and buffer in 1 mg ml™! of lysozyme at 37°C for
20 min, followed by the addition of sodium dodecyl
sulfate to 0.5% and an incubation with 160 png ml~!
proteinase K for 2 h at 37°C, and a phenol-chloroform
purification (Giovannoni et al. 1990). Primers target-
ing the V4 region of the SSU rRNA gene (515F and
806R, presented above), were utilized for PCR ampli-
fication using unique barcoded primer combinations
for each sample. In addition, the same DNA samples
were amplified separately with the 515F primer and
a modified 806RB primer using the identical bar-
coding approach. The modified reverse primer re-
places the 'H' degeneracy in the original 806R primer
with a 'N', and is designed to enhance SAR11 targets
(revised primer 806RB; 5'-GGA CTA CNV GGG
TWT CTA AT-3'). The primers were designed after
Kozich et al. (2013) and were each equipped with a
unique 8 bp barcode, 10 bp pad and 2 bp link that fol-
lowed the above-mentioned primers (see 'Materials
and methods' in Supplement 1). Triplicate 25 pl PCR
reactions were conducted for each sample, and each
reaction contained 1.25 U of GoTaq Flexi DNA Poly-
merase (Promega), 5x Colorless GoTaq Flexi Buffer,
2.5 mM MgCl,, 200 pM dNTP mix (Promega), 200 nM
of each barcoded primer, and 1 to 4 ng of genomic
template. The reaction conditions consisted of an ini-
tial denaturation step at 95°C for 2 min, followed by
27 to 38 cycles of 95°C for 20 s, 55°C for 15 s, and
72°C for 5 min, concluding with an extension step at
72°C for 10 min. The reactions were carried out in a
Bio-Rad thermocycler (Bio-Rad Laboratories). Reac-
tion products (5 pl) were screened on a 1% agarose/
TBE gel. The HyperLadder 50 bp DNA ladder (gen-
erally 5 ng pl™!) (Bioline) was used to confirm appro-
priate amplicon size. The number of PCR cycles var-
ied between samples in order to produce similar,
minimal yields, but each sample was subjected to
nearly identical PCR cycles with both primer sets.
The 3 replicate reactions were pooled and subse-
quently purified using the QIAquick Purification Kit
(Qiagen), and quantified using the Qubit 2.0 Fluo-
rometer with the dsDNA High Sensitivity Assay (Life
Technologies). For each primer set, barcoded amp-
licons were pooled into equimolar ratios. These am-
plicon pools were then shipped to the University of
Illinois W.M. Keck Center for Comparative and Func-
tional Genomics where they were used for construc-
tion of 2 separate libraries that were subsequently se-
quenced using 2 x 250 bp paired-end MiSeq
(Ilumina), as detailed previously (similar to Kozich et
al. 2013). Control samples included sterile water
(negative controls) in which PCR did not yield any

detectable amplification with either primer set. A
mock community sample (positive control; obtained
through BEI Resources, NIAID and NIH as part of the
Human Microbiome Project: Genomic DNA from Mi-
crobial Mock Community B [even, low concentra-
tion], v5.1L, HM-782D) was amplified with the 515F/
806RB primers and sequenced to assess amplification
bias and sequencing error rate.

Sequence analysis

Data analyses were conducted using mothur
v.1.33.3 (Schloss et al. 2009) and included contig con-
struction of the paired ends, quality filtering, ampli-
con size selection (253 bp median size) and align-
ment to the SSU rRNA gene. Chimera detection was
conducted via UCHIME (Edgar et al. 2011) using
mothur, and chimeric sequences were removed. Tax-
onomic classification of sequences was conducted in
mothur with the SILVA SSU Ref database (v.117)
using the k-nearest neighbor algorithm on sequences
sub-sampled to the same depth with each primer pair
(10000, 12000, or 17500 sequences sample™' for
BIOS aquaria, Micronesia, and Red Sea sample sets,
respectively). The sequencing error analysis con-
ducted on the mock community sequences amplified
with the 515F/806RB primers revealed a sequen-
cing error rate of 0.0012%. Data are accessible in
NCBI's Short Read Archive under BioProject ID
PRINA279146.

Microbial abundances and FISH

To determine microbial abundances from the BIOS
inflow and aquaria samples, the seawater was fixed
with formalin (10 % final concentration) and stored at
—80°C. Upon analysis, the samples were thawed and
filtered onto 0.2 pm filters pre-stained with Irgalan
black (0.2 g in 2% acetic acid) under gentle vacuum
(~100 mm Hg) and post-stained with 4, 6-diamidino-
2-phenyl dihydrochloride (DAPI; 5 ug ml~!, SIGMA-
Aldrich) (Porter & Feig 1980). Slides were then enu-
merated using an AX70 epifluorescent microscope
(Olympus) under UV excitation at 100x magnifica-
tion as previously described (Parsons et al. 2014). At
least 500 cells filter™ (12 fields) were counted.

Fluorescence in situ hybridization (FISH) was used
to quantify the abundance of SAR11 in the BIOS
aquaria samples using a probe suite (152R-Cy3, 441R-
Cy3, 542R-Cy3, 732R-Cy3) and was conducted as pre-
viously described (Morris et al. 2002, Parsons et al.
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Table 1. In silico analysis of the percentage of SAR11 sequences recovered
using the original hypervariable region 4 (V4) primers and revised 806RB

primer with no mismatches allowed

theoretically bind to 806R. This primer
mismatch was verified using TestPrime
and an updated version of the SILVA non-

redundant database (SSU 117, containing

“Subgroups currently defined by SILVA SSU rRNA project
PSILVA SSU reference 117 non-redundant database

SAR11 No. of sequences = —SAR11 sequences recovered— . .
subgroup? in database” Original V4 515F/806RB 3659 SAR11 sequences); analysis revealed
primers (%) that the original V4 primer set targets
(%) 2.6 % of the SAR11, the main taxonomic
group being the Surface 4 subgroup
Surface 1 2195 0.6 96.0 (Table 1). Replacing the ‘D' basepair in
Surface 2 271 0 96.7 the reverse complement of the original
zuriacez ;é 9?7 19010‘70 806R primer to a ‘N’ basepair (reverse
Dur acle o4 0’ 98.5 complement now reads as 3'-ATT AGA
Ciep . 106 0o 001 WAC CCB NGT AGT CC-5') theoreti-
D ef :;2?2 BG;Y ' ' cally allows the ‘C’ base in the remaining
LD12 freshwater 405 53 979 SAR11 sequences to anneal during PCR

(as well as all other nucleotide possibili-
ties at this position). In silico analysis of
this revised primer (806RB 5'-GGA CTA

2012). Image analysis coupled with epifluorescence
microscopy was used to process FISH slides excited
with Cy3 (650 nm) and UV wavelengths. The images
were captured using a Retiga Exi CCD digital camera
with QCapture software (v.2.0; QImaging) and pro-
cessed with Image Pro software (v.7.0; Media Cyber-
netics) as previously described (Parsons et al. 2014).
SAR11 percentages were calculated as SAR11 FISH
abundances compared to total cellular abundances.

RESULTS AND DISCUSSION

In silico analysis and
modification of the 806R primer

Evaluation of the V4 region 515F and 806R primers
in ARB revealed that most (3579 of 3600) SAR11
sequences in the SILVA non-redundant SSU 115
database bind to the 515F primer, but the majority
(3509 of 3600) of these sequences have a single inter-
nal mismatch to the 806R primer. Specifically, there is
a mismatch at the ‘D’ position of the reverse com-
plement orientation of the primer (position 799 of
the Escherichia coli SSU rRNA molecule; see Fig. S1
in Supplement 1 at www.int-res.com/articles/suppl/
a075p129_supp.pdf). SAR11 Surface 1, 2, and 3 sub-
groups as well as the Deep 1, Chesapeake-Delaware
Bay, and LD12-freshwater subgroups contain a ‘C’
basepair at this mismatched position, and the 'D’
degeneracy will anneal with all bases except 'C’,
potentially leading to insufficient detection of SAR11
SSU rDNA during PCR (Fig. S1). Only the SAR11
Surface 4 subgroup with a ‘G’ in the 799 position will

CNV GGG TWT CTA AT-3') with Test-
Prime and the SSU 117 database revealed an in-
crease in the SAR11 sequence targets to 96.6%,
which includes nearly full recovery of the Chesa-
peake-Delaware Bay, Deep 1, LD12-freshwater, and
Surface 1, 2 and 3 subgroups (Table 1). This analysis
included sequences recognized as belonging to finer
resolution groupings within the subgroups (sub-
clades) (Vergin et al. 2013b), but the taxonomy pre-
sented here conforms to that currently recognized by
the SILVA rRNA database project. The minor modifi-
cation made to the original 806R primer did not alter
the theoretical melting temperature of the primer
beyond the range of the original barcoded primers
(all between 63.8 and 67°C, salt adjusted). Hetero-
dimer analysis revealed that the delta G decreased
with the revised primer (from -9.85 kcal mol~! in the
original 515F/806R primers to —13.42 kcal mol™! in
the new 515F/806RB primers), making a 5-base
primer dimer more likely. Even so, primer dimers
were observed using both primer sets when higher-
than-optimal PCR cycles were utilized, and our
methodology optimized PCR cycles per sample to
avoid formation of these products.

Comparison of SAR11 recovery with V4,
modified primers and FISH counts

When seawater samples from the Red Sea and
Micronesia were amplified with the original V4
primers, SAR11 sequences were found to comprise
0.3 to 3.9% of the bacterial and archaeal communi-
ties, with the Surface 1 and 4 subgroups most repre-
sented. In contrast, SAR11 composed 17.5 to 30.5%
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of the communities in the same samples when sam-
ples were amplified with the revised reverse primer,
and the Surface 1 subgroup increased about 10-fold
in these communities, with the Surface 2 and unclas-
sified SAR11 subgroups (which were previously
nearly undetectable) now represented in all commu-
nities (Fig. 1, Table S2 in Supplement 1). These data
suggest that although the original 806R primer mis-
match is internal, substitution of the mismatched
base clearly increases detection of SAR11. This per-
formance of an internal priming mismatch is consis-
tent with previous observations (Sipos et al. 2007). As
expected, the representation of non-SAR11 lineages
decreased within the community when the revised
primer set was used (Fig. 2).

35 1 @SAR11 Surface 1
B SAR11 Surface 2
- ESAR11 Surface 4
%0 g B SAR11 Unclassified

é

7
@ 251 é '
» n
3 ?r%% //
s 297079 7 7 7
S 29 9 9 9 9 9 b
. 70007 7 0 7
< 2 9 9 9 94 9 9 9 7
z 29 9 9 9 9 9 9 7
T 27 U YU W W Y v WU Y
S50 00 10 1 ) 5 7
5 2 9 9 9 9 9 % v v
2 09997 95 9 0 7
S 29999937797 7
5 A 9 9 49 4 4 4 9 7
o 29 9 9 9 9 9 9 7
SN 90 9473 9 9 7
= 77
s 500777 ) ) 7
2 %9907 77 9 7
S 199 %9 9 9 9 9 % 9
o 0Z .  ifd
2 ‘N /
Az%%ﬁzm -
S0 M0 S0 SM M M M M M
>0 >@ > > > > > > >
g & & 8 8 & 8 8 8
Wi W3 W10 W13 W14 W15 W16 W17 W18

Red Sea

Cellular abundances of SAR11 examined using
FISH in the BIOS aquaria samples revealed that 16.7
to 29.4% of the bacterioplankton community was
comprised of SAR11. These cellular abundances
were substantially greater than the sequence esti-
mates of SAR11 using the original V4 primers (0.2 to
2.0%) would suggest, and were more comparable to
sequence estimates recovered using the revised
primer (11.4 to 28.7 %) (Table 2). It was expected that
SAR11 abundances would be more variable in the
aquaria compared to ocean waters, and these results
will be examined in more detail in relation to a coral-
based experiment (S. McNally et al. unpubl. data).
The discrepancy between SAR11 sequences and
FISH counts are within the range reported in another
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Fig. 1. Taxonomic comparison of sequences belonging to the SAR11 subgroups recovered from seawater samples using the

original hypervariable region 4 (V4) and 515F/806RB primers from coral reef waters in the Red Sea (17 500 sequences sam-

ple™!) and Federated States of Micronesia (12 000 sequences sample™!). W, Kap, Kos, Olim, Nuk and Poh refer to the sample
names (see Table S1 in Supplement 1 at www.int-res.com/articles/suppl/a075p129_supp.pdf)
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study examining the coastal waters of Bermuda
(Parsons et al. 2014). SAR11 cells typically contain a
single ribosomal RNA operon (Giovannoni et al.
2005, Grote et al. 2012). As a result, natural abun-
dances of SAR11 could be underestimated in com-
parison to abundances of other bacterioplankton
containing multiple copies of this gene operon if only
PCR-based surveys are used to profile seawater
microbial communities.

Minor impacts on the recovery of other surface
seawater taxa using the revised primer

The contribution of SAR11 to the Red Sea and
Micronesian seawater bacterioplankton communities
was entirely removed in order to compare the ampli-
fication of non-SAR11 taxonomic groups between the
original V4 and 515/806RB primers. This analysis
revealed that a majority (27 of 29) of the taxonomic
groups were not significantly affected by the primer
modification (see Supplement 1: Table S3, 2 sample
t-tests, p > 0.05 as well as full taxonomic comparisons
provided in Fig. S2 at www.int-res.com/articles/suppl/
a075p129_supp.pdf; see also Table S4 in Supplement
2 at www.int-res.com/articles/suppl/a075p129_supp
xlsx). Two taxonomic groups, SAR86 (Gammaproteo-
bacteria) and other Proteobacteria (comprised of se-
quences not belonging to the Alpha, Beta, Delta and
Gamma lineages), were significantly impacted by the
primer alteration (t = 2.33, p = 0.025 for SAR86; t =
3.12, p = 0.004 for other Proteobacteria). In general,
there was less recovery of SAR86 sequences and

other Proteobacteria-affiliated sequences with the
modified primers, but the inconsistency in the recov-
ery of these sequences in seawater appeared limited
to several samples (Fig. S3A,B & Table S3). These
results only represent the performance of the primers
in a limited marine environment (surface seawater); a
more thorough examination of non-marine taxa is
warranted before applying the revised primer to
other environments.

CONCLUSIONS

The in silico and sequencing data presented here
provide support for a minor revision to the V4 primer
806R that would result in an increased detection of
SAR11 bacterioplankton without incurring a large
bias in the detection of other surface bacterioplankton
taxa. Several published studies have applied the
original V4 primers to surface marine and lake
samples, and thus may have underestimated SAR11
abundances in these waters (Paver et al. 2013, Taylor
et al. 2014, Orsi et al. 2015). In some marine samples,
however, underestimation of SAR11 with the V4
primers may not impact the findings of the study (i.e.
for sponges and corals, see Cuvelier et al. 2014,
Meyer et al. 2014). The Earth Microbiome Project
(EMP) has employed the V4 primers for studies ex-
ploring Earth's microbial environment, and they
have recently acknowledged the limitation of these
primers for detecting SAR11 (Gilbert et al. 2014). The
performance of the 806RB primer proposed and eval-
uated in this study should be examined in tandem

Table 2. Abundance of SAR11 compared to the entire bacterioplankton community recovered using the original V4 primers,
the revised 806RB primer, and SAR11 cellular abundances determined using fluorescence in situ hybridization (FISH) from
aquaria containing seawater

Sample Percent of bacterioplankton
V4 primers 515F/806R Revised 515F/806RB SAR11 FISH counts
(SAR11 sequences?) (SAR11 sequences?) (SD)

Inflow to aquaria 1.9 (192) 28.7 (2867) 29.4 (4.9)
Seawater aquaria 7, Day 2 0.6 (54) 11.4 (1136) 24.0 (2.6)
Seawater aquaria 9, Day 2 1.1 (1095) 14.9 (1488) 29.0 (4.6)
Seawater aquaria 7, Day 4 1.4 (133) 16.5 (1646) 20.2 (3.9)
Seawater aquaria 9, Day 4 0.2 (15) 16.0 (1599) 22.0 (3.3)
Seawater aquaria 7, Day 6 1.3 (133) 14.7 (1474) 20.0 (6.3)
Seawater aquaria 9, Day 6 1.6 (157) 12.6 (12595) 21.2 (4.9)
Seawater aquaria 7, Day 8 1.7 (168) 16.5 (1651) 22.7 (3.0)
Seawater aquaria 8, Day 8 1.8 (184) 26.6 (2160) 22.4 (3.6)
Seawater aquaria 7, Day 10 0.9 (92) 12.0 (1193) 16.7 (9.5)
Seawater aquaria 8, Day 10 2.0 (203) 23.4 (2338) 22.0 (1.8)
Seawater aquaria 8, Day 12 0.5 (53) 14.3 (1428) 19.5 (9.5)
3Sequence data subsampled to 10 000 sequences sample ™
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using the EMP methodologies (which are different
from those presented here), to understand whether
this primer revision is suitable for the characteriza-
tion of microbial communities in other environments.
While no primer set perfectly captures the diversity
of the Bacteria and Archaea residing in Earth's diverse
environments, the proposed revision to the existing
806R primer will enhance recognition of the globally
abundant SAR11 clade in aquatic environments.
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