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ABSTRACT:

This paper presents an approach for automatically approximating the above-ground volume and branch size distribution of trees from
dense terrestrial laser scanner produced point clouds. The approach is based on the assumption that the point cloud is a sample of a
surface in 3D space and the surface is locally like a cylinder. The point cloud is covered with small neighborhoods which conform to the
surface. Then the neighborhoods are characterized geometrically and these characterizations are used to classify the points into trunk,
branch, and other points. Finally, proper subsets are determined for cylinder fitting using geometric characterizations of the subsets.

1 INTRODUCTION

The total above-ground volume, the branch size distribution, and
other size and shape parameters of trees are of economic and sci-
entific interests. For example, carbon cycle estimations of forests
require the branch size distribution of trees for the accurate de-
termination of branch decay times (carbon release as a function
of time). One way to approximate these parameters is to use
dense terrestrial laser scanner produced point clouds (Pfeifer et
al., 2004; Maas et al., 2008; Rutzinger et al., 2010). In many of
these methods, the point cloud is mapped to a voxel space, where
it is segmented into branches by, e.g., mathematical morphology
(Gorte and Pfeifer, 2004). Then cylinders are fitted into each
branch to approximate the size. Furthermore, the shape and size
of the tree cross-sections can be more accurately analyzed using,
e.g., free-form curves (Pfeifer and Winterhalder, 2004).

In this paper we propose a new method for automatically approx-
imating the size parameters and structures of trees from point
clouds. The basic assumptions of the method are that the point
cloud is a sample of a surface in the 3D-space and the surface, i.e.
the tree, can be locally approximated with cylinders. Other a pri-
ori assumptions about the data and structure of trees are used as
well. The basis of the method is a local approach where the point
cloud is covered with small neighborhoods which conform to the
surface. Then these neighborhoods are geometrically character-
ized and, based on these characterizations, the neighborhoods are
classified into trunk, branch, and other points. Finally, cylinders
are fitted to proper subsets to approximate the size. Notice that
voxel spaces are not used, although partitions of the point cloud
into cubical cells are used to produce the coverings quickly.

2 OBTAINING THE POINT CLOUDS

In this paper we used two point cloud samples, one from a conif-
erous tree and the other from a broadleaf tree without leafs (see
Fig. 1). The trees were scanned from three different directions
to have a comprehensive cover of the branching structure. The
scans were registered to a common coordinate system via spher-
ical reference targets placed in the measured area. The measured
point clouds for both trees have about 1.7 million points.

The coniferous tree was scanned with a Faro Photon120 and the
broadleaf tree with a Leica HDS6100 terrestrial laser scanner.

Figure 1: Point clouds from a coniferous (left) and a deciduous
tree (right).

Both scanners use phase modulation with different carrier wave-
lengths for the distance measurement. The distance measurement
accuracy is 2-3 mm at 25 m. Scanner specifications are given in
Table 1.

Faro Photon Leica HDS6100
Wavelength 785 nm 650-690 nm

Unambiguity range 153 m 79 m
Field-of-view 360◦ × 320◦ 360◦ × 310◦

Beam diameter 3.3 mm 3 mm
Beam divergence 0.16 mrad 0.22 mrad

Table 1: Scanner specification.

3 LOCAL APPROACH

The laser-scanner produced point cloudPM from a tree is as-
sumed to be a sample of a surfaceM embedded in the Euclidean
spaceR3. The point cloudPM inherits distances (metric) and
neighborhoods (topology) from the embedding spaceR

3. This
metric locally approximates the intrinsic metric of the surface;
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i.e. when the distances measured along the surfaceM are small,
they are nearly equal to the distances of the embedding space
which are measured ‘directly through the tree and air’. Further-
more, the structure and size of trees can be locally reasonably ap-
proximated with cylinders. This suggests that although the global
detailed structure of the surfaceM is complex and unknown, the
local structure can be analyzed much more easily from the point
cloud samplePM . We propose the following local approach to
the automatic size approximation:
1) Cover: The point cloud is covered with small neighborhoods.
2) Characterization: The neighborhoods are characterized geo-
metrically.
3) Classification: Based on the characterizations the neighbor-
hoods are classified to be part of trunk, branches, or other points.
4) Local size approximation: Determine proper subsets and fit
cylinders to approximate the size.
5) Global characteristics: From local size data determine global
characteristics such as the total volume and branch size distribu-
tion.

The details of these steps require approximations of the struc-
tures, such as metric and topology, of the surfaceM from the
point cloudPM . Next we give details on the approximation of
some needed structures ofM .

4 APPROXIMATION OF STRUCTURES

The point cloudPM ⊂ R
3 inherits the distance functiondP

from the Euclidean embedding spaceR3 as a restriction of the
Euclidean metricd of R3; i.e. dP (p, q) = d(p, q) holds for all
p, q ∈ PM . Similarly, the neighborhoods ofPM are defined as
restrictions of the neighborhoods ofR3 into PM . A particularly
important class of neighborhoods ofPM consists of ther-balls
B(p, r) = {q ∈ PM | dP (p, q) < r} (these are sometimes called
fixed distance neighborhoods). Notice that these structures are
globally defined for the point cloud, but they need not be good
approximations of the corresponding global structures of the sur-
faceM . For example, the intrinsic metricdM of M , which mea-
sures along the surface, gives always equal or greater distances
thandP , i.e. the inequalitydP (p, q) ≤ dM (p, q) holds for all
p, q ∈ PM . Particularly, for pointsp, q ∈ PM that are in the tips
of different but nearby branches, the distances in terms of metrics
dP anddM satisfydP (p, q) << dM (p, q). However, locally the
inherited structures of the point cloud are good approximations:
for pointsp, q ∈ PM which are close to each other in terms of
the intrinsic metricdM , the approximationdM (p, q) ≈ dP (p, q)
holds.

Next we show how connected components or connectedness of
subsets of the surfaceM can be determined using a cover of
M with r-balls. Two points ofPM are, by definition, in the
same component if there exists a chain of smallr-balls such that
the consecutive balls are not disjoint (see Fig. 2). Notice that
by this definition only those components ofM whose distance
measured withdP is equal or larger thanr can be recognized.
Thus, the radiusr of the balls should be so small that everyr-
ball itself is connected in the sense that it corresponds to a con-
nected set of the surfaceM : The corresponding set of ther-ball
B(p, r) ⊂ PM onM is defined to be the intersection ofM and
ther-ball of the embedding spaceR3 centered at pointp, i.e. the
set{q ∈ M | d(p, q) < r}, whered is the Euclidean metric of
R

3. Now if we have a coveringC of PM with small connected
r-balls and know inside which balls each point is, we can de-
termine the connected components with the following algorithm
(see Fig. 3):
1) Select any ballB of C which is not already assigned to some

Figure 2: Definition of connected components. The pointsp and
q are in the same component because there is a chain of overlap-
ping r-balls connecting them. Because there are no such chains
between the pointsv andw, they are in different components.

Figure 3: Determination of connected components. An arbitrary
ball (red) is chosen and it is expanded by an iterative process
where overlapping balls are added to the existing ones.

component and assignA0 = B.
2) Find all the ballsB = {Bj} in the coveringC such that
Bj ∩Ai is not empty and assignAi+1 = Ai ∪B.
3) If Ai+1 6= Ai holds, repeat 2). IfAi+1 = Ai holds, thenAi

is a component and continue from 1.

Finally, we show how the tangent planes and surface normals of
the surfaceM for points ofPM can be approximated using the
metric and neighborhoods defined above. In the approximation
we fit planes to the neighborhoods using the total least squares
method (Mitra et al., 2004). The solution of this problem is given
by the eigenvectors of the scatter matrixC of the subsetB ⊂ PM

where the plane is fitted:

C(B) = Σm
i=1(xi − x̄)(xi − x̄)T , (1)

wherexi ∈ B,m is the number of points inB, andx̄ = 1

m
Σm

i=1xi

is the mean of pointsxi. The unit eigenvectors corresponding to
the two largest eigenvalues ofC span the tangent space and the
unit eigenvector corresponding to the smallest eigenvalue is a sur-
face normal.

With these approximated structures we can present details of our
method outlined in the section 3. The first step in the method is
to cover the point cloud with small sets.

5 COVER

We want to generate a coverC = {Bi} of the point cloudPM

with r-ballsBi such that the center point of each ball is not in-
cluded to other balls. The radiusr should be as large as possible
such that the local metric approximationdM ≈ dP still holds
(virtually) everywhere and ther-balls are connected. A good
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Figure 4: A subsetB (red circles) is elongated (left) and
this is reflected in the eigenvalues (λ1, λ2, λ) and eigenvectors
(u1, u2, u3) of C(B) such thatλ1 >> λ2 ≥ λ3 holds andu1

approximates the directionB is elongated. When the eigenval-
uesλ1 andλ2 are approximately equal (right), there is no clear
direction of elongatedness.

choice of radiusr is about the size of the most branches. To
generate the coverC quickly, we first partition the embedding
spaceR3 into cubical cells such that the side length of the cubes
is r. This partition ofR3 also partitions the point cloudPM into
cubical cells and the cells where each point belongs can be di-
rectly calculated from the coordinates of the points. Now the ball
B(p, r) is contained in ther-cube containing the pointp and in its
26 neighboringr-cubes. To generate the cover, we take the first
pointp1 fromPM and calculate itsr-ball neighborhoodB(p1, r),
which is the first ball in the coverC. Then we take another point
from PM which is not yet specified into a ball and define itsr-
ball. This process is continued until all points are specified into
balls. During this process we also determine the balls each point
belongs in.

The coverC can be used to generate another coverCL = {Li}
of PM with larger setsLi that are connected and conform to the
surfaceM : eachLi is the union of all the ballsBj ∈ C whose
intersection withBi is not empty (For example, in the Fig. 3 the
setLi corresponding to the red ball is the red ball together with
the green balls). This process can be repeated to generate covers
with even larger sets that are connected and conform toM .

6 CHARACTERIZATION

The second step in our local approach is the characterization of
the cover setsB andL. The cover sets (and subsets ofPM in
general) are geometrically characterized using the scatter matrix
C(B). Assume that the points ofB are approximately uniformly
distributed over part ofM . Furthermore, let{u1, u2, u3} be the
unit eigenvectors ofC(B) such that the corresponding eigenval-
ues satisfyλ1 ≥ λ2 ≥ λ3. With these assumptions we now
define some characteristics.

The unit vectoru1 approximates the direction in which the subset
B is the most elongated (see Fig. 4). This gives our first char-
acteristics, thedirectionD(B) = u1. On the other hand, how
elongated the subsetB is can be estimated by the ratio ofλ1 and
λ2 (see Fig. 4). Thus the second characteristics, theelongated-
nessE(B) = λ1

λ2
. Similarly with theflatnessF(B) = λ1

λ3
we can

asses how planar the subsetB is.

The vectorsD(B) can be used, e.g,. to define the local direction
of branches. Besides, because neighborhoods of same radius are
usually more elongated for branch points than for trunk points,
the valueE(B) is usually larger for branch points than for trunk
points. Similarly the flatness values for ground points are usually
larger than for trunk points, which in turn usually have larger

Figure 5: Classification of ground points. Left: The blue points
denote the cover setsLi that are initially classified as ground
points (r = 0.03, fg = 100, pg = 0.5). Right: The final classifi-
cation of ground points.

flatness values than branch points. A very large value ofF(B)
indicates thatB is nearly planar.

The trunk is often nearly straight and has generally a different
direction than the branches and the ground. For point clouds this
means that the part of the surfaceM corresponding to the trunk
has a ‘characteristic’ direction in the embedding spaceR

3 given
globally by a unit vectorV ∈ R

3. Then setsB that areparallel
with the trunkdirection have unit tangent vectors nearly parallel
to V ; i.e. the valuePV (B), defined as the maximum value of the
dot productV ·v, wherev is a unit tangent vector ofB, is close to
one. The characteristic direction vectorV of a trunk can be often
be known a priori quite accurately or it can be approximated well
with the vectorD(PM ) (if the tree is taller than it is wide).

7 CLASSIFICATION

When the cover sets ofC andCL are geometrically character-
ized, the next step in our method is to use these characterizations
to classify the sets as ground (other), trunk, and branch points.
We give examples how to employ the characterizations together
with a priori assumptions on data and the structure of the trees.

Often the ground points have the most planar neighborhoods in
the point clouds, and they are not parallel to the trunk. Using this
assumption we take a high flatness valuefg and small parallelism
valuepg and find the partG0 = {Li |F(Li) > fg & PV (Li) <
pg} of the coverCL (see Fig. 5). Then we either take the mean
of pointsG0 or the largest connected component ofG0, which
is near the true ’ground level’. The mean ofG0 is a faster way
to approximate the ground level, but the largest connected com-
ponent ofG0 is more reliable. Then the ground pointsG can be
defined as all those setsLi which are near the ground level and
are not parallel to the trunk, i.e.PV (Li) is small (see Fig. 5).

Next we give an example of the initial classification of the trunk
points. They are those cover setsT0 = {Li} that are not clas-
sified as ground points and which are 1) parallel to the trunk di-
rectionV , i.e. PV (Li) > pt holds, and 2) not elongated, i.e.
E(Li) < et holds, and 3) quite flat, i.e.F(Li) > ft holds. The
numberspt, et, andft should be such that they will not exclude
any or only a few real trunk point but at the same time will ex-
clude most of the real branch points. By trial and error we have
determined suitable parameter values, see Fig. 6. The suitable
parameter values depend particularly on the radiusr of the cover
setsB. T0 will probably contain numerous branch points but
these are mostly separate from the trunk and contain only a few
cover setsLi. Therefore the final classificationT can be defined
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Figure 6: Classification of trunk points. Top: The blue points
denote the cover sets that are initially classified as trunk points
(r = 0.03, pt = 0.8, et = 3, ft = 15). Bottom: The final
classification of trunk points, where only the largest components
(over 2000 points) of the initial classification are accepted.

by excluding those connected components ofT0 that have a small
number of points (see Fig. 6). On the other hand, if the trunk is
approximately straight, we can have an estimate of the trunk axis
from the largest component ofT0 and then defineT by excluding
all the small components ofT0 that are far enough from the axis.

The balls in the coverC that are not classified either as ground or
trunk points are classified as the initial setBr0 of branch points
(see Fig. 7). The final set of branch points can beBr0 but there
are small components that are mostly useless for further analysis.
Therefore the final setBr can be defined by excluding all the
small components ofBr0.

8 LOCAL SIZE APPROXIMATION

The fourth step in the local approach is to approximate the size
of trunk and branches by fitting cylinders into proper subsets of
PM . At first the separate components of the trunk and branches
are determined and the components are studied one at a time. The

Figure 7: Classification of branch points.

proper subset of each component where to fit cylinders, is deter-
mined by the coversC andCL and geometric characterizations
such as those defined in section 6.

Trunk or branch components that have no bifurcations and whose
radius is large compared to the cover sets can be analyzed using
the so-called cylinder following (Pfeifer et al., 2004). Next we
discuss how to analyze general components with bifurcations. At
first we choose one of the cover setsL0 of the connected com-
ponent. ThenL0 is expanded into the setS, which is used for
cylinder fitting, by its neighboring cover sets and it is expanded
until it is round the branch or trunk. Furthermore, we need to
make sure thatS is not too much curved or has no bifurcations
but is approximately straight. For this we can use the set direc-
tionsD(Bi) of ther-ballsBi in S and exclude those balls whose
direction deviates too much from most of the balls. We should use
the direction vectors of the corresponding larger setsLi for those
ballsBi that are not clearly elongated (smallE(Bi) values). In
addition, there should be some upper length forS which can stop
the expansion ofL0. Finally, there may be some other criteria for
S. For example,S should have enough points and it should be
round enough, which can be assessed from the ratioλ2

λ3
of the two

smallest eigenvalues ofC(S): the ratio indicates the ratio of the
largest and the smallest extent of the setS when projected to the
plane orthogonal toD(S). Thus the ratio value close to one is an
indication of the roundness of cylinderlike sets. When an accept-
able subsetS is formed, the process of dividing the component
into proper subsets is continued, preferably at neighboring cover
sets ofS, until all the cover set are dealt with.

For each acceptable subsetS, we fit a cylinder using the total
least square fitting (Lukacs et al., 1998). Because the problem
is non-linear (Madsen et al., 2004), we need good initial guesses
for the cylinder parameters which are the axis direction vector
D0, the position vector of an axis pointP0, and the radiusR0.
Good guesses areD0 = D(S), P0 = S̄ (the mean of the points
S), andR0 =

√
λ2, whereλ2 is the second largest eigenvalue of

C(S) corresponding to unit eigenvectors. Error terms such as the
standard deviation and the distances of the points from the fitted
cylinder can be easily calculated. Depending on the error terms,
the result of the fitting is accepted or rejected. One possibility is
to do another fitting where those points that had a large distance
from the first fitted cylinder are excluded, and possibly use the
results of the first fitting as new initial guesses. The length of the
cylinder can be calculated by projecting all the points ofS into
the cylinder axis using the standard dot product.

For parts of trunk where there are lots of points round the trunk,
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Figure 8: Cylinder fitting for trunk. The point clouds (blue
points) are thinned out.

Figure 9: Cylinder fitting for branches. The upper branches are
from deciduous tree and the bottom branches are from coniferous
tree. The point clouds (blue points) are thinned out.

the fitting gives good approximation, see Fig. 8. For branches
the fitting is usually less good because there are much less points
that, furthermore, usually are not round the branch but cover only
one side of the branch. In addition, the ‘noise level’ is larger
compared to the size (see Fig. 9).

9 RESULTS AND DISCUSSION

The final step in our method is to approximate the total above-
ground volume and branch size distribution from the cylinder fit-
ting data (radius and height). In our examples, the calculated
volume approximations are 0.26 and 0.23 cubic meters for the
coniferous and the deciduous tree, respectively. These are proba-
bly underestimations because parts of the trunk and branches are
not covered in the point clouds. Furthermore, there are also lot of
parts that are poorly covered by the point clouds and whose size
we could not estimate. This was particularly true for the upper
parts of the trees and for small branches (see the parts without
fitted cylinders in Fig. 9).

The calculated branch size distributions, i.e., the length and vol-
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Figure 10: Distributions of branch length (above) and volume
(below) as functions of branch radius.

ume of the branches as functions of the branch radius, are shown
in Fig. 10 (the trunks are also included in the distributions). The
distributions show, as expected, that most segments, in terms of
length, are in the branches of the smallest radii whereas most of
the volume is in the trunk segments. There were no direct mea-
surements of the branch sizes so the accuracy can be assessed
only based on the visual inspection of the point cloud and fitted
cylinders. The accuracy seems to be good for trunk parts and for
thick branches that have many points. On the other hand, as ex-
pected, for the smallest branches the accuracy is the poorest and
approximations can have large relative errors. Particularly prob-
lematic are the small branches of coniferous trees because of their
needles. Deciduous trees probably have the same problem when
there are leaves (our scan was from a deciduous tree without its
leaves). However, the approximation errors of small branches
may not be a problem if we are only interested in a size reso-
lution of some centimeters. Furthermore, although the absolute
distribution values may have quite large errors, the relative distri-
bution values are probably more accurate, particularly if there are
systematic errors that can be estimated fairly well.

10 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new method to automatically
approximate the size and structure of single trees from terrestrial
laser scanner produced point clouds. A particular aim has been
the approximation of branch size distribution which is essential in
carbon cycle estimations. The general constitutive assumption of
the method is that the point clouds are specimens from surfaces
embedded in the 3D Euclidean space. Additionally, specifically
for the application, the surfaces are supposed to be locally ap-
proximately like cylinders. The main steps of the procedure are
covers of the point cloud with small sets, the classification of the
cover sets based on their geometric characterizations, and cylin-
der fitting for size approximation. The method is very general and
can be applied with minor changes to other applications as well:
The coverings and their geometric characterizations are directly
applicable to general point clouds and the classification of cover
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sets is easy to modify for other applications where separation and
recognition are important.

The method was demonstrated by computing approximations of
the total above-ground volumes and branch size distributions of
a deciduous tree and a coniferous tree. However, these demon-
strations are only the beginning of future work in which the im-
plementation of the method is developed further. Furthermore,
the reliability and accuracy of the method and its realizations has
to be analyzed. This includes, for example, the classification of
the cover sets and how the classification depends on the size of
the cover sets and the parameter values chosen for the geometric
characterizations. The accuracy of the size approximations, par-
ticularly for small branches with needles and leaves, must also
be evaluated. Moreover, the dependency of the size approxima-
tions and the classification on the number of points needs to be
assessed. Also, the dependency of the total volume and branch
size distribution approximations on the cover extent (the number
of different scan positions) should be studied. The method and its
implementations, in their many aspects, should also be compared
with various other existing approaches.
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