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ABSTRACT:

This paper presents an approach for automatically approximating te-gibound volume and branch size distribution of trees from
dense terrestrial laser scanner produced point clouds. The apgshased on the assumption that the point cloud is a sample of a
surface in 3D space and the surface is locally like a cylinder. The poind ééocovered with small neighborhoods which conform to the
surface. Then the neighborhoods are characterized geometricdlthese characterizations are used to classify the points into trunk,
branch, and other points. Finally, proper subsets are determinedifudear fitting using geometric characterizations of the subsets.

1 INTRODUCTION

The total above-ground volume, the branch size distribution, anc '
other size and shape parameters of trees are of economicand s , | .-
entific interests. For example, carbon cycle estimations of forest:
require the branch size distribution of trees for the accurate de =~
termination of branch decay times (carbon release as a functio
of time). One way to approximate these parameters is to ust
dense terrestrial laser scanner produced point clouds (Pfeifer ¢
al., 2004; Maas et al., 2008; Rutzinger et al., 2010). In many of
these methods, the point cloud is mapped to a voxel space, whel ).+
it is segmented into branches by, e.g., mathematical morpholog
(Gorte and Pfeifer, 2004). Then cylinders are fitted into each
branch to approximate the size. Furthermore, the shape and si:
of the tree cross-sections can be more accurately analyzed usin
e.g., free-form curves (Pfeifer and Winterhalder, 2004).

In this paper we propose a new method for automatically approx:
imating the size parameters and structures of trees from poin.

clouds. The basic assumptions of the method are that the poiRigre 1: Point clouds from a coniferous (left) and a deciduous
cloud is a sample of a surface in the 3D-space and the surface, I£ae (right)

the tree, can be locally approximated with cylinders. Other a pri-
ori assumptions about the data and structure of trees are used as
well. The basis of the method is a local approach where the poingoth scanners use phase modulation with different carrier wave-

cloud is covered with small neighborhoods which conform to theiengths for the distance measurement. The distance measurement

surface. Then these neighborhoods are geometrically charactejccuracy is 2-3 mm at 25 m. Scanner specifications are given in
ized and, based on these characterizations, the neighborhoods gtge 1.

classified into trunk, branch, and other points. Finally, cylinders

are fitted to proper subsets to approximate the size. Notice that Faro Photon | Leica HDS6100
voxel spaces are not used, although partitions of the point cloud Wavelength 785nm 650-690 nm
into cubical cells are used to produce the coverings quickly. Unambiguity range| 153 m 79m
Field-of-view 360° x 320° 360° x 310°
Beam diameter 3.3mm 3mm
2 OBTAINING THE POINT CLOUDS Beam divergence| 0.16 mrad 0.22 mrad
In this paper we used two point cloud samples, one from a conif- Table 1: Scanner specification.

erous tree and the other from a broadleaf tree without leafs (see
Fig. 1). The trees were scanned from three different directions

to have a comprehensive cover of the branching structure. The
scans were registered to a common coordinate system via spher-

ical reference targets placed in the measured area. The measurbdf laser-scanner produced point clokigy from a tree is as-
point clouds for both trees have about 1.7 million points. sumed to be a sample of a surfadeembedded in the Euclidean

spaceR®. The point cloudPy, inherits distances (metric) and
The coniferous tree was scanned with a Faro Photon120 and theeighborhoods (topology) from the embedding sp&ée This
broadleaf tree with a Leica HDS6100 terrestrial laser scannemetric locally approximates the intrinsic metric of the surface;

3 LOCAL APPROACH
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i.e. when the distances measured along the suffaaee small, e e e e
they are nearly equal to the distances of the embedding space oL
which are measured ‘directly through the tree and air’. Further- .« .. o o o oo v v o e e
more, the structure and size of trees can be locally reasonably ap- P A
proximated with cylinders. This suggests that although the global
detailed structure of the surfadd is complex and unknown, the
local structure can be analyzed much more easily from the point
cloud sampleP,;. We propose the following local approach to
the automatic size approximation:

1) Cover: The point cloud is covered with small neighborhoods.
2) Characterization: The neighborhoods are characterized geo-

metrically. Figure 2: Definition of connected components. The pojrasid

3) Classification_:_ Based on the characterizations the neighpopq- are in the same component because there is a chain of overlap-
hoods are classified to be part of trunk, branches, or other pomtE

. AL . ping r-balls connecting them. Because there are no such chains
4) .Local size approximation: ‘Determme proper subsets and fi etween the points andw, they are in different components.
cylinders to approximate the size.
5) Global characteristics: From local size data determine global
characteristics such as the total volume and branch size distribu- e e e
tion. S
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The details of these steps require approximations of the struc-
tures, such as metric and topology, of the surfaéerom the
point cloud Py;. Next we give details on the approximation of
some needed structures iof.

......

.......

ooooooo
~~~~~~~
......
......
.......
.......

4 APPROXIMATION OF STRUCTURES

......

. 5 . .
The point cloudPy, C R” inherits tlée distance functiodr  Figyre 3: Determination of connected components. An arbitrary
from the Euclidean embedding spake as a restriction of the 4 (red) is chosen and it is expanded by an iterative process

Euclidean metrial of R?; i.e. dp(p,q) = d(p, q) holds for all - Lo
- ’ . ’ ’ . where overlapping balls are added to the existing ones.
p,q € Pyr. Similarly, the neighborhoods d?f,; are defined as ppIng 9

restrictions of the neighborhoods Bf into Py,. A particularly
important class of neighborhoods 8%, consists of the-balls mponent and assi - B

B(p,r) = {4 € Pu|dr(p,q) <r} (these are sometimes called ZO Fip:% lZIII t?]edba;slfs%%: {B;} in the coveringC such that
fixed distance neighborhoods). Notice that these structures arg N A, is not empty and assiJgAHl — A, UB.

globally defined for the point cloud, but they need not be goo )]If Ais1 # A; holds, repeat 2). Ifl, .1 — A; holds, thend,
approximations of the corresponding global structures of the SURS o component and c<’)ntinue from 1. '

face M. For example, the intrinsic metrity; of M, which mea-

sures along the surface, gives always equal or greater distancgﬁa”y,

thandp, i.e. the inequalitylr(p,q) < da(p,g) holds forall o qitacens for points of P can be approximated using the

p,q € Pu. Particularly, for pointg, g € Py that are in the tipS  meqic and neighborhoods defined above. In the approximation
of different but_nearby branches, the distances in terms of metricgq fit planes to the neighborhoods using the total least squares
dp anddyy satisfydr(p, ) << du(p, q). However, locally the o464 (Mitra et al., 2004). The solution of this problem is given

inherited structures of the point cloud are good approximationsby the eigenvectors of the scatter matthof the subseB C Py,
for pointsp, ¢ € Pu which are close to each other in terms of | L0 ihe plane is fitted:

the intrinsic metrial,s, the approximatiom s (p, ¢) = dp(p, q)
holds. C(B) =37 (2 — 7)(xi — 3)7, @

we show how the tangent planes and surface normals of

Next we show how connected components or connectedness wherex,; € B, m is the number of points if, andz = #Z?;lxi
subsets of the surfack/ can be determined using a cover of is the mean of points,. The unit eigenvectors corresponding to
M with r-balls. Two points ofPy; are, by definition, in the the two largest eigenvalues @f span the tangent space and the
same component if there exists a chain of smdihlls such that  unit eigenvector corresponding to the smallest eigenvalue is a sur-
the consecutive balls are not disjoint (see Fig. 2). Notice thaface normal.

by this definition only those components df whose distance

measured withip is equal or larger than can be recognized. With these approximated structures we can present details of our
Thus, the radiug of the balls should be so small that every  method outlined in the section 3. The first step in the method is
ball itself is connected in the sense that it corresponds to a corie cover the point cloud with small sets.

nected set of the surfacdd: The corresponding set of theball

B(p,r) C Pa on M is defined to be the intersection df and

ther-ball of the embedding spad® centered at poing, i.e. the 5 COVER

set{q € M |d(p,q) < r}, whered is the Euclidean metric of

R®. Now if we have a covering' of Py, with small connected We want to generate a covér = {B;} of the point cloudP,
r-balls and know inside which balls each point is, we can dewith r-balls B; such that the center point of each ball is not in-
termine the connected components with the following algorithmcluded to other balls. The radiusshould be as large as possible
(see Fig. 3): such that the local metric approximatiah, ~ dp still holds

1) Select any balB of C which is not already assigned to some (virtually) everywhere and the-balls are connected. A good
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Figure 4: A subsetB (red circles) is elongated (left) and
this is reflected in the eigenvalues;( A2, \) and eigenvectors
(u1,u2,u3) of C(B) such that\; >> A2 > A3 holds andu;
approximates the directioB is elongated. When the eigenval-
ues\; and )\, are approximately equal (right), there is no clear
direction of elongatedness.

Figure 5: Classification of ground points. Left: The blue points
denote the cover set,; that are initially classified as ground
points ¢ = 0.03, f; = 100, p, = 0.5). Right: The final classifi-
cation of ground points.

choice of radiusr is about the size of the most branches. To
generate the cover' quickly, we first partition the embedding
spaceR? into cubical cells such that the side length of the cube

is 7. This partition ofR® also partitions the point cloufti N0 The trunk is often nearly straight and has generally a different
cubical cells and the cells where each point belongs can be dijrection than the branches and the ground. For point clouds this
rectly calculated from the coordinates of the points. Now the ball,aans that the part of the surfaté corresponding to the trunk
B(p,r) is contained in the-cube containing the poiptand inits  p55 5 characteristic’ direction in the embedding spaéegiven
26_neighboring-cubes. To ger_lerate the_ cover, we take the ﬂrs‘globally by a unit vectol” € R®. Then setsB that areparallel
pointp; from Py and calculate its-ball neighborhood (p1, ),  with the trunkdirection have unit tangent vectors nearly parallel
which is the first ball in the covef’. Then we take another point V; i.e. the valuePy (B), defined as the maximum value of the
from Py; which is not yet specified into a ball and definesits 4o product’ -v, whereu is a unit tangent vector @8, is close to
ball. This_proce_ss is continued until all pqints are specified im_oone. The characteristic direction veciorof a trunk can be often
balls. During this process we also determine the balls each poirfg known a priori quite accurately or it can be approximated well
belongs in. with the vectoD( Py, ) (if the tree is taller than it is wide).

flatness values than branch points. A very large valul(d)
Sindicates thaB is nearly planar.

The coverC can be used to generate another caVer= {L;}

of Pas with larger setd; that are connected and conform to the 7 CLASSIFICATION

surfaceM: eachL; is the union of all the ball3; € C whose

intersection withB; is not empty (For example, in the Fig. 3 the When the cover sets af andC;, are geometrically character-

setL; corresponding to the red ball is the red ball together withized, the next step in our method is to use these characterizations

the green balls). This process can be repeated to generate covessclassify the sets as ground (other), trunk, and branch points.

with even larger sets that are connected and confori to We give examples how to employ the characterizations together
with a priori assumptions on data and the structure of the trees.

6 CHARACTERIZATION Often the ground points have the most planar neighborhoods in
the point clouds, and they are not parallel to the trunk. Using this
The second step in our local approach is the characterization afssumption we take a high flatness vafyeand small parallelism
the cover set83 and L. The cover sets (and subsets®f; in  valuep, and find the parGo = {L; |F(L;) > fq & Py (L;:) <
general) are geometrically characterized using the scatter matrjx, } of the coverC, (see Fig. 5). Then we either take the mean
C(B). Assume that the points @ are approximately uniformly  of points G or the largest connected component(af, which
distributed over part of\/. Furthermore, le{u1, u2, us} be the  is near the true 'ground level’. The mean@f is a faster way
unit eigenvectors o€ (B) such that the corresponding eigenval- to approximate the ground level, but the largest connected com-
ues satisfy\; > A2 > Az. With these assumptions we now ponent ofGy is more reliable. Then the ground poirtiscan be
define some characteristics. defined as all those sefs which are near the ground level and
are not parallel to the trunk, i.&@y (L;) is small (see Fig. 5).
The unit vector:; approximates the direction in which the subset
B is the most elongated (see Fig. 4). This gives our first charNext we give an example of the initial classification of the trunk
acteristics, thelirection D(B) = wu;. On the other hand, how points. They are those cover sdlis = {L;} that are not clas-
elongated the subsé& is can be estimated by the ratiobf and  sified as ground points and which are 1) parallel to the trunk di-
X2 (see Fig. 4). Thus the second characteristicsetbagated-  rectionV, i.e. Pv(L;) > p; holds, and 2) not elongated, i.e.
nessE(B) = 3L. Similarly with theflatnessF(B) = 3L wecan  E(L:) < e holds, and 3) quite flat, i.éF(L;) > f; holds. The
asses how planar the subgets. numbersp:, e:, and f; should be such that they will not exclude
any or only a few real trunk point but at the same time will ex-
The vectordD(B) can be used, e.g,. to define the local directionclude most of the real branch points. By trial and error we have
of branches. Besides, because neighborhoods of same radius determined suitable parameter values, see Fig. 6. The suitable
usually more elongated for branch points than for trunk pointsparameter values depend particularly on the radiokthe cover
the valueE(B) is usually larger for branch points than for trunk setsB. T, will probably contain numerous branch points but
points. Similarly the flatness values for ground points are usuallghese are mostly separate from the trunk and contain only a few
larger than for trunk points, which in turn usually have largercover setd.;. Therefore the final classificatidfi can be defined
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o Figure 7: Classification of branch points.

. proper subset of each component where to fit cylinders, is deter-
TesT T3 ¢ mined by the cover§’ andC, and geometric characterizations
such as those defined in section 6.

Trunk or branch components that have no bifurcations and whose
radius is large compared to the cover sets can be analyzed using
the so-called cylinder following (Pfeifer et al., 2004). Next we
discuss how to analyze general components with bifurcations. At
first we choose one of the cover sdis of the connected com-
ponent. Therl is expanded into the se&t, which is used for
cylinder fitting, by its neighboring cover sets and it is expanded
until it is round the branch or trunk. Furthermore, we need to
make sure thaf is not too much curved or has no bifurcations
but is approximately straight. For this we can use the set direc-
tionsDD(B;) of ther-balls B; in S and exclude those balls whose
direction deviates too much from most of the balls. We should use
the direction vectors of the corresponding larger getfor those
balls B; that are not clearly elongated (sm&l{B;) values). In
95 10 WS T 1E 12 addition, there should be some upper lengthSavhich can stop
the expansion of.q. Finally, there may be some other criteria for
Figure 6: Classification of trunk points. Top: The blue points S. For exampleS should have enough points and it should be
denote the cover sets that are initially classified as trunk pointsound enough, which can be assessed from the%t'mf the two
(r =0.03, pp = 0.8, e: = 3, fr = 15). Bottom: The final  smallest eigenvalues @(S): the ratio indicates the ratio of the
classification of trunk points, where only the largest componentsargest and the smallest extent of the Sethen projected to the
(over 2000 points) of the initial classification are accepted. plane orthogonal t&®(S). Thus the ratio value close to one is an
indication of the roundness of cylinderlike sets. When an accept-
able subsef is formed, the process of dividing the component
by excluding those connected componentgpthat have a small  into proper subsets is continued, preferably at neighboring cover
number of points (see Fig. 6). On the other hand, if the trunk issets ofS, until all the cover set are dealt with.
approximately straight, we can have an estimate of the trunk axis i . .
from the largest component @, and then defin@ by excluding For each acceptable subsgt we fit a cylinder using the total

all the small components @, that are far enough from the axis. least square fitting (Lukacs et al., 1998). Because the problem
is non-linear (Madsen et al., 2004), we need good initial guesses

for the cylinder parameters which are the axis direction vector
Dy, the position vector of an axis poit}y, and the radiugzy.
Good guesses a®y = D(S), Py = S (the mean of the points
§), andRy = v/ )2, Where), is the second largest eigenvalue of
C(S) corresponding to unit eigenvectors. Error terms such as the
standard deviation and the distances of the points from the fitted
cylinder can be easily calculated. Depending on the error terms,
the result of the fitting is accepted or rejected. One possibility is
8 LOCAL SIZE APPROXIMATION to do anot_her f_itting wr_\ere those points that had a Ia_rge distance
from the first fitted cylinder are excluded, and possibly use the
. ) ) _ results of the first fitting as new initial guesses. The length of the
The fourth step in the local approach is to approximate the siz@yjinder can be calculated by projecting all the pointsSaifito

of trunk and branches by fitting cylinders into proper subsets ofhe cylinder axis using the standard dot product.
Py. At first the separate components of the trunk and branches

are determined and the components are studied one at a time. TRer parts of trunk where there are lots of points round the trunk,

The balls in the covef' that are not classified either as ground or
trunk points are classified as the initial $8t, of branch points
(see Fig. 7). The final set of branch points canfhe but there
are small components that are mostly useless for further analysi
Therefore the final seBr can be defined by excluding all the
small components aBry.
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Figure 10: Distributions of branch length (above) and volume
(below) as functions of branch radius.

ume of the branches as functions of the branch radius, are shown
in Fig. 10 (the trunks are also included in the distributions). The
distributions show, as expected, that most segments, in terms of
length, are in the branches of the smallest radii whereas most of
the volume is in the trunk segments. There were no direct mea-
surements of the branch sizes so the accuracy can be assessed
only based on the visual inspection of the point cloud and fitted
cylinders. The accuracy seems to be good for trunk parts and for
thick branches that have many points. On the other hand, as ex-
pected, for the smallest branches the accuracy is the poorest and
approximations can have large relative errors. Particularly prob-
lematic are the small branches of coniferous trees because of their
. ) o needles. Deciduous trees probably have the same problem when
Figure 9: Cylinder fitting for branches. The upper branches argnere are leaves (our scan was from a deciduous tree without its
from deciduous tree and the bottom branches are from coniferoqgaves). However, the approximation errors of small branches
tree. The point clouds (blue points) are thinned out. may not be a problem if we are only interested in a size reso-
lution of some centimeters. Furthermore, although the absolute
distribution values may have quite large errors, the relative distri-

the f.'tt.'ng 9Ives good approximation, see Fig. 8. For branCh?%ution values are probably more accurate, particularly if there are
the fitting is usually less good because there are much less poing

?/stematic errors that can be estimated fairly well.
that, furthermore, usually are not round the branch but cover only
one side of the branch. In addition, the ‘noise level’ is larger
compared to the size (see Fig. 9). 10 CONCLUSIONSAND FUTURE WORK

9 RESULTSAND DISCUSSION In this paper we have presented a new method to automatically
approximate the size and structure of single trees from terrestrial
The final step in our method is to approximate the total abovelaser scanner produced point clouds. A particular aim has been
ground volume and branch size distribution from the cylinder fit-the approximation of branch size distribution which is essential in
ting data (radius and height). In our examples, the calculate§arbon cycle estimations. The general constitutive assumption of
volume approximations are 0.26 and 0.23 cubic meters for théhe method is that the point clouds are specimens from surfaces
coniferous and the deciduous tree, respectively. These are prob@nbedded in the 3D Euclidean space. Additionally, specifically
bly underestimations because parts of the trunk and branches ¢ the application, the surfaces are supposed to be locally ap-
not covered in the point clouds. Furthermore, there are also lot d?roximately like cylinders. The main steps of the procedure are
parts that are poorly covered by the point clouds and whose sizeovers of the point cloud with small sets, the classification of the
we could not estimate. This was particularly true for the uppeicoVver sets based on their geometric characterizations, and cylin-

parts of the trees and for small branches (see the parts withoder fitting for size approximation. The method is very general and
fitted cylinders in Fig. 9). can be applied with minor changes to other applications as well:

The coverings and their geometric characterizations are directly
The calculated branch size distributions, i.e., the length and volapplicable to general point clouds and the classification of cover
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sets is easy to modify for other applications where separation and
recognition are important.

The method was demonstrated by computing approximations of
the total above-ground volumes and branch size distributions of
a deciduous tree and a coniferous tree. However, these demon-
strations are only the beginning of future work in which the im-
plementation of the method is developed further. Furthermore,
the reliability and accuracy of the method and its realizations has
to be analyzed. This includes, for example, the classification of
the cover sets and how the classification depends on the size of
the cover sets and the parameter values chosen for the geometric
characterizations. The accuracy of the size approximations, par-
ticularly for small branches with needles and leaves, must also
be evaluated. Moreover, the dependency of the size approxima-
tions and the classification on the number of points needs to be
assessed. Also, the dependency of the total volume and branch
size distribution approximations on the cover extent (the number
of different scan positions) should be studied. The method and its
implementations, in their many aspects, should also be compared
with various other existing approaches.
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