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ABSTRACT: 
 
Introducing an organization to the unstructured point cloud before extracting information from airborne lidar data is common in 
many applications. Aggregating the points with similar features into segments in 3-D which comply with the nature of actual objects 
is affected by the neighborhood, scale, features and noise among other aspects. In this study, we present a min-cut based method for 
segmenting the point cloud. We first assess the neighborhood of each point in 3-D by investigating the local geometric and statistical 
properties of the candidates. Neighborhood selection is essential since point features are calculated within their local neighborhood. 
Following neighborhood determination, we calculate point features and determine the clusters in the feature space. We adapt a graph 
representation from image processing which is especially used in pixel labeling problems and establish it for the unstructured 3-D 
point clouds. The edges of the graph that are connecting the points with each other and nodes representing feature clusters hold the 
smoothness costs in the spatial domain and data costs in the feature domain. Smoothness costs ensure spatial coherence, while data 
costs control the consistency with the representative feature clusters. This graph representation formalizes the segmentation task as 
an energy minimization problem. It allows the implementation of an approximate solution by min-cuts for a global minimum of this 
NP hard minimization problem in low order polynomial time. We test our method with airborne lidar point cloud acquired with 
maximum planned post spacing of 1.4 m and a vertical accuracy 10.5 cm as RMSE. We present the effects of neighborhood and 
feature determination in the segmentation results and assess the accuracy and efficiency of the implemented min-cut algorithm as 
well as its sensitivity to the parameters of the smoothness and data cost functions. We find that smoothness cost that only considers 
simple distance parameter does not strongly conform to the natural structure of the points. Including shape information within the 
energy function by assigning costs based on the local properties may help to achieve a better representation for segmentation. 
 
 

1. INTRODUCTION 
 

1.1. Motivation 
 
Lidar (light detection and ranging) is considered as one of the 
most important data acquisition technologies introduced for 
geospatial data acquisition lately (Petrie and Toth, 2009) and is 
progressively utilized for remote sensing of the Earth. This 
rapidly advancing technology quickly attracted interest for a 
variety of applications due to the dense point coverage (Filin 
and Pfeifer 2005). Pulse repetition rates, hence point densities 
have been increasing with new sensors and data acquisition 
techniques. However, the requirements of most applications go 
beyond the raw point locations.  
 
Applications usually require extensive processing of point 
cloud for extracting information on the features of interest to 
derive the final product (Biosca and Lerma, 2008; Vosselman et 
al., 2004). Analysis options with a set of unstructured 3D points 
are limited (Biosca and Lerma, 2008). Apart from the fact that 
the point data are noisy and not perfectly sampled, lidar 
acquisitions may also have poor sampling for almost vertical 
scans (Golovinsky and Funkhouser, 2009). The assumption of 
smooth surfaces and homogeneity does not perfectly hold for 
airborne lidar data as well as outdoor terrestrial and mobile 
acquisitions or their combinations. 
 
For effective extraction of required information from the 
unstructured 3D point cloud some level of organization is 
usually employed (Filin and Pfeifer, 2005). Such organization 
is usually achieved by labeling each point in the point cloud in 
a way that the points which are part of the same surface or 
region are labeled the same (Rabbani et al., 2006). Image 
segmentation methods have naturally been adapted to process 

2.5-D lidar range images. Convenience of implementing well 
studied algorithms established for image segmentation allowed 
lidar analysts and researchers to develop very useful methods 
and techniques for lidar range image analysis. However, 
analyzing lidar data as range images limits the possibilities of 
fully exploiting the 3-D nature of the lidar acquisition 
technology. We focus our efforts for the segmentation of point 
clouds following the track of algorithms which deal with 3-D 
point coordinates instead of 2.5-D range images. 
 
In a good segmentation, segments are expected to be in 
accordance with the actual objects. Several aspects of point 
cloud segmentation are of fundamental importance to achieve 
such conformance. These include to local neighborhood of the 
points, scale, and features that represent the properties of a 
point’s local neighborhood.  
 
In this study, we adapt a graph representation from image 
processing which is used in pixel labeling problems and 
configure it for the unstructured point clouds. Particularly, we 
implement a min-cut based method of Boykov et. al. (2001) for 
the segmentation of the point cloud. We first determine a local 
neighborhood for each point by detecting the jumps in the 
change of surface variation as the neighborhood gets larger.  
 
Following neighborhood determination, we calculate point 
features that help to identify whether the point is from a 2-D or 
3-D manifold. Then we perform a segmentation of the point 
cloud with a min-cut algorithm using this feature vector and 
model the surface and scattered points. Once the data models 
are established for surface and scattered points, we label each 
point either as surface or scatter with the graph-cut optimization 
algorithm. We form a second feature vector and carry out a 
segmentation of the points labeled as surface. 
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1.2. Related work 
 
Numerous algorithms have been developed over the years for 
the segmentation of lidar point clouds; employing both range 
images and unstructured point clouds. Vosselman and Dijkman 
(2001) use Hough transform to extract planar points and then 
perform merging and expanding operation to obtain planar roof 
faces. Alharthy and Bethel (2004) perform least squares 
moving surface analysis along with with region growing 
segmentation to extract building faces. Kim and Shan (2011) 
employ a multiphase level set approach to building roof 
segmentation and modeling. Dorninger and Nothegger (2007) 
cluster the features which define the local regression planes of 
the points and implement a region growing segmentation. 
Sampath and Shan (2010) analyze the eigenvalues in the 
voronoi neighborhood of the roof points and cluster the surface 
normals for segmentation. Filin and Pfeifer, (2006) also use 
feature clustering on 3D lidar point clouds with slope adaptive 
neighborhood. Biosca and Lerma, (2008) present an 
unsupervised fuzzy clustering based segmentation approach for 
TLS point clouds. Douillard et. al., (2011) investigate several 
methods considering data density, ground filtering, and 
clustering techniques for the segmentation of 3-D point clouds 
employing graph clustering. Golovinskiy and Funhouser, 
(2009) perform a min-cut based method for a foreground-
background segmentation of objects in the point clouds. 
Regarding the determination of the support regions of the 
points Lalonde et. al. (2005) and Pauly et. al. (2003) investigate 
the scale factor. Regarding the connection between point 
segmentation and classification, Belton and Lichti (2006) 
outline a method for point classification by using the variance 
of the curvature in the local neighborhood of the points 
followed by a region growing segmentation on terrestrial laser 
scanning (TLS) point clouds. Lim and Suter, (2007) propose a 
method employing conditional random fields (CRF) for the 
classification of 3-D point clouds that are adaptively reduced by 
omitting geometrically similar features. Niemeyer et. al. (2008) 
also employ CRF for the supervised classification of lidar point 
clouds. Carlberg et. al. (2009) present a multi-category 
classification of point clouds using 3-D shape analysis and 
region growing. 
 
Our study follows the algorithms which utilize a feature vector 
to represent the properties of the point neighborhood for 
labeling the point cloud. We first label the points that are from 
a surface (e.g. roof tops, ground, etc.) or 3-D manifold scatter 
(e.g. trees) by optimizing the graph which represents the energy 
function constructed for the classification problem. Then we 
label the points that are from surfaces with different properties 
using a second graph which represents an energy function for 
the segmentation problem.  
 
 

2. LOCAL NEIGHBORHOOD 
 

2.1. Local neighborhood of a point 
 
Although there are various definitions for the neighborhood of 
an image pixel, it is intuitive to define its neighborhood due to 
the inherent structure. On the other hand, defining the 
neighborhood of a point in an unstructured point cloud is not 
straightforward. Quality of the features that represent certain 
properties of the point is dependent on the local neighborhood 
of the point. For example, a very commonly used feature, the 
normal vector of the point can be reliably estimated if its valid 
neighbors may be identified. Too many or too few points may 
affect the normal vector estimation either by degrading the 

local characteristic or by not representing the local geometry 
(OuYang and Feng, 2005). Hence, determining an accurate 
local neighborhood of the point representative of their geometry 
is of significance. Filin and Pfeifer (2005) provide a thorough 
explanation of the properties of neighborhood systems in 
airborne lidar data. Neighborhood of a lidar point may be 
defined with a Delaunay triangulation which is the dual of the 
Voronoi tessellation of the points. This representation is widely 
used in computer vision for mesh generation. Neighborhood of 
a point is also commonly defined by its k nearest neighbors, or 
points within a volume defined by a sphere or a cylinder 
centered at the point. One should note that the selection of the 
parameters for defining the neighborhood of a point (e.g. radius 
of the sphere, number of closest points) is closely related to the 
scale. These parameters are most of the times not optimally 
chosen.  
 
2.2. Local neighborhood determination 
 
Different approaches exist to determine the local neighborhood 
of each point. Some of them are combinatorial algorithms like 
the Delaunay ball algorithm of Dey and Goswami (2004). 
There are also numerical approaches to estimate the optimal 
neighborhood like the iterative method of Mitra and Nguyen 
(2003). For airborne lidar point clouds, Filin and Pfeifer (2005) 
propose slope adaptive neighborhood definition. Lalonde et. al. 
(2005) investigate Mitra and Nguyen’s (2003) scale selection 
algorithm applied to data from different sensors. Lim and Suter 
(2007) also implement the same approach to determine the 
support region of the points from a TLS for CRF classification. 
Pauly et. al. (2003) determine the size of the local 
neighborhood by looking for jumps in the surface variation as 
the neighborhood size increases. In their recent study, 
Demantke et. al. (2011) propose a method to find the optimal 
neighborhood of each point. 
 
The eigenvalues of the covariance matrix of a point’s 
neighborhood have been employed in various studies as means 
to determine the geometric properties and structure of the local 
neighborhood (Gumhold et. al., 2001; Pauly et. al., 2003; West 
et. al., 2004; Lalonde et. al.,2005; Lim and Suter, 2007; 
Carlberg et. al., 2009; Niemeyer et. al., 2008, Demantke et. al., 
2011). We follow the method in Pauly et. al. (2003) while 
determining the neighborhood of each point for feature 
calculation. We start with a minimum number of nearest 
neighbors for each point and calculate the covariance matrix C 
of the neighborhood. Let ��	be the neighborhood of point p 
which consists of a set of k points p�	�i = 1, … , k� with the 
centroid		p�. The covariance matrix C is calculated as  
 
 

C = �

�
∑ �p� − p���p� − p����

���        (1) 

 
 
Pauly et. al. (2003) introduce surface variation as 
 
 
σ�����λ�/�λ� + λ� + λ��       (2) 
 
 
where λ� ≤	λ� ≤	λ� are the eigenvalues of the covariance 
matrix C.  
 
We observe the change in the surface variation and detect the 
jumps as the number of neighbors increase. Figure 1 shows the 
change of surface variation with the increase in the number of 
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nearest neighbors for a sample point. The neighborhood is fixed 
to the number of nearest neighbors just before the jump in 
surface variation occurs. 
 

 

Figure 1. Change of surface variation with neighborhood size 

 

 
3. POINT LABELING 

 
3.1. Segmentation as a labeling problem 
 
Segmentation may be considered as a labeling problem. The 
labeling problem is concerned with assigning a label from a set 
ℒ of labels to each of the sites in a set � of sites. The goal is to 
find a labeling f = !f�, … , f"	# by assigning each site in � a 
label from the label set ℒ which minimizes an objective 
function E�f� (Delong et. al., 2010).  
 
The objective function maps a solution to a measure of quality 
by means of goodness or cost (Li, 2009). When the 
segmentation is considered as such an optimization problem, 
identifying the lowest cost for a discrete labeling f gives the 
optimum segmentation based on the objective function that 
formulates the criteria for a good labeling. A natural 
representation of such labeling problems is with an energy 
function having two terms (Szeliski et. al., 2008). A common 
structure used for the energy function to solve this type of 
problems can be typically written as 
 

 
E�f� 	= 	E%&'&�f� 	+	E�(�)(�f�      (3)  
 
where 
 
E%&'&�f� = ∑ D�f��� ,  E�(�)(�f� = ∑ V�,,-f�, f,.�,,     (4) 
 
 
The first term of the function penalizes for inconsistency with 
the data while the second term ensures that the labels f� and f, 
are compatible. Data term is the sum of data costs measuring 
how well the labeling fits the site given the observations. E�(�)( 
is also commonly referred to as the smoothness energy. 
(Boykov et. al., 2001). Smoothness may be dependent on the 
specific pair of neighbors as well as the particular labels 
assigned to them (Veksler, 1999). 
 
3.2. Graph-cuts 
 
Most of the time, energy functions of the above form have 
many local minima. There is no algorithm that can find the 
global minimum of an arbitrary energy function without the 
exhaustive enumeration of the search space. Finding the global 
minimum of an arbitrary energy function is intractable 
(Felzenswalb and Zabih, 2011; Veksler, 1999). Graph cuts, 

which may be geometrically interpreted as a hypersurface on 
N-D space, work as a powerful energy minimization tool for a 
class of energy functions and they are used as an optimization 
method in many vision problems based on global energy 
formulations (Boykov and Veksler, 2006). Graph-cut based 
methods gained popularity in pixel labeling problems in images 
and helped increasing the computational efficiency of solutions 
based on energy minimization framework for such problems. 
Before graph-cuts and similarly effective loopy belief 
propagation (LBP) algorithms, elegant and powerful 
representation of labeling problem in terms of energy 
minimization was limited by computational inefficiency 
(Szeliski et al., 2008). 
 
A graph G = 〈1�G�, ℰ�g�, ι5�. �〉	is a pair of sets 1�G� and ℰ�g� 
and an incidence relation	ι5�. � that maps pairs of elements 
of		1�G�, to elements of		ℰ�g�. The elements of 1�G� are called 
vertices or nodes, and the elements of ℰ�g� are called the edges 
of the graph	G (Kropatsch et. al., 2007). Considering two 
special nodes, source (s) and sink (t) on a directed graph, the 
“minimum-cut problem” is to find a cut with minimum cost on 
the graph that will separate the graph into two subsets such that 
s is in one subset and t is in the other subset (Figure 2). The cost 
of a cut is the sum of all the weights of the graph edges with 
one node in one subset, and the other node in the other subset. 
Ford and Fulkerson (1962) show that considering the edge 
weights as capacities, finding the “maximum flow” from s to t 
on the same graph is equivalent to finding the “minimum cut” 
since a maximum flow will saturate a set of edges which will 
separate the graph into two disjoint parts. 
 
 
 

 
Figure 2. Minimum-cut on a graph (reproduced from Boykov 

and Veksler, 2006) 
 
 
There are numerous algorithms for solving low-level vision 
problems that find minimum cuts on an appropriately defined 
graph. Each of these algorithms has specific requirements and 
conditions regarding the types of energy functions they can 
minimize or the number of labels they can handle 
simultaneously. Some algorithms compute optimal solutions 
under certain conditions.  
 
In this study, we adapt the fast approximate energy 
minimization algorithm introduced by Boykov et. al. (2001) via 
graph cuts and employ it for the labeling of point clouds. Their 
method finds a local minimum with respect to very large moves 
they define as 8-expansion and 8-9-swap which allow a large 
number of sites to change their labels simultaneously in 
contrast to standard moves which allow to change the label of 
one site at a time. They prove that the local minimum they find 
using 8-expansion is within a known factor of the global 
minimum. 

 

 

s

sink 

source 
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4. CASE STUDY 
 

4.1. Data 
 
The dataset we have used to test the algorithms is the lidar point 
cloud of Bloomington, IN, U.S.A, obtained from the Indiana 
Spatial Data Portal. It is provided by Monroe County from 
topographic survey flights by MJ Harden on April 11-12, 2010 
with an Optech Gemini system. The maximum planned post 
spacing on the ground is 1.4 m for unobscured areas. Reported 
vertical accuracy based on the accuracy assessment carried out 
is 0.347 ft/10.58 cm. The point cloud is provided in LAS 1.2 
format. The point coordinates are in NAD 1983 HARN 
horizontal datum and NAVD 88 vertical datum projected on the 
Indiana West State Plane Coordinate System. The average point 
density that we have calculated from the subset of the data is 
1.4 pts/m2. Figure 3 shows the study area. 
 

 
Figure 3. Orthophoto (left) and height colored lidar point cloud 

(right) of the study area. 
 
4.2. Point features 
 
There are numerous feature definitions in the literature that are 
proposed to represent various local properties of points. Similar 
to surface variation, several other features are defined as a 
function of the eigenvalues of the covariance matrix of the 
point neighborhood. From these, we select to use the structure 
tensor planarity (S.T.P) and structure tensor anisotropy (S.T.A) 
features (West et. al., 2004) to identify “surface” and “scatter” 
points. They are defined as 
 

 
:. ;. <. = �	=� − =��/	=� , :. ;. >. = �	=� − =��/	=�   (5) 
 
where		=� ≤	=� ≤	=�.  
 
 
4.3. Graph construction 
 
Adapting Boykov et. al.’s (2001) min-cut optimization 
algorithm, we establish our graph model as follows. Each point 
in the point cloud is considered as a node in the graph. The 
edges between the nodes are defined such that each node is 
connected to its 3-D voronoi neighbors with an edge. We use an 
edge length threshold calculated as the Euclidean 3-D distance 
between the two points of the edge in order to avoid very long 
edges and reduce the number of unnecessary edges on the 
graph. All points are also connected to the nodes representing 
labels. For each point, costs for assigning each label to that 
point are calculated and set as the weights for the edges that 
connect the points to the label nodes. These weights correspond 
to the data cost term of the energy function and will be summed 
at each candidate labeling configuration. The edges that 
connect points with each other are also assigned weights 
representing the smoothness term of the energy function. We 

use two different data cost functions for two labeling tasks. The 
first one is for the labeling of points based on their proximity to 
the clusters in the feature space. It is calculated for point p as 
 
D�?@

=	‖μ� −	x�‖       (6) 

 
where μ� is the label mean and x� is the feature vector.  
 
In order to calculate the data costs this way, one needs to know 
how the data are distributed in the feature space. In a similar 
way to Dai and Zhang’s (2006) clustering approach for image 
segmentation, we perform watershed segmentation in the 
feature domain to empirically determine how the data are 
clustered. For a feature vector with N dimensions, we generate 
a grid space in the feature domain and calculate a histogram 
with the counts of data points falling within each bin. Then we 
perform watershed segmentation on the complement of the 
histogram to obtain the clusters in the feature space. We take 
the clusters obtained by the watershed segmentation and 
calculate label means from these clusters. Due to the nature of 
the watershed segmentation, data points that fall on the 
boundaries of the watersheds are left unlabeled. These data 
points are not considered while calculating the label means. 
Once the label means are determined, the data costs are 
calculated and the points in the point cloud are optimally 
assigned labels with the graph cut optimization algorithm. 
 
The second cost function is used for labeling points with 
respect to their likelihood of being from a given distribution. 
After segmenting the points, we use the histograms of the 
feature values of the segments representative of their classes 
(i.e. “scatter” and “surface”) to calculate the data costs of 
assigning a point to each label as negative log likelihoods. Our 
feature vector consists of S.T.P. and S.T.A point features for 
this purpose. Data costs are calculated as 
 
 
D�DEFGGHI

=	− ln Pr-x�NOPQRRST.     (7) 
 
D�DUIVFEH

= 	− ln Pr-x�NOWTXQPS.     (8) 

 
Smoothness energy is calculated as 
 
 

V�,,-f�, f,. = e�Z
[\]^\_[

`a` � ⋅ �

%��,c�
      (9) 

 
 
where d�p, q� is the Euclidean distance between point p and q 
in the spatial domain. 
 
Smoothness cost is to be interpreted as a penalty for 
discontinuity between two neighboring sites. If the labeling of 
two neighbors is different (discontinuity), this type of 
smoothness cost assigns a large penalty/cost to the edge if the 
features of two nodes are close to each other (determined by the 
parameter σ). This means that labeling of these two nodes will 
tend to be the same since it will cost more to label these nodes 
differently which will increase the total energy. On the other 
hand, if the two nodes are far from each other in the feature 
space, then the smoothness function will assign a small penalty 
to this edge allowing the two nodes to be labeled different than 
each other since such labeling will contribute to a lower energy. 
Once we construct the graph with all data and smoothness 
costs, we use the software library implementation provided by 
Veksler and Delong (http://vision.csd.uwo.ca/code/) based on 
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the algorithms in Boykov et. al. (2001), Kolmogorov and Zabih 
(2004), and Boykov and Kolmogorov (2004) to perform the 
graph cut optimization. 
 
 

5. RESULTS AND DISCUSSION  
 

We run the algorithm first for determining the “scatter” and 
“surface” points as described in the previous section. We set the 
smoothness cost parameter as	σ = 0.8. We also apply weights 
to the data cost and smoothness cost terms to control the 
relative importance of conformance with the data and spatial 
coherence. We set E%&'&�f� = 1 and	E�(�)(�f� = 2. Figure 4 
shows part of the study area with points labeled as “scatter” or 
“surface”. 

 
Figure 4. Points color labeled as “scatter” (green) or “surface” 

(black) points. 
 
Two issues may be observed regarding the effectiveness of the 
method. The first issue is due to small groups of points which 
appear to be not from a surface but being labeled as a surface 
point. This is mostly due to the size of the object not being 
large enough for identification. Second issue is related to the 
points that are on the ground being labeled as scatter points. 
This case mostly happens when those points are the lower parts 
of areas where there are scattered points. 
 
After labeling points as surface and scatter, we establish a 
second feature vector and graph in order to segment the surface 
points. The first three elements of the feature vector are the 
components of the unit surface normal vector which is the 
eigenvector corresponding to the smallest eigenvalue of the 
covariance matrix. The last element is the surface normal 
variation within the point neighborhood which is the variance 
of the angle i between the normal vector and the vertical.  
 
i = arccos	�n ⋅ o0	1	0p�    (10) 
 
We set the number of bins to calculate the histogram for the 
watershed segmentation as 20 for each dimension of the feature 
vector. This parameter is of importance since it determines the 
initial clusters in the feature space. An over-segmentation is 
optimized by the graph cut algorithm. However, the algorithm 
doesn’t have the flexibility to compensate for under-
segmentation as it is the case in a split and merge type of 
algorithm. We set the smoothness cost parameter as σ = 0.6, 
and the weights determining the relative importance of the 
smoothness and data costs as  E%&'&�f� = 4 and E�(�)(�f� = 1. 
Figure 5 shows segmented surface points in part of the study 
area. 
 
 

6. CONCLUSION 
 

In this study, we have established a methodology based on the 
graph representation of point labeling problem. We have 
formulated two major labeling tasks defined as an optimization 

problem on graphs and employed an efficient graph cut 
algorithm resulting with the determination of the structure of 3-
D lidar point cloud. First, we have identified the local 
neighborhood for each point and using the cues acquired from 
point neighborhood we were able to identify them as “surface” 
or “scatter” points. After obtaining the “surface” points, we 
have labeled them using a different set of features resulting in a 
segmentation of the surface points. Performing either of these 
two tasks within this framework requires prior knowledge on 
the structure of the feature space. Determining the distribution 
of the feature space for the classification problem requires some 
effort of collecting representative samples on the user side. 
However, one should note that the distribution of the features 
for surface and scatter points may be predicted as well.  
 
We believe that this framework may provide better results in 
case the terms related to the shapes of objects like, corners, 
ridges, boundaries, etc. are also included in the energy function. 
We plan to include energy terms representing shapes and higher 
levels of relationships between the points within this framework 
in the future. 
 

 
Figure 5. Color-coded point segments in part of the study area 
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