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ABSTRACT:

Introducing an organization to the unstructuredhpaioud before extracting information from airberlidar data is common in
many applications. Aggregating the points with samfeatures into segments in 3-D which comply vifte nature of actual objects
is affected by the neighborhood, scale, featurelsraise among other aspects. In this study, weeptesmin-cut based method for
segmenting the point cloud. We first assess thghheirhood of each point in 3-D by investigating libeal geometric and statistical
properties of the candidates. Neighborhood seledti@ssential since point features are calcublaéun their local neighborhood.
Following neighborhood determination, we calculadént features and determine the clusters in thufe space. We adapt a graph
representation from image processing which is aalheaised in pixel labeling problems and establisfor the unstructured 3-D
point clouds. The edges of the graph that are adimuethe points with each other and nodes repteggfeature clusters hold the
smoothness costs in the spatial domain and data icothe feature domain. Smoothness costs enpat&lscoherence, while data
costs control the consistency with the represamdtature clusters. This graph representation dbpes the segmentation task as

an energy minimization problem. It allows the impkntation of an approximate solution by min-cutsd@lobal minimum of this
NP hard minimization problem in low order polynoiiane. We test our method with airborne lidar goitoud acquired with
maximum planned post spacing of 1.4 m and a vériceuracy 10.5 cm as RMSE. We present the effdcteighborhood and
feature determination in the segmentation results assess the accuracy and efficiency of the imghé®d min-cut algorithm as
well as its sensitivity to the parameters of thesthness and data cost functions. We find that $mess cost that only considers
simple distance parameter does not strongly conforthe natural structure of the points. Includgigpe information within the
energy function by assigning costs based on tred [moperties may help to achieve a better reptaden for segmentation.

1. INTRODUCTION

1.1. Maotivation

Lidar (light detection and ranging) is consideradoae of the
most important data acquisition technologies intsdi for
geospatial data acquisition lately (Petrie and Ta@09) and is
progressively utilized for remote sensing of thetlEaThis
rapidly advancing technology quickly attracted iest for a
variety of applications due to the dense point cage (Filin
and Pfeifer 2005). Pulse repetition rates, hendet mensities
have been increasing with new sensors and dataiséamu
techniques. However, the requirements of most eaidins go
beyond the raw point locations.

Applications usually require extensive processirg point

cloud for extracting information on the featuresimierest to
derive the final product (Biosca and Lerma, 2008s38&man et
al., 2004). Analysis options with a set of unstumet! 3D points
are limited (Biosca and Lerma, 2008). Apart from thet that
the point data are noisy and not perfectly samplathr

acquisitions may also have poor sampling for almestical

scans (Golovinsky and Funkhouser, 2009). The assompf

smooth surfaces and homogeneity does not perfacily for

airborne lidar data as well as outdoor terrestaiadi mobile
acquisitions or their combinations.

For effective extraction of required informationorin the
unstructured 3D point cloud some level of orgamdratis
usually employed (Filin and Pfeifer, 2005). Suclyasrization
is usually achieved by labeling each point in tb@épcloud in
a way that the points which are part of the sanéase or
region are labeled the same (Rabbani et al.,, 2006ge
segmentation methods have naturally been adaptedotess
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2.5-D lidar range images. Convenience of implementirell
studied algorithms established for image segmeamtatilowed
lidar analysts and researchers to develop veryulseéthods
and techniques for lidar range image analysis. Hewe
analyzing lidar data as range images limits thesibpd&ies of
fully exploiting the 3-D nature of the lidar acqitiisn
technology. We focus our efforts for the segmeatatif point
clouds following the track of algorithms which degith 3-D
point coordinates instead of 2.5-D range images.

In a good segmentation, segments are expected tan be
accordance with the actual objects. Several aspEcoint
cloud segmentation are of fundamental importancactieve
such conformance. These include to local neighbmitaf the
points, scale, and features that represent theepiep of a
point’s local neighborhood.

In this study, we adapt a graph representation fiorage
processing which is used in pixel labeling problearsd
configure it for the unstructured point clouds. tRatarly, we
implement a min-cut based method of Boykov et.200(Q) for
the segmentation of the point cloud. We first deiae a local
neighborhood for each point by detecting the jumpshe
change of surface variation as the neighborhoosllgeger.

Following neighborhood determination, we calculgieint
features that help to identify whether the poinfrisn a 2-D or
3-D manifold. Then we perform a segmentation of ploént
cloud with a min-cut algorithm using this featurector and
model the surface and scattered points. Once ttee rdadels
are established for surface and scattered poirgdatel each
point either as surface or scatter with the graptheptimization
algorithm. We form a second feature vector andycatrt a
segmentation of the points labeled as surface.
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1.2. Related work

Numerous algorithms have been developed over thesyfer
the segmentation of lidar point clouds; employirghbrange
images and unstructured point clouds. VosselmarDajidhan
(2001) use Hough transform to extract planar poamtg then
perform merging and expanding operation to obtéamar roof
faces. Alharthy and Bethel (2004) perform least sepia
moving surface analysis along with with region giroyv
segmentation to extract building faces. Kim andrS(2011)
employ a multiphase level set approach to buildiogf
segmentation and modeling. Dorninger and Nothe@2@07)
cluster the features which define the local regoesplanes of
the points and implement a region growing segmimiat
Sampath and Shan (2010) analyze the eigenvaluethen
voronoi neighborhood of the roof points and cluster surface
normals for segmentation. Filin and Pfeifer, (20@#50 use
feature clustering on 3D lidar point clouds witbpst adaptive
neighborhood. Biosca and Lerma, (2008) present
unsupervised fuzzy clustering based segmentatiproaph for
TLS point clouds. Douillard et. al., (2011) investie several
methods considering data density, ground filterirapd
clustering techniques for the segmentation of 3eihpclouds
employing graph clustering. Golovinskiy and Funheyus
(2009) perform a min-cut based method for a foregds
background segmentation of objects in the pointuddo
Regarding the determination of the support regiohghe
points Lalonde et. al. (2005) and Pauly et. al0O@dnvestigate
the scale factor. Regarding the connection betweeimt p
segmentation and classification, Belton and Lict2D0G)
outline a method for point classification by usitg variance
of the curvature in the local neighborhood of theints
followed by a region growing segmentation on terialslaser
scanning (TLS) point clouds. Lim and Suter, (20p@®)pose a
method employing conditional random fields (CRF) fbe
classification of 3-D point clouds that are adagiweduced by
omitting geometrically similar features. Niemeyéra. (2008)
also employ CRF for the supervised classificatiohidafr point
clouds. Carlberg et. al. (2009) present a multigatg
classification of point clouds using 3-D shape wsial and
region growing.

Our study follows the algorithms which utilize afere vector
to represent the properties of the point neighbadhdor

labeling the point cloud. We first label the poithst are from
a surface (e.g. roof tops, ground, etc.) or 3-D ifokth scatter
(e.g. trees) by optimizing the graph which représéme energy
function constructed for the classification problefihen we
label the points that are from surfaces with déferproperties
using a second graph which represents an energyidanfor

the segmentation problem.

2. LOCAL NEIGHBORHOOD
2.1. Local neighborhood of a point

Although there are various definitions for the mdigrhood of
an image pixel, it is intuitive to define its nelgirhood due to
the inherent structure. On the other hand, definthg

neighborhood of a point in an unstructured poinoudl is not
straightforward. Quality of the features that rejer@ certain
properties of the point is dependent on the loeddimborhood
of the point. For example, a very commonly usedufesa the
normal vector of the point can be reliably estirdafets valid

neighbors may be identified. Too many or too fevintgomay
affect the normal vector estimation either by ddagrg the
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local characteristic or by not representing thealageometry
(OuYang and Feng, 2005). Hence, determining an rateu
local neighborhood of the point representativenefrtgeometry
is of significance. Filin and Pfeifer (2005) progié thorough
explanation of the properties of neighborhood systein
airborne lidar data. Neighborhood of a lidar pomay be
defined with a Delaunay triangulation which is theal of the
Voronoi tessellation of the points. This represgatais widely
used in computer vision for mesh generation. Neighdod of
a point is also commonly defined by its k nearesgimbors, or
points within a volume defined by a sphere or aincgr
centered at the point. One should note that thecseh of the
parameters for defining the neighborhood of a p@@rd. radius
of the sphere, number of closest points) is closated to the
scale. These parameters are most of the times ptohally
chosen.

2.2. Local neighborhood deter mination

an

Different approaches exist to determine the loeadimborhood
of each point. Some of them are combinatorial s like
the Delaunay ball algorithm of Dey and Goswami @00
There are also numerical approaches to estimatekienal
neighborhood like the iterative method of Mitra aNduyen
(2003). For airborne lidar point clouds, Filin antkifer (2005)
propose slope adaptive neighborhood definitionohdé et. al.
(2005) investigate Mitra and Nguyen’s (2003) scsdéection
algorithm applied to data from different sensotign land Suter
(2007) also implement the same approach to deterrttie
support region of the points from a TLS for CRF dfasation.
Pauly et. al. (2003) determine the size of the lloca
neighborhood by looking for jumps in the surfaceiation as
the neighborhood size increases. In their recemidyst
Demantke et. al. (2011) propose a method to firdaptimal
neighborhood of each point.

The eigenvalues of the covariance matrix of a p®int
neighborhood have been employed in various stuaaneans
to determine the geometric properties and struai@itbe local
neighborhood (Gumhold et. al., 2001; Pauly et.2003; West
et. al., 2004; Lalonde et. al.,2005; Lim and Sut2907;
Carlberg et. al., 2009; Niemeyer et. al., 2008, Dekeet. al.,
2011). We follow the method in Pauly et. al. (20a®)ile
determining the neighborhood of each point for deat
calculation. We start with a minimum number of rmesar
neighbors for each point and calculate the coveganatrixC
of the neighborhood. Led, be the neighborhood of poimt
which consists of a set & pointsp; (i = 1,...,k) with the
centroid p. The covariance matri® is calculated as

C=2 (i - P pi—PT (€N

Pauly et. al. (2003) introduce surface variation as

On(p)=Asz/ (A1 + Az +23) 2

where A; < A, < A; are the eigenvalues of the covariance
matrix C.

We observe the change in the surface variationdatelct the
jumps as the number of neighbors increase. Figusieolvs the
change of surface variation with the increase sntbhmber of
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nearest neighbors for a sample point. The neiglduatts fixed
to the number of nearest neighbors just beforejuig in
surface variation occurs.
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Figure 1. Change of surface variation with neighbod size

3. POINT LABELING
3.1. Segmentation as a labeling problem

Segmentation may be considered as a labeling problde
labeling problem is concerned with assigning allétoen a set
L of labels to each of the sites in a Satf sites. The goal is to
find a labelingf = {f, ...,f, } by assigning each site ifi a
label from the label seff which minimizes an objective
functionE(f) (Delong et. al., 2010).

The objective function maps a solution to a meastdirguality
by means of goodness or cost (Li,
segmentation is considered as such an optimizatioblem,
identifying the lowest cost for a discrete labelihgives the
optimum segmentation based on the objective functloat
formulates the criteria for a good labeling. A matu
representation of such labeling problems is with emergy
function having two terms (Szeliski et. al., 2008)common
structure used for the energy function to solves ttype of
problems can be typically written as

E(f) = Eqata(f) + Eprior(f) (3)
where
Egata(f) = XiD(E), Eprior(§ = Xi; Vi;(fi, ) (4)

The first term of the function penalizes for incistency with
the data while the second term ensures that thedsl§bandf;
are compatible. Data term is the sum of data costasuring
how well the labeling fits the site given the obsgions.Ep o,

is also commonly referred to as the smoothnessggner
(Boykov et. al., 2001). Smoothness may be depenaierthe
specific pair of neighbors as well as the particulbels
assigned to them (Veksler, 1999).

3.2. Graph-cuts

Most of the time, energy functions of the abovenfonave
many local minima. There is no algorithm that camd fthe
global minimum of an arbitrary energy function wvath the
exhaustive enumeration of the search space. Firtimglobal
minimum of an arbitrary energy function is intrdd&a
(Felzenswalb and Zabih, 2011; Veksler, 1999). Grapts,
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which may be geometrically interpreted as a hypémsa on
N-D space, work as a powerful energy minimizatioal for a
class of energy functions and they are used agptimigation
method in many vision problems based on global gner
formulations (Boykov and Veksler, 2006). Graph-casdd
methods gained popularity in pixel labeling probdéeimimages
and helped increasing the computational efficiesicgolutions
based on energy minimization framework for suchbfmms.
Before graph-cuts and similarly effective loopy béli
propagation (LBP) algorithms, elegant and powerful
representation of labeling problem in terms of gger
minimization was limited by computational ineffioiey
(Szeliski et al., 2008).

A graphG = (V(G), £(g), 5(.)) is a pair of set¥(G) and&(g)
and an incidence relatiog(.) that maps pairs of elements
of V(G), to elements o€ (g). The elements d?(G) are called
vertices or nodes, and the element§ @) are called the edges
of the graptG (Kropatsch et. al., 2007). Considering two
special nodes, source (s) and sink (t) on a didegtaph, the
“minimum-cut problem” is to find a cut with minimuegost on
the graph that will separate the graph into twosstdsuch that
s is in one subset and t is in the other subsgti(€i2). The cost
of a cut is the sum of all the weights of the graolyes with
one node in one subset, and the other node inthes subset.
Ford and Fulkerson (1962) show that considering e¢tlge
weights as capacities, finding the “maximum flowtrh s to t
on the same graph is equivalent to finding the fmum cut”
since a maximum flow will saturate a set of edgdsctv will
separate the graph into two disjoint parts.

2009). When the

source

sink

Figure 2. Minimum-cut on a graph (reproduced fronylgmw
and Veksler, 2006)

There are numerous algorithms for solving low-levidion
problems that find minimum cuts on an appropriatiyined
graph. Each of these algorithms has specific requénts and
conditions regarding the types of energy functitimsy can
minimize or the number of labels they can handle
simultaneously. Some algorithms compute optimaltsmis
under certain conditions.

In this study, we adapt the fast approximate energy
minimization algorithm introduced by Boykov et. @001) via
graph cuts and employ it for the labeling of paltuds. Their
method finds a local minimum with respect to vemge moves
they define asr-expansion and-B-swap which allow a large
number of sites to change their labels simultangous
contrast to standard moves which allow to changeldbel of
one site at a time. They prove that the local minmthey find
using a-expansion is within a known factor of the global
minimum.
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4. CASE STUDY
4.1. Data

The dataset we have used to test the algoriththe isdar point
cloud of Bloomington, IN, U.S.A, obtained from thedlana
Spatial Data Portal. It is provided by Monroe Coufrigm
topographic survey flights by MJ Harden on Aprit12, 2010
with an Optech Gemini system. The maximum plannest p
spacing on the ground is 1.4 m for unobscured afeagorted
vertical accuracy based on the accuracy assessraeigd out
is 0.347 ft/10.58 cm. The point cloud is providedLAS 1.2

format. The point coordinates are in NAD 1983 HARN

horizontal datum and NAVD 88 vertical datum progetbn the
Indiana West State Plane Coordinate System. Thegegroint
density that we have calculated from the subsehefdata is
1.4 pts/m. Figure 3 shows the study area.

Figure 3. Orthophoto (left) and heigh colored tigaint cloud
(right) of the study area.

4.2. Point features

There are numerous feature definitions in thediteme that are
proposed to represent various local propertiesoftp. Similar

to surface variation, several other features arinel® as a
function of the eigenvalues of the covariance mati the

point neighborhood. From these, we select to usesttucture
tensor planarity (S.T.P) and structure tensor artipyg (S.T.A)

features (West et. al., 2004) to identify “surfaeeid “scatter”
points. They are defined as

S.T.P.z(lz_l:g)/ll,S.T.A.z(ll_l:g)/ll (5)

whered; < 4, < 4.

4.3. Graph construction

Adapting Boykov et. al’s (2001) min-cut optimizatio
algorithm, we establish our graph model as follosch point
in the point cloud is considered as a node in ttaply The
edges between the nodes are defined such thatresieh is
connected to its 3-D voronoi neighbors with an edde use an
edge length threshold calculated as the EuclideBnd&tance
between the two points of the edge in order tocwvery long
edges and reduce the number of unnecessary edgéseon
graph. All points are also connected to the noéesesenting
labels. For each point, costs for assigning eablellto that
point are calculated and set as the weights forettges that
connect the points to the label nodes. These weigitrespond
to the data cost term of the energy function arilbei summed
at each candidate labeling configuration. The edtest
connect points with each other are also assignemhtge
representing the smoothness term of the energytitmcWe
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use two different data cost functions for two lamgitasks. The
first one is for the labeling of points based oaittiproximity to
the clusters in the feature space. It is calcul&degoint p as

Dpfi = |lwi— Xp” (6)

wherey; is the label mean ang is the feature vector.

In order to calculate the data costs this way, reeds to know
how the data are distributed in the feature spbre. similar
way to Dai and Zhang's (2006) clustering approamhifhage
segmentation, we perform watershed segmentationthen
feature domain to empirically determine how theadare
clustered. For a feature vector with N dimensioms,generate
a grid space in the feature domain and calculdés@mgram
with the counts of data points falling within eagin. Then we
perform watershed segmentation on the complementhef
histogram to obtain the clusters in the featurecep&Ve take
the clusters obtained by the watershed segmentadiah
calculate label means from these clusters. Dubamature of
the watershed segmentation, data points that fall thee
boundaries of the watersheds are left unlabeledsdhdata
points are not considered while calculating theelaimeans.
Once the label means are determined, the data @osts
calculated and the points in the point cloud ar¢inugdly
assigned labels with the graph cut optimizatioroaigm.

The second cost function is used for labeling oinith
respect to their likelihood of being from a giveistdbution.
After segmenting the points, we use the histograghe
feature values of the segments representative ef thasses
(i.e. “scatter” and “surface”) to calculate the alatosts of
assigning a point to each label as negative laglitikods. Our
feature vector consists of S.T.P. and S.T.A pogaitifres for
this purpose. Data costs are calculated as

Dp.orier = — 1D Pr(xp|scatter) )
Peurface = —In Pr(xp|surface) (8)
Smoothness energy is calculated as
(_||Xp*’2‘q||) 1
Vij(fif) = e 2o 0D 9

whered(p, q) is the Euclidean distance between point p and g

in the spatial domain.

Smoothness cost is to be interpreted as a penaty f
discontinuity between two neighboring sites. If thbeling of
two neighbors is different (discontinuity), this pty of
smoothness cost assigns a large penalty/cost tedde if the
features of two nodes are close to each otherr(dited by the
parametews). This means that labeling of these two nodes will
tend to be the same since it will cost more to llévese nodes
differently which will increase the total energyn Ghe other
hand, if the two nodes are far from each othermm feature
space, then the smoothness function will assigmall penalty
to this edge allowing the two nodes to be labelifférént than
each other since such labeling will contribute toweer energy.
Once we construct the graph with all data and shress
costs, we use the software library implementatioyvided by
Veksler and Delong (http://vision.csd.uwo.ca/codadsed on
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the algorithms in Boykov et. al. (2001), Kolmogorvd Zabih
(2004), and Boykov and Kolmogorov (2004) to perfotime
graph cut optimization.

5. RESULTSAND DISCUSSION

We run the algorithm first for determining the “te&’ and
“surface” points as described in the previous sectiVe set the
smoothness cost parametercas 0.8. We also apply weights
to the data cost and smoothness cost terms to otottte
relative importance of conformance with the datd apatial
coherence. We sefiga,(f) =1 andEpo-(f) = 2. Figure 4
shows part of the study area with points labeletseatter” or
“surface”.

Figure 4. Points color labeled as “scatter” (gremrm)surface”
(black) points.

Two issues may be observed regarding the effecasenf the
method. The first issue is due to small groupsafts which
appear to be not from a surface but being labeted surface
point. This is mostly due to the size of the objeot being
large enough for identification. Second issue Ilateel to the
points that are on the ground being labeled agescpbints.
This case mostly happens when those points arewe parts
of areas where there are scattered points.

After labeling points as surface and scatter, weabdish a
second feature vector and graph in order to segthergurface
points. The first three elements of the featuretoreare the
components of the unit surface normal vector whilthe
eigenvector corresponding to the smallest eigervalfi the
covariance matrix. The last element is the surfacemal
variation within the point neighborhood which iethariance
of the angleé® between the normal vector and the vertical.

8 = arccos(n - [0 10]) (10)
We set the number of bins to calculate the histogfar the
watershed segmentation as 20 for each dimensitredeature
vector. This parameter is of importance since fedgines the
initial clusters in the feature space. An over-segtation is
optimized by the graph cut algorithm. However, éhgorithm
doesn’'t have the flexibility to compensate for unde
segmentation as it is the case in a split and mé&pe of
algorithm. We set the smoothness cost parameter=a9.6,
and the weights determining the relative importanethe
smoothness and data costs Bg,,(f) = 4 andEpor () = 1.
Figure 5 shows segmented surface points in pathefstudy
area.

6. CONCLUSION
In this study, we have established a methodologgdan the

graph representation of point labeling problem. \Nave
formulated two major labeling tasks defined as ptintization
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problem on graphs and employed an efficient graph c
algorithm resulting with the determination of thteusture of 3-
D lidar point cloud. First, we have identified tHecal
neighborhood for each point and using the cuesigtjrom
point neighborhood we were able to identify thenfsasface”
or “scatter” points. After obtaining the “surfac@bints, we
have labeled them using a different set of feattgsslting in a
segmentation of the surface points. Performingeeitif these
two tasks within this framework requires prior kredge on
the structure of the feature space. Determiningdik&ibution
of the feature space for the classification probtequires some
effort of collecting representative samples on tlser side.
However, one should note that the distributiontwf features
for surface and scatter points may be predictegeds

We believe that this framework may provide bet&suits in
case the terms related to the shapes of objedts ditrners,
ridges, boundaries, etc. are also included in treegy function.
We plan to include energy terms representing shapeigher
levels of relationships between the points withiis framework
in the future.

880 -y
860 ..
640

Figure 5. Color-coded point segments in part ofstively area
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