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ABSTRACT:

Heavy metal pollution is a critical global environmental problem which has always been a concern. Traditional approach to obtain
heavy metal concentration relying on field sampling and lab testing is expensive and time consuming. Although many related studies
use spectrometers data to build relational model between heavy metal concentration and spectra information, and then use the model
to perform prediction using the hyperspectral imagery, this manner can hardly quickly and accurately map soil metal concentration of
an area due to the discrepancies between spectrometers data and remote sensing imagery. Taking the advantage of easy accessibility of
Landsat 8 data, this study utilizes Landsat 8 imagery to retrieve soil Cu concentration and mapping its distribution in the study area. To
enlarge the spectral information for more accurate retrieval and mapping, 11 single date Landsat 8 imagery from 2013-2017 are selected
to form a time series imagery. Three regression methods, partial least square regression (PLSR), artificial neural network (ANN) and
support vector regression (SVR) are used to model construction. By comparing these models unbiasedly, the best model are selected to
mapping Cu concentration distribution. The produced distribution map shows a good spatial autocorrelation and consistency with the
mining area locations.

1. INTRODUCTION

Soil quality is a crucial issue for the environment and human
health, and as such the monitoring of soil by detecting some soil
quality indicators is of great significance. Heavy metal concentra-
tion (HMC) in soil is an important indicator of soil quality, which
is hazardous to living species and crop growth (Liu et al., 2011).
Traditional approach to obtain HMC relying on field sampling
and lab testing is expensive and time consuming (Slonecker et
al., 2010). Hyperspectral data, with wide electromagnetic wave
range and high spectral resolution, has powerful discriminative
capability and has been adopted to retrieve soil heavy metal con-
centration as a faster and easier approach (Choe et al., 2009, Ji
et al., 2010, Fard and Matinfar, 2016). There are many studies
on soil heavy metal concentration retrieval which use hyperspec-
tral data obtained by spectrometers to build prediction models
(Kemper and Sommer, 2002, Choe et al., 2009, Ji et al., 2010).
Besides, some researchers try to build prediction models using
certain bands of spectrometer data, which is corresponding to
the band range of remote sensing imagery (RSI), then map the
heavy metal concentration of an area using image data (Choe et
al., 2008, Naderi et al., 2017).

However, most related studies use spectrometers data for model
construction rather than imagery, which could hardly efficiently
map the soil metal concentration of an area. Although remote
sensing images (RSI) are used in the predict process, such so-
lution is problematic due to the discrepancies of spectral reso-
lution, SNR, acquisition time between these two format of data
(He et al., 2015). There are huge amount of RSI available today
thanks to development of satellite and unmanned aerial vehicles,
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but only a few studies use RSI directly to retrieve heavy metal
concentration (Fard and Matinfar, 2016, Fu and Wang, 2017).

Among various kinds of RSI, Landsat 8 data is free to obtain with
relatively high spatial, short revisit period, wide coverage and
broad ranges electromagnetic spectrum including visible, near in-
frared, short wave infrared, and thermal infrared. As, Cd, Ni,
Pb concentration in soil are retrieved using Landsat 8 in (Fard
and Matinfar, 2016). However, compared to hyperspectral data,
Landsat 8 data has the disadvantages of lower spectral resolution,
fewer bands and less spectral information. To enlarge the spec-
tral information and increase observation frequency, this study
ensembles time series images of Landsat 8 to obtain cube data
like a hyperspectral image. Every pixel in this image can be
viewed as a spectrum, where a variable has been observed mul-
tiple times at different times phase and different environmental
conditions. Then, each soil sample corresponds to a vector, the
values of which can be plotted as spectra. As a result, since spec-
tral characteristic of ground covers, such as soil and vegetation,
are affected by heavy metal in soil (Maliki et al., 2012), spectra
of soil samples with different heavy metal concentrations have
different spectral signatures. In this manner, the capability of RS
data to discriminate heavy metal concentration in soil is strength-
ened. Leveraging such advantage of Landsat 8 time series im-
agery, soil heavy metal concentration can be better retrieved than
that using single date image of Landsat 8.

Besides the choice of remote sensing data, the selection of in-
version model is another key issue of heavy metal concentration
retrieval. Current methods for heavy metal concentration esti-
mation can be divided to tree categories, i.e., multiple endmem-
ber spectral mixture analysis (VMESMA) based on spectral un-
mixing (Kemper and Sommer, 2003, Schwartz et al., 2012), ap-
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proaches based on physical models (Guan and Cheng, 2008) and
those based on empirical models (Fu and Wang, 2017, Fard and
Matinfar, 2016). The most common methods for soil heavy metal
concentration inversion are empirical models based approaches
including multivariate linear regression approaches such as MLR,
PCR, or PLSR (Malley and Williams, 1997, Choe et al., 2009, Wu
et al., 2005) and machine learning methods like support vector
regression (SVR) and artificial neural networks (ANN) (Kemper
and Sommer, 2002, Fard and Matinfar, 2016).

VMESMA method based on spectral unmixing relies on know-
ing endmembers or having both samples contaminated and un-
contaminated by heavy metal (Kemper and Sommer, 2003). Al-
though physical models describe the mechanisms involving the
interaction of the electromagnetic radiation and objects, physical
models are very complex to understand and rely on knowing a
large number of parameters (Ali et al., 2015). Empirical models
are data-driven approaches, and as such they are independent of
mechanic background knowledge and do not need to pre-assign
big number of parameters (Ali et al., 2015). Therefore, this study
apply the most common empirical models, i.e., PLSR, ANN and
SVR, to soil HMC retrieval.

This paper selects 11 single date Landsat 8 images from 2013-
2017 and combines them together to obtain time series image for
heavy metal concentration in soil retrieval using three regression
models (i.e., PLSR, ANN and SVR), then selects the best model
for mapping heavy metal distribution of an area. The main con-
tributions of this work can be summarized as follows.

• Given the fact that most studies of soil HMC retrieval use
spectrometer hyperspectral data rather than RSI, in this pa-
per, free satellite RSI, Landsat 8 images are used for soil
HMC, which proves the feasibility of RSI for soil HMC re-
trieval and provides a new approach for large area fast map-
ping of heavy metal distribution.

• This paper is the first to apply time series Landsat 8 im-
ages to soil HMC retrieval, providing new pre-processing
approach of satellite RSI to fully utilize multi-temporal data
for enhancing the discriminating ability of RSI, aiming at
improving the prediction precision of HMC retrieval.

• In this paper, model selection is conducted by applying three
empirical approaches for model construction and evaluat-
ing models using unbiased measures. The importance of
model selection is emphasized and the method of that is
summarized, which help the other researchers working on
soil HMC retrieval to choose the best model and obtain good
results.

2. MATERIALS AND METHODS

2.1 Study area

The study area is located in Shiping village, Luzhou city Sichuan
province, China. The area (105◦59’32”-106◦02’13”E, 28◦0’55”-
28◦3’26”N) is subtropical climate, with annual average tempera-
ture 17.1-18.5 ◦C and average rainfall 748.4-1184.2mm. A num-
ber of mining area and industrial areas are located in the area,
which caused some pollution to the land. The location of study
area and 3D representation of remote sensing image are shown in
Figure.1.

A total of 138 soil samples are collected from the area in 2015
and the copper (Cu) concentrations are analyzed chemically.

2013 2014 2015 2016 2017
16/06/2013 06/08/2014a 03/04/2015a 08/06/2016 19/02/2017

06/08/2014b 03/04/2015b 26/07/2015
09/10/2014 08/07/2015
28/12/2014

Table 1. Acquisition dates of time series images

2.2 Satellite data

Satellite RSI, Landsat 8 imagery are used as independent vari-
ables for model construction in this study. 11 single date imagery
of Landsat 8 ranging from 2013-2017 are selected as time series
images which are under low cloudiness coverage. The imagery
acquisition dates are summarized in Table.1.

The spatial resolution of band 8 (panchromatic band) is 15m,
which is different from other bands. To solve this problem, down-
sampling is applied to band 8 of every single date imagery to
achieve the spatial resolution of 30m.

2.3 Models construction

2.3.1 Regression models In this work, three widely used mod-
els, i.e, PLSR, SVR, ANN, are selected and used to construct the
regression model of soil Cu concentration and spectral features
of Landsat 8 time series images.

PLSR is a particular form of multivariate linear regression (Wang
et al., 2018),which is the most common method used in soil prop-
erties prediction (Pinheiro et al., 2017). PLSR is underpinned by
the assumption that the dependent variable can be estimated via a
linear combination of explanatory variables.The maximum num-
ber of latent variables in PLSR is set at 20 and the optimum num-
ber of latent variables are determined by 5-fold cross-validation.

SVR is machine learning approach in the field of geo-physical pa-
rameters retrieval that became popular in the past few years (Ali
et al., 2015). The achieved results by related studies indicate the
promising features of SVR, such as the good intrinsic generaliza-
tion ability and the robustness to noise in the case of limited avail-
ability of the reference samples (Ali et al., 2015, Durbha et al.,
2007, Moser and Serpico, 2009). Epsilon-SVR with sigmoid ker-
nel function is adopted in this work. The cost C and the epsilon
P in loss function control the behavior of SVR. The hyperparam-
eters ( C and P ) of SVR are optimized by 5-fold cross-validated
grid search method in a discretized two-dimensional parameter
space along 2d,where d=20000, 300000, ..., 800000 for C and
d=0.05, 0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 5, 6, 7, 8, 9 for P .

ANN is another machine learning method used in soil HMC (Kem-
per and Sommer, 2002, Fard and Matinfar, 2016). Even though
the data are imprecise or noisy, processing problems of nonlin-
ear and complex data can also be done through the use of ANN
(Fard and Matinfar, 2016). This work adopts one hidden layer in
ANN and empirically set the number of hidden nodes to be 7 and
learning rate to be 0.01.

The digital number (DN) value of pixels corresponding to the po-
sition of soil samples are extracted from Landsat 8 images using
ArcGIS 10.1. Three regression approaches are all implemented
and evaluated in MATLAB 2014.

2.3.2 Accuracy measure The performance of the models was
evaluated by the coefficient of determination (R2) and root mean
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squared error (RMSE), which are separately formulated as

R2 = 1−
n∑

i=1

(ŷi − yi)
2/

n∑
i=1

(ŷi − y)2, (1)

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2/n, (2)

where n = the the number of samples
ŷi = the predicted value of the ith observation
y = the mean observed value
yi = the observed value of the ith observation

Splitting the dataset into training and test sets and estimating the
accuracy measures on test set could guarantee unbiased accuracy
estimation and cross-validation can fully take advantage of the
available samples by repeatedly producing training and test sets
(Xu et al., 2014). K-fold cross-validation is applied in this work
for the bias-reduced estimation of model performance. The total
138 samples are divided to training set and test set randomly us-
ing 50 repeated 6-fold cross-validation for model evaluation. In
the training process, determination coefficients of training (R2

C )
the root mean square error of training (RMSEP ) are derived
to assess how well the regressions fit to the training set. Estab-
lished models are then applied to the test set and their predictive
capabilities are assessed based on the determination coefficients
of training of test (R2

P ) and the root mean square error of test
(RMSEP ).

3. RESULTS AND DISCUSSION

The statistics of RMSE and R2 are separately given in the Table.2
and Table.3, including mean, median and standard deviation value
(Std). To show the maximum potential of each model, the models
with the highest R2

P achieved by the three methods are presented
in Figure. 2 in the form of plots of the measured Cu concentration
against predicted Cu concentration.

The single date Landsat imagery and time series imagery are test
separately in this work. Observing the statistics in Table.2 and
Table.3, we conclude that the model performance on time series
imagery are obviously better than that on single date imagery.
Such result indicates that applying time series Landsat imagery
has a positive effect to precision soil HMC prediction.

The median value of R2
P obtained by PLSR is 0.6042, which

is bigger than that obtained by both ANN (0.5032) and SVM
(0.3209) and the Std of RMSE is smaller than that obtained by
ANN and SVR. Correspondingly, the RMSE values of PLSR
are smaller than the other two methods. Generally speaking,
PLSR performs more efficiently and robustly than ANN and SVR.

It is observed that the test accuracies are basically worse than
the training effect in all three methods, indicating a varying de-
grees of over-fitting issue. For PLSR, the over-fitting degree is
acceptable because the discrepancies between training and test
accuracy are not that distinct. When it comes to ANN and SVR,
the over-fitting is distinct, indicating that the optimum parameters
are not obtained. We attribute this phenomenon to sensitiveness
of parameters. Unlike PLSR with just one important parameter

(i.e., the number of latent variables) which is relatively easy to
optimize, ANN and SVR have at least two separately and all of
them are very sensitive. A relative coarse grid search can hardly
find the optimum parameters. Therefore, from the perspective of
operability, PLSR is the most practical model.

Although the best model achieved by ANN has higher R2 and
lower RMSE than the PLSR and SVR(see Figure.2), the mean
value of ANN demonstrates worse general performances com-
pared with PLSR and the relatively big Std value illustrates poor
stability of ANN in this study. Therefore, the best model achieved
by PLSR is selected to predict Soil Cu concentration of the study
area.

4. SOIL CU CONCENTRATION MAPPING

After all the regression methods are tested, the model achieved by
PLSR with the highest R2

P values signifying a high correlation
between prediction values and field measurements, is selected to
produce the soil Cu concentration distribution map of the study
area. The predicted map of soil Cu concentration of study area
is presented in Figure.3(a). To evaluate the obtained map, a clas-
sification map obtained by (Chen et al., 2017) with the overall
accuracy of 86.26% is presented in Figure.3. The more red in
Figure.3(a), the higher Cu concentration. It is observed that the
distribution of Cu concentration in Figure.3(b) is consistent with
the locations of mining area (red color in Figure.3(b)) and the
further away from the mining area, the lower Cu concentration,
which make sense.

5. CONCLUSION

This article adopted time series Landsat 8 imagery incorporat-
ing some necessary sampling data to retrieval soil Cu concentra-
tion in Shiping county. Given the fact that most studies of soil
HMC retrieval use spectrometer hyperspectral data rather than
RSI, in order to reduce cost and improve efficiency, this work
used free satellite RSI, Landsat 8 images to retrieve soil HMC.
By using time series imagery, the huge amount of spectral in-
formation were fully utilized. Three regression methods (PLSR,
ANN, SVR) were conducted for Cu concentration retrieval and
the best model achieved by PLSR was selected for producing Cu
concentration distribution map, which is consistent with the dis-
tribution of places of mining area.

Main conclusions, drawn from this study, are summarized below:

(i) Landsat 8 data can well be used to retrieve and map Cu concen-
tration in soil, which shows big potential of retrieval and mapping
soil HMC. The average R2

P achieved by PLSR was 0.6042 and
the maximum value of R2

P was 0.81765, with which the retrieval
map could be said credible, demonstrating the feasibility of RSI
for soil HMC retrieval.

(ii) Times series imagery can fully take advantages of the huge
amount of spectral information and are more efficient than single
date imagery in soil Cu concentration retrieval. By successfully
using time series imagery to retrieve soil Cu concentration, this
study offers a new approach for large area fast mapping of heavy
metal distribution.

(iii) Model selection and unbiased evaluation are of great impor-
tance to accurate prediction of HMC in soil. Although ANN and
SVR methods performed well in some other publications, in this
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Figure 1. Location of study area and 3D representation of remote sensing image.

Data Type RMSE statistics
PLSR ANN SVR

Training Test Training Test Training Test

Single data imagery
Med 15.1889 15.6365 15.7302 17.1847 31.4097 39.5189
Mean 15.1903 15.8916 16.2005 18.2104 36.3511 39.1300
Std 0.4077 2.6264 7.6248 8.7217 12.7880 7.3660

Time series imagery
Med 13.0929 15.7979 12.7232 20.1538 25.0774 29.6699
Mean 12.6672 16.4813 13.2219 20.3188 38.5564 44.9360
Std 1.3850 3.4314 2.7579 4.8707 29.8367 35.8424

Table 2. Statistics of root mean square error

Data Type R2 statistics
PLSR ANN SVR

Training Test Training Test Training Test

Single data imagery
Med 0.5768 0.4892 0.4123 0.2468 0.4056 0.2602
Mean 0.5758 0.4937 0.3834 0.2625 0.3608 0.2791
Std 0.0354 0.1184 0.1490 0.1428 0.0962 0.1721

Time series imagery
Med 0.7572 0.6149 0.8166 0.5117 0.4744 0.3376
Mean 0.7741 0.6042 0.7686 0.5032 0.4169 0.3209
Std 0.0574 0.1059 0.1352 0.1697 0.2219 0.2009

Table 3. Statistics of coefficients of determination

(a) The best model achieved by PLSR (b) The best model achieved by ANN (c) The best model achieved by SVR

Figure 2. Best models achieved by PLSR, ANN, SVR.
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(a) Cu concentration distribution map of Shiping county (b) Classification map of Shiping county

Figure 3. Cu concentration distribution map and classification map

work, however, turned out to be less than satisfactory. On the
contrary, the linear regression method, PLSR, performed better.
If models had not been not unbiasedly compared and model selec-
tion process had not been not conducted, retrieval would hardly
have achieved the ideal precision.
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