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ABSTRACT: 
 
Concerns over the use of nitrogen have been increasing due to the high cost of fertilizers and environmental pollutions caused by 
excess nitrogen application in agricultural fields. Several methods are available to assess the amount of nitrogen in crops, however, 
they are expensive, time-consuming, inaccurate, and/or require specialists to operate the tools. Researcher recently suggested remote 
sensing and specifically Low Altitude Remote Sensing (LARS) system of chlorophyll content in crop canopies as a low-cost 
alternative to estimate plant nitrogen status. The main objective of this study was to develop and test a new Vegetation Index (VI) to 
determine the status of nitrogen and chlorophyll content in rice leaf by analysing and considering all Visible (Vis) bands. Besides, 
capability of introduced VI has compared with all known VIs in both Vis and Near Infrared (NIR) bands in canopy scale. To develop 
the VI, images from 6-pannel leaf colour chart were acquired using Basler Scout scA640-70fc under light-emitting diode lighting, in 
which principal component analysis was used to retain the lower order principal component to develop a new index called IPCA. A 
conventional digital camera mounted to an Unmanned Aerial Vehicle (UAV) was also used to acquire images over the rice canopy in 
Vis bands. Simultaneously, Tetracam agriculture digital camera was employed to acquire rice canopy image in Vis-NIR bands. The 
results indicated that the proposed index at canopy (r = 0.78) scale could be used as a sensor to determine the status of chlorophyll 
content consequently for monitoring nitrogen in rice plant through different growth stages. Moreover, results confirmed that a low-
cost LARS system would be suited for high spatial and temporal resolution images and data analysis for proper assessment of key 
nutrients in crop farming in a fast, inexpensive and non-destructive way.  
 

1. INTRODUCTION 

Nitrogen (N) is the most widely used fertilizer nutrient in rice 
cultivation and its consumption has increased in recent decades. 
Plant growth and crop production require plentiful N and N 
deficiency causes a reduction in Leaf Area Index (LAI), 
radiation use efficiency and photosynthesis activity in plant 
(Fageria and Baligar, 2005). Therefore, knowledge of N status 
of crop is essential for sustainable management of N fertilizer 
(Huber and Thompson, 2007). There are several reason 
mentioned in literature for low N use efficiency, however, the 
most important reason is an inefficient splitting of N doses 
coupled with N applications in excess of crop requirements 
(Varinderpal-Singh et al.,2010).  
Management of N is an important aspect of improving crop 
productivity. An accurate prediction of N requirements during 
the cultivation period is also necessary for efficient fertilizer 
use. In other words, fertilizer application rates should be 
determined based on the crop requirement and its optimum 
nutrient levels at various parts of a paddy field to achieve 
economical, environmentally friendly and high-yield 
production.  
Since mid-1980’s research was oriented more toward matching 
crop N demand with fertilizer N supply for achieving high 
Nitrogen use efficiency (NUE) (Buresh, 2007) and finding 
means and ways to apply fertilizer N in real time using crop and 
field specific needs. This need has been more pronounced when 
the blanket recommendation consisting of three of four split 
applications of pre-set rates of total N fertilizer during the 
growing season of rice are commonly practiced by farmers for 
managing N fertilizer, because the rate of N uptake by rice 

changes during growth and development. Thus, sound N 
management practices need to be established in order to 
improve N uptake and usage efficiency, which leads to high 
grain yield, minimal N fertilizer losses, and reduce cost of rice 
production. To achieve these goals, the monitoring of crop N 
status is important for improving the balance between crop N 
demand and N supply from soil and fertilizer. By selecting a 
suitable method to evaluate the plant’s nutrient status. It is 
possible to attain efficient N management in crops and 
particularly in rice plant. The ability to quickly and easily 
monitor a crop’s M status as well as using the obtained 
information to optimize N fertilizer input would increase NUE. 
Currently several different, direct and indirect methods and 
instruments are available for assessing N status in crops and 
manage the amount of N fertilizer applied to crop based on site-
specific requirements such as tissue and chemical analysis, leaf 
colour chart (LCC), chlorophyll meter (Gholizadeh et al., 2011), 
Dualex (Cartelat et al., 2005), Greenseeker (Johanson et al., 
2002), crop circle ACD-210 and crop circle ACD-470(Cao et 
al., 2013) and Yara passive N sensor. However, all of the above 
mentioned methods have been proven to be costly, time 
consuming and in some cases destructive and labor-intensive. 
Recently, remote sensing (RS) has become an attractive 
technique for crop nutrient determination (Link and Reusch, 
2006). Among the different RS platforms, the low altitude 
remote sensing (LARS) system is currently attractive to 
researchers and agriculturists, which includes precision farming 
as one of the promising platforms for monitoring crops. Various 
LARS platforms are now available, such as tractor driven crane 
mounted system (Samseemoung et al., 2012), kites (Aber et al., 
2002), blimps (Vericat et al., 2008), balloons (Jensen et al., 
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2007) unmanned helicopters (Swain et al., 2010), unmanned 
aerial planes (Hunt et al., 2005), power gliders (Lelong et al., 
2008) and quadcopter (Primicerio et al., 2012) to capture 
images for agriculture applications. Among the different LARS 
platforms, imagery using digital cameras attached to unmanned 
aerial vehicles (UAV) has attracted researchers the more 
because of their possibility to provide high spatial and temporal 
resolution images over the agriculture fields with low cost in 
compare to airborne and satellite platforms( Hunt et al., 2005).  
All of these platforms which mentioned above are equipped 
with a variety pf types of remotely sensed sensors such as film 
cameras or commercial digital cameras (Teoh et al., 2012) and 
global navigation satellite systems which can acquire images 
with high resolution over the farms. Digital images record 
information as the amount of Red, Green and Blue (RGB) and 
have been used to measure crop N status with some success. For 
example, Mercado-Luna et al. (2010) used RGB colour space to 
determine N deficiency in tomato seedling. Pagola et al. (2009) 
used RGB colour space to estimate the status of N in barley. 
Lee and Lee (2013) used visible colour bands and Stepwise 
Multiple linear regression to develop a model for diagnosis of 
growth and N status in rice. Along with visible bands, 
reflectance in the Vis and NIR region have also been studied 
and proved to be a good indicator of nutrient status in many 
crops (Bajwa and Mozaffari, 2007; Lee et al., 2008) For 
instance, Xue et al. (2004) found that the ratio of reflectance at 
819 and 560 nm has a robust relationship with leaf N 
concentration (R2 = 0.96) and chlorophyll meter (R2 = 0.90) in 
rice. 
Studies on RS applications in agriculture have used vegetation 
indices (VIs) to evaluate the crop condition. VIs which are the 
combination of more than one band, are easy to use and would 
be an accurate and simple method in digital image analysis for 
evaluating and monitoring crop nutrients and biophysical 
paramreters (Hansen and Schjoerring, 2003). Moreover, VIs 
reduce large data volumes from RS to keep only useful 
information for management. VIs which are calculated form 
combination of red, green and blue bands have been studied and 
showed good performance for determining the status of plant 
nutrient. For example, Normalized Green Red difference index 
(NGRDI) shows sensitivity to different chlorophyll 
concentration in leaves (Hunt et al., 2005). Rorie et al., (2011a; 
2011b) found that Dark Green Colour index (DGCI) have a 
close association with leaf N in corn. Furthermore, Hunt (2013) 
developed the Triangular Greenness Index (TGI) based on Vis 
bands for determining status of chlorophyll content in crops (R2 
= 0.85).  
Most indices are calculated using the ratio or normalized 
difference of two bands, which may not consider all three bands 
in the visible wavelengths. The main objective of this study was 
to develop and test a new index to determine the status of N and 
chlorophyll content in rice leaf by analysing and considering all 
visible bands derived from images captured using conventional 
digital camera and principal component analysis. Moreover, 
images from UAV were used to examine and capability of new 
developed index at the canopy scale. Simultaneously, Tetracam 
agriculture cameras was employed to acquire rice canopy image 
in Vis-NIR bands. Another objective of this experiment was to 
compare capability of new developed VI with Vis-NIR bands. 
 

2. MATERIALS AND METHODS 

2.1 Field Preparation for Leaf Data 

Four different levels of N fertilization were applied to the pots, 
namely, a control with no added fertilizer (N0) and three other 
levels [N1 85kg ha-1 (acute shortage); N2 170kg ha-1 (Normal 

practice). The pots were arranged in a randomized complete 
block design with four replicates and grown under flooded 
condition with spacing of 3 m ×3m .P and K fertilizer rates were 
applied equally for all the treatments (P: 80 kg ha-1 , K:150 kg 
ha-1 ).  
 
2.2 Leaf Data Acquisition 

The youngest fully expanded leaf was removed and transferred 
to laboratory immediately. Leaf were photographed using 
Basler scout camera with 2 mega pixel resolution under light-
emitting diode (LED) light. Images saved as TIFF files. Parallel 
to photography, the same leaves chlorophyll were measured 
using SPAD -503. 
 
2.3 Development of Principal Component Analysis Index 

In order to calculate the Principal component analysis (PCA), 
firstly, each panel of a leaf colour chart (LCC) with scale of six 
green colour shades under LED light photographed, next the 
average values of difference between R, G and B calculated The 
values of R − B and G − B are the corrected values of R and G 
using B as a base. As this operation reduces the bias noise in R, 
G and B, the correlation of R−B and G−B with chlorophyll is 
higher than those of R and G. Correlation matrix was then 
calculated using PCA to obtain the eigenvalues and 
eigenvectors as weights for each principal component. Finally 
the new index that is the value of eigenvector associated with 
the highest eigenvalue is as follows:  
  
IPCA = 0.994|R − B| + 0.961|G − B| + 0.914|G − R| (1) 

 
Where R is red, B is blue and G is green.  
 
2.4 Imagery using Unmanned Aerial Vehicle 

Canopy data were captured during rice growing season in 
March 2013 at the Tanjung Karang Rice Irrigation Scheme 
located on a flat coastal plain in the integrated agriculture 
development area on latitude 3 35’N and longitude 101 05’ E. 
Image were obtained using a Swinglet CAM on 25 March 2013 
(71 Days After Plantation(DAP)) at 9:30 am. Swinglet CAM is 
a radio controlled model glider plane which is controlled by an 
autopilot computer program to take photograph at user-selected 
waypoint to ensure complete coverage of the field. Two 
different cameras attached to UAV for providing images. First 
group of images was provided by a compact digital camera with 
16 megapixel resolution in JPEG format. Second group of 
images were provided using Tetracam agriculture digital camera 
as stored as Raw-8bit image. Tetracam agriculture digital 
camera had been calibrated by capturing the images from the 
Teflon calibration tag under the same lighting conditions as the 
images under study. 
 
2.5 Calculation of Indices 

In the study of leaf data, 288 images were analyzed based on 12 
colour indices in visible bands and 3 indices in visible-NIR 
bands. The colour indices were obtained from the average 
colours of the whole image. The indices used for evaluation are 
listed and defined in Table 1.  
 
Name Abbrev Definition 
Normalized green red difference index NGRDI  (g − r)/(g + r) 
Kawashima index IKAW (R − B)/(R + B) 

Excess red vegetation index ExR 1.4r − g 

Excess blue  vegetation index ExB 1.4b − g 
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Excess green vegetation index ExG 2g − r − b 

Excess green minus Excess red ExGR ExG − ExR 

Green-red vegetation index GRVI (G  − R)/(G  + R) 

Dark green colour  index DGCI {(H − 60)/60  + (1  − S) 
+ (1  − Br)/3} 

Red green ratio  index RGRI R/G 

Green leaf  index GLI (2G  − R − B)/(2G  + R 
+ B) 

Visible atmospherically resistance 
index 

VARI (G  − R)/(G  + R − B) 

Principal  component analysis index IPCA 0.994|R − B| + 0.961|G  
− B| + 0.914|G  − R| 

Normalized Difference Vegetation 
Index 

NDVI (NIR − r)/(NIR + r) 

Green-Normalized Difference 
Vegetation Index 

GNDVI (NIR − g)/(NIR + g) 

Soil Adjusted Vegetation Index SAVI [(NIR − r)/(NIR + 
r+L)](1+L) 

Table 1: Colour indices and vegetation indices 
 
All the images were processed using a Matlab image processing 
toolbox. Parallel to photography, SPAD data as ground based 
reading were recorded by inserting the middle portion of the 
index leaf in the slit of the SPAD meter. Readings from fifteen 
randomly selected plants were collected from each lot and the 
average was calculated. Moreover, the locations of each plant 
was determined and recorded by GPS JunoTM ST handheld 
which is one of the products of Trimble Company with an 
accuracy of 2.5–5m to collect coordinate points. 
 
2.6 Model Performance Analysis 

Analysis of variance (ANOVA) was used for the experiment to 
analysis the significant difference between treatments. 
Moreover, the normality of the distribution of standardized 
residuals for each variable was tested using the Shapiro-Wilk 
test. Meanwhile, a simple linear regression was employed to 
determine the strength of the relationship between the SPAD 
measurements and the indices. The coefficient of determination 
(r2) was used to compare the performance of the indices.  
 

3. RESULTS AND DISCUSSION 

3.1 Correlation of SPAD Reading and indices 

The descriptive statistic for SPAD reading in 71DAP presented 
in Table 2. The summary statistic indicated that the SPAD 
reading information could be collected intensively. The CV 
value was 7%, this shows that the entire study area was 
homogenous.  
The calculated colour indices from the UAV imagery are 
presented in Table 3. The CV showed that ExR varied the most 
as compared to other measured indices. Also GLI, DGCI, Vis-
NIR indices (NDVI, GNDVI and SAVI) and IPCA tended to be 
more homogenous than the other studied indices, respectively.  
As a prior step to model development for estimating N and 
chlorophyll content by using digital colour image processing, 
Pear-son two-tailed correlation between the colour indices and 
the SPAD measurements at 71 DAP was used for the  
correlation (Table 4). 
Despite the output of analysis of correlation between CM values 
and colour indices for the leaf scale, all colour indices were not 
correlated with CM values at the canopy scale. For example, the 
correlation coefficient between CM values and IKAW was 
−0.446** for the leaf scale at 71 DAP, whereas it was not 
correlated for the canopy scale (r = 0.058n.s.). However, most 
indices associated with G band show significant correlation 
such as ExG, ExGR, GLI and GRVI. Moreover, it indicates that 
digital images in JPEG format acquired by digital cameras with 

a built-in enhancement function have more sensitivity to the G 
band. This could be due to Bayer filter array, which combines a 
blue, a red and two green sensor cells into one true-colour 
image pixel.  In other words, CCDs are more sensitive to green 
colour, because the number of green pixels are twice the 
number of red and blue pixels in a true colour image. 
There was a significant correlation between Vis-NIR indices 
and leaf chlorophyll meter value. Also there was a significant 
negative correlation found between IPCA and SPAD readings. 
Correlation between Both IPCA and Vis-NIR indices and leaf 
chlorophyll meters are much greater than other investigated 
colour indices. Therefore, it can be concluded that IPCA, which 
uses three visible bands, has the capability to determine the 
status of N and chlorophyll content similar to Vis-NIR indices. 
This conclusion is in agreement with reports from a study by 
Hunt et al (2013), which proposed that all three visible bands in 
a vegetation index can improve the sensitivity for determining 
the status of chlorophyll content, if the method of data 
acquisition and analysis exploit the high spatial resolution 
available from LARS platforms.  
 
 SPAD (71DAP) 
Mean 34.195 
Median 34.21 
Mode 35.20 
Standard deviation 2.541 
Variance 6.460 
Coefficient of variation(CV) 0.074 
Minimum 30.10 
Maximum 38.10 

Table2: Descriptive statistics for SPAD reading in 71DAP 
 
Abbrev. Mean Std. error CV (%) 
NGRDI 0.123 0.015 39 
IKAW 0.190 0.009 17.8 
ExR 0.016 0.015 333.3 
ExB 0.23 0.012 17.8 
ExG 0.584 0.020 12.15 
ExGR 0.568 0.035 21.4 
GRVI 0.151 0.009 22.5 
DGCI 0.468 0.010 7.6 
RGRI 0.801 0.026 11.3 
GLI 0.275 0.023 2.98 
VARI 0.152 0.024 5.52 
IPCA 150.29 4.163 9.5 
NDVI 0.757 0.015 7.17 
GNDVI 0.753 0.015 7.10 
SAVI 0.758 0.015 7 

Table3: Descriptive statistic for vegetation indices in 71 DAP 
 
Index r 
NGRDI -0.030n.s. 
IKAW 0.058n.s. 
ExR 0.621* 
ExB 0.528n.s. 
ExG -0.672* 
ExGR -0.666* 
GRVI -0.645* 
DGCI -0.38n.s. 
RGRI -0.60n.s. 
GLI -0.642* 
VARI 0.138n.s. 
IPCA -0.789** 
NDVI 0.785** 
GNDVI 0.783** 
SAVI 0.749** 
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Table4: Correlation coefficient for indices derived from UAV 
imagery versus SPAD 

 
 

4. CONCLUSION 

The results of this study indicate that the conventional colour 
digital camera could be employed for fast and accurate, non-
destructive measurement and determination of the status of N 
and chlorophyll content in rice plant.  
This study revealed that a close association between new 
developed index (IPCA) and chlorophyll meter values, which 
provides another index for determining the chlorophyll and N 
content in the leaves of rice plant in paddy fields at various 
growth stages.  
Radio controlled aerial vehicle based on the LARS system was 
used to acquire image using a commercial compact digital 
camera in visible bands and Tetracam agriculture digital camera 
in visible-NIR bands over a rice canopy at the altitude to 100m 
to estimate chlorophyll content. Results of this study indicated 
that the LARS platform could be a promising replacement for 
satellite and airborne platforms for estimating N and chlorophyll 
content. The relationship between the most estimated indices 
and SPAD values indicated that LARS platform can be applied 
for estimating N and chlorophyll content during mid-season in 
paddy fields. A low cost LARS system would be well suited for 
high spatial and temporal resolution images and data analysis 
for proper assessment of rice growth. Finally, this study could 
be extended further for different rice varieties along with other 
key nutrients such as P and K at critical growth stages to 
improve final yield in rice cultivation.   
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