Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

Towards a Resilient Intelligent Automation System

Segev Shlomov, Sami Marreed, Avi Yaeli
IBM Research
segev.shlomov1 @ibm.com, sami.marreed @ibm.com, aviy @il.ibm.com

Abstract

Intelligent Process Automation (IPA) solutions
must adapt to changes in user interfaces au-
tonomously, without manual intervention. Ad-
dressing this critical challenge and aiming to ad-
vance the state-of-the-art, last year we introduced
the IPA Challenge competition at IJCAI 2023. This
demo paper presents IDA - our novel UI automation
solution, developed to tackle complex resiliency is-
sues. Leveraging the capabilities of large language
models and employing grounded instructions, our
system demonstrates a significant advancement to-
wards resilient IPA. We provide an overview of the
IPA Challenge, detail the architecture of our sys-
tem, and illustrate its effectiveness in overcoming
the resiliency challenges. A link to the demo video
can be found at: https://youtu.be/G5nI3V9Umjc

1 Introduction

Web Automation primarily involves the automatic control of
web browsers to perform repetitive tasks such as data entry,
content scraping, and interaction with web applications [Sug-
iura and Koseki, 1998; Little et al., 2007; Leshed et al., 2008;
Le and Gulwani, 2014]. Early web automation tools were
primarily developer-centric, requiring a good understanding
of web technologies such as HTML, CSS, and JavaScript.

More recently, Ul Automation has been evolving into an
important solution for non-technical users overwhelmed with
repetitive and ad-hoc tasks across enterprise digital platforms.
Beyond just streamlining existing work, UI Automation plays
a key role in unlocking the value of digital workers and trans-
forming how businesses operate. Given recent advancements
in Large Language Models (LLMs), could they potentially
overcome the technical challenges and simplify no-code tools
to better suit the skills of non-technical users?

Despite these recent advancements, commercial Intelligent
Process Automation (IPA) solutions, including UIPAth [Tri-
pathi, 2018], Automation Anywhere [Automation Anywhere,
20231, Microsoft Power Automate [Guilmette, 2020], and
IBM RPA [IBM, 2022], encounter challenges in achiev-
ing autonomous resilience, particularly in adapting to dy-
namic UI implementations or layouts. While recent gener-
ative Al-based assistants, such as ChatGPT [OpenAl, 2024]

8797

and Adept [Fuyu-Heavy, 2024], and LMM-based web agents
[Zheng et al., 2024a; Wang et al., 2024; He et al., 2024,
Koh et al., 2024], offer promising approaches by dynami-
cally adjusting their automation strategies in response to Ul
changes, they often fall short in accurately grounding their ac-
tions for effective Ul interaction [Zheng et al., 2024b]. These
fundamental issues prevent the adoption of automation so-
lutions by enterprises, limiting the fulfillment of a broader
range of user needs [Schwartz et al., 2023].

1.1 The IPA Challenge Competition

The IPA Challenge Competition, jointly organized by indus-
try and academia at IJCAI 2023, focused on enhancing the
resiliency of IPA through Al. It required participants to de-
velop solutions for automating Ul tasks adaptable to changing
conditions, a crucial aspect of robust IPA systems. Details of
the competition can be found at http://iparesiliency-ijcai23.
github.io/. Participants were tasked with creating an Al bot
to execute four progressively challenging automation tasks,
based on user data from an Excel spreadsheet

Task 1 - Beginner involved form-filling with data that
changes position and labels (e.g., the input “Role in com-
pany”’ might be changed to “Job description™) after each sub-
mission, testing the bot’s semantic understanding of form
fields. Task 2 - Advanced extended Task 1’s complexity
with variably positioned form labels and changes in the
DOM architecture of the HTML (e.g., the label of the in-
put “Manager” will be changed to “Supervisor” and will be-
come a placeholder), challenging the bot to navigate structure
changes. Task 3 - Pro required user lookup and form-filling
for “Add” or “Remove” actions, with form elements and la-
bels changing randomly, necessitating advanced adaptation
techniques. Task 4 - Pro Max extended Task 3’s complexity
by introducing a “Reason” field with dynamically changing
values and implementations.

Overall, eight teams participated in the challenge utilizing
a mix of established IPA tools and custom Al technologies.
Only two teams could navigate through the beginner and ad-
vanced tasks. The Pro, and Pro-max tasks, requiring nuanced
UI understanding and element disambiguation, remained un-
completed by all, underscoring the existing gaps in IPA capa-
bilities. Consequently, the challenge has been opened to the
public, aiming to serve as a resilience benchmark and spur
further innovation in the field.

https://youtu.be/G5nI3V9Umjc
http://iparesiliency-ijcai23.github.io/
http://iparesiliency-ijcai23.github.io/

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

2 IDA - A Resilient IPA System

We introduce IDA (Intelligent Digital Apprentice) - an inno-
vative no-code UI automation system for business users that
successfully passes all the IPA challenges. While IDA in-
cludes many features to enable business users to teach it to
perform UI automation, in this demo paper we focus mostly
on the runtime components that enable IDA to be resilient
to changes in the UL IDA can perform automation flows by
following instructions in natural language (Figure 1). Every
instruction includes an action type, reference name of the Ul
element, and optional value parameter. IDA can be triggered
to perform the automation on each row of an Excel file and
leverage data in Excel as input parameters to the automation
flow. In the IPA challenge each row corresponds to a user that
needs to be added or updated in a system, and IDA needs to
dynamically map column headers of the Excel to Ul input el-
ements which constantly change their names and underlying
implementation. In the following subsections we describe the
key algorithms that enable IDA to execute automation flows
in a robust and resilient manner.

poc 1]
¢ ipachallenge «
ProTask £ Finish
Type into value
Click on
Copy
nd /o 'Does the search result has zero records?' =
Condtion on)
Ifyes
1. Typeinto value
2. Typeinto value [+ First |
3. Typeinto value
Job_c
4. Typeinto value il
5. Typeinto value [manager|
6. Typeinto value [* Level |

=

. Typeinto value
Cont:

8. Clickon
Ifno

1. Typeinto value
2. Typeinto value

[Fist pam]

2 Tunaintn

Figure 1: The instructions flow. The fourth step from above is the
semantic state UI understanding and the fifth step is the condition
based on the result of the state.

2.1 Grounded Element Selection

To automate natural language-based instructions, IDA must
understand the Ul semantically. For every UI element, IDA
needs to understand its type and name (based on visible text).
IDA employs several LLM-based pipelines which enables it
to ground the instructions to semantic elements that exist in
the application. The main steps of the algorithms are:

Step 1 - Discovering new heuristics for detecting Ul el-
ements. IDA uses heuristic rules to detect Ul element types

8798

on the screen. For robustness of the solution, IDA uses LLMs
to keep learning about new UI frameworks and implementa-
tions and keep its heuristics up to date for complete UI detec-
tion coverage. Given a snapshot of HTML from the DOM,
the system first prompts an LLM with an HTML snippet of
the current Ul, and asks it to suggest several HTML heuristics
in order to best collect UI elements. This includes identify-
ing buttons, links, inputs, and semantic states of UI elements.
The output of this step is a JSON file with the heuristics which
is later will be used to extract all the elements. As the HTML
DOM is super complex, the motivation behind this step is to
use the power and knowledge of LLMs in HTML and web
framework specifications.

Element Collection Prompt

Figure 2: Heuristics construction for elements collection. The
prompt is enriched with few-shot examples based on common el-
ement collection heuristics

Step 2 - Semantic UI understanding. In this step, the
system applies the updated HTML heuristics to the current
page and identifies all the candidate UI elements and their
corresponding names. IDA uses CSS selectors to query the
DOM (and the Shadow-DOM) based on expanded and re-
fined HTML specification heuristics presented in Figure 2. To
determine naming, it combines elements with their near-by-
labels using reference attributes and the element’s positions.
This is done using both pixel-wise proximity algorithm and
DOM-based distance. Finlay, the system constructs elements
hierarchy such as lists, groups, and forms. For example, our
system knows that some inputs are part of the “Add form”
while the other belongs to the “Remove form”. The output
of this step is a full textual (and visual) representation of the
current browser content with a unique name for each element.

&ove User
Linpu |

@gierm o oo
s = \
i'ms , Em [= m‘
‘ m mm mm mm
img* B e

Figure 3: Semantic page understanding with hierarchy visual output

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

Step 3 - Instruction to Ul element grounding. In this
step, IDA performs UI element grounding by matching the
referenced element in the instruction to the list of Ul elements
performed by the Semantic UI Understanding step. IDA first
filters all the UI elements that are not relevant to the instruc-
tion by using a two-step hierarchy semantic similarity. That
is, it compares the cosine similarity score between the embed-
dings on both the group/form level and then on the elements
level itself. In real-world web pages, when the number of
elements on the screen can be huge, this is a super crucial
step. Next, it prompts an LLM to match the instruction to
the list of elements. The LLM task is to choose the right el-
ement ID to perform the action. Once grounded, the system
then executes the action on the chosen UI element. The us-
age of multiple-step semantic meaning and an LLM approach
enables the system to perform robustly.

Browser content Element matching prompt

Task
description

Attention on
relevant
elements

Few shot
examples 4

NL instruction:
Type into the Name

input, under the Add
form, the value John

Figure 4: Grounding Element via LLM following a multiple stage
semantic similarity

2.2 Detection of Semantic Element State

In some cases, detecting the element type and name is not
enough and IDA must detect complex UI elements and their
internal states. For example in more complex semantic Ul el-
ements such as search results tables or attachments, IDA em-
ploys an innovative approach to recognize the elements, their
names, and their state at a specific state within the automation
flow. IDA includes a definition of possible semantic objects
and states (e.g., a search result has “one record” or “multiple
records” state, whereas file attachment may be “present” or
“absent”) and uses an LLM to parse HTML snippets and de-
tect the semantic objects and their current states. The LLM
task is also used to generate a user-friendly name for the se-
mantic object, as well as to generate a JavaScript code that
can evaluate the state of the object at runtime. As presented
in the following task prompt (Figure 5) and response from
the LLM (Figure 6), the LLM is able to detect the seman-
tic element type (table), its user-friendly name (“Companies
table”), and its semantic state (‘“has multiple records”).

In the context of full automation flow, IDA has the ability
to perform semantic action on these Ul elements and apply a
condition on the answer, resulting in different behavior of the
system. Currently, this feature was not tested for resiliency
as the CSS selector of “0 records found” was not changed in
the challenge. Future work will have to tackle these types of
issues.

8799

As a helpful assistant, Your task is for a given HIML Element to identify its functional name, assign its
object type and semantic state, and, for the assigned semantic state, generate a javascript code that
evaluates the state

Semantic states knowledge:
type: file.
states: file exists, file doesn’t exist Object

type: table.
states: table has one record, table has multiple records, table has no records.
Input HTML:
<table ><tbody><tr><th>Company</th><th>Contact </th><th>Country </th></tr ><tr><td>Ernst Handel</td><td>
Roland Mendel</td><td>Austria </td></tr><tr><td>Island Trading</td><td>Helen Bennett</td><td>UK</td></
tr><tr><td>Laughing Bacchus Winecellars </td><td>Yoshi Tannamuri</td><td>Canada</td></tr><tr><td>
Magazzini Alimentari Riuniti</td><td>Giovanni Rovelli </td><td>Italy </td></tr></tbody></table>
Answer:
Functional name: Companies table
Matching object type: table
Semantic state: table has multiple records.
Explanation: the current table HIML has 4 rows, meaning that the matching semantic state is that the
table has multiple records.
Javascript expression:

function checkIfTableHasMultipleRecords () {
try {
roturn document. querySelector (*table thody’).querySelectorAll("tr’) . length > 1; }
catch (error) {
// In case of an error (e.g., table or tbody not found),
return false return false;

B

Input HTML:
{{INPUT}}

Figure 5: Detection of Semantic Element State - 1-shot example: An
HTML element constitutes a task input. The task output consists of
textual information on the HTML element and a Javascript function.

Semantic states knowledge:
type: file.
states: file exists, file doesn’t exist Object.

Input HTML:
<div class="oxd—grid—item oxd—grid—item

gutters” data—v—c93bdbf3="" data—v—0da39c26=""><! ><div
1 <div class="oxd-input—group oxd—input—field —bottom
<div cla xd—input—group..label ~wrapper” data—v—957

d 5 No file selected </div><i
xd—icon bi-upload oxd-file —input—icon” data—v—bddebfba="" data—v—1b0f05a0=""></i></div></div
><l——></div><p class="oxd—text oxd—text—p orangehrm—input—hint” data—v-7b563373="" data—v-—2d6a0de6
=">Accepts .docx, .doc, .odt, .pdf, .rtf, .txt up to IMB</p></div></div>
Answer:
Functional name: File upload input
Matching object type: file
Semantic state: file doesn’t exist
Explanation: The current HIML code represents a file upload input, and the semantic state is that no
file is currently selected.
Javascript expression:

function checkIfFileDoesntExist () {
try {
return document. querySelector (. oxd—file —input—div’) .innerText = 'No file selected *; }
cateh (error) {
// In case of an error (e.g., file input not found),
return false;

Figure 6: Detection of Semantic Element State - LLM response for
a File input UI element: The LLM determines the semantic state of
“file doesn’t exist” and the code required to compute this state

3 Discussion

IDA stands out from state-of-the-art systems through its inte-
gration of LLMs for robust semantic understanding and dy-
namic element matching via grounding instructions to se-
mantic Ul elements. This enables IDA to handle complex
resiliency issues and surpass competitors in the IPA Chal-
lenge. Beyond the IPA challenge, we have put IDA to the test
in a wide range of additional real-world applications across
diverse platforms such as SAP and Salesforce, where IDA
demonstrated exceptional generalization without the need for
extensive reconfiguration. This pivotal capability may mark
a new era towards a more resilient and trustworthy IPA as
well as set new adaptability benchmarks. Despite its innova-
tive approach, IDA faces limitations in scenarios with com-
plex or ambiguous UI elements, where reliance on seman-
tic similarity may introduce inaccuracies. This points to the
need for further research to improve semantic analysis and
element matching. The IPA Challenge, serving as an open
benchmark, underscores the importance of resilient automa-
tion solutions. IDA’s performance encourages the pursuit of
new benchmarks in the field, driving innovation and research
toward more adaptive and robust IPA solutions.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Demonstrations Track

References

[Automation Anywhere, 2023] Automation
www.automationanywhere.com, 2023.

[Fuyu-Heavy, 2024] Adept. Fuyu-Heavy.
adept.ai/, 2024.

[Guilmette, 20201 Aaron Guilmette. Workflow Automation
with Microsoft Power Automate: Achieve digital transfor-

mation through business automation with minimal coding.
Packt Publishing Ltd, 2020.

[He er al., 2024] Hongliang He, Wenlin Yao, Kaixin Ma,
Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end
web agent with large multimodal models. arXiv preprint
arXiv:2401.13919, 2024.

(IBM, 2022] IBM. Ibm robotic process automation.
www.ibm.com/products/robotic-process-automation,
2022.

[Koh et al., 2024] Jing Yu Koh, Robert Lo, Lawrence Jang,
Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Gra-
ham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and
Daniel Fried. Visualwebarena: Evaluating multimodal

agents on realistic visual web tasks. arXiv preprint
arXiv:2401.13649, 2024.

[Le and Gulwani, 2014] Vu Le and Sumit Gulwani. Flashex-
tract: A framework for data extraction by examples.
In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,

pages 542-553, 2014.

[Leshed et al., 2008] Gilly Leshed, Eben M Haber, Tara
Matthews, and Tessa Lau. Coscripter: automating & shar-
ing how-to knowledge in the enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, pages 1719—-1728, 2008.

[Little er al., 2007] Greg Little, Tessa A Lau, Allen Cypher,
James Lin, Eben M Haber, and Eser Kandogan. Koala:
capture, share, automate, personalize business processes
on the web. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 943-946,
2007.

[OpenAl 2024] OpenAl (2024). ChatGPT (3.5) OpenAl
https://chat.openai.com, 2024.

Anywhere.

https://www.

[Schwartz et al., 2023] Sivan Schwartz, Avi Yaeli, and Segev
Shlomov. Enhancing trust in llm-based ai automation
agents: New considerations and future challenges, 2023.

[Sugiura and Koseki, 1998] Atsushi Sugiura and Yoshiyuki
Koseki. Internet scrapbook: automating web browsing
tasks by demonstration. In Proceedings of the 11th annual
ACM symposium on User interface software and technol-
0gy, pages 9—18, 1998.

[Tripathi, 2018] Alok Mani Tripathi. Learning Robotic Pro-
cess Automation: Create Software robots and automate
business processes with the leading RPA tool-UiPath.
Packt Publishing Ltd, 2018.

8800

[Wang er al., 2024] Junyang Wang, Haiyang Xu, Jiabo Ye,
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Ji-
tao Sang. Mobile-agent: Autonomous multi-modal mo-
bile device agent with visual perception. arXiv preprint
arXiv:2401.16158, 2024.

[Zheng et al., 2024a] Boyuan Zheng, Boyu Gou, Jihyung
Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist
web agent, if grounded. arXiv preprint arXiv:2401.01614,
2024.

[Zheng et al., 2024b] Boyuan Zheng, Boyu Gou, Jihyung
Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist
web agent, if grounded. arXiv preprint arXiv:2401.01614,
2024.

www.automationanywhere.com
https://www.adept.ai/
https://www.adept.ai/
www.ibm.com/products/robotic-process-automation
https://chat.openai.com

	Introduction
	The IPA Challenge Competition

	IDA - A Resilient IPA System
	Grounded Element Selection
	Detection of Semantic Element State

	Discussion

