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Abstract

This paper presents a comprehensive survey of
Medical Neural Architecture Search (MedNAS), a
burgeoning field at the confluence of deep learn-
ing and medical imaging. With the increasing
prevalence of FDA-approved medical deep learning
models, MedNAS emerges as a key area in lever-
aging computational innovations for healthcare ad-
vancements. Our survey examines the paradigm
shift introduced by Neural Architecture Search
(NAS), which automates neural network design, re-
placing traditional, manual designs. We explore the
unique search spaces tailored for medical tasks on
different types of data from images to EEG, the
methodologies of MedNAS, and their impact on
medical applications.

1 Introduction
The rapidly evolving field of medical deep learning (DL) ap-
plications has garnered significant interest, evidenced by nu-
merous models achieving FDA approval [Benjamens et al.,
2020]. This surge in development and regulatory endorse-
ment underscores the critical role of advanced computational
techniques in transforming healthcare. Among these, Medi-
cal Neural Architecture Search (MedNAS) emerges as a piv-
otal area, bridging the gap between state-of-the-art machine
learning methodologies and the intricate demands of medical
data analysis. Figure 1 shows the increasing number of pa-
pers targeting automatic deep learning architecture design for
medical tasks.

Neural Architecture Search (NAS) [Elsken et al., 2019], a
cornerstone in this evolution, signifies a transformative shift
in the realm of DL. It marks the transition from the tradi-
tional, expertise-driven, and often heuristic approach to the
design of neural network architectures to a more system-
atic and algorithm-driven process. NAS harnesses sophis-
ticated algorithms to autonomously conceive potential net-
work architectures, with an emphasis on optimizing perfor-
mance metrics and computational efficiency. Several opti-
mization algorithms are used to explore different architec-
ture search spaces, among them evolutionary algorithms and
gradient-based approaches are predominant. These strategies

Figure 1: MedNAS statistics and growth

involve approximating the time-expensive performance mea-
surements, using surrogate models and weight sharing. For
medical tasks, applying NAS involves: 1 defining a specific
search space. The search space depends on the targeted tasks
and input modality. For segmentation tasks, it is generally in-
spired by the U-Net [Weng et al., 2019a] architecture. 2 care-
fully choosing the objectives. While in conventional NAS,
objectives such as fairness, interpretability, and certainty are
overlooked, in medical settings those become critical. 3 im-
plementing a search strategy and an evaluation methodology.
The evaluation methodology is the bottleneck component of
conventional NAS. Given that MedNAS is multi-objective by
nature, this component is even more crucial. Finding a fast
yet accurate methodology to approximate the different objec-
tives is the main differentiation between the multiple Med-
NAS frameworks. The search strategy usually depends on
the evaluation methodology. If the search space is defined as
a supernetwork to allow the use of weight sharing, a gradient-
optimization strategy is used. If instead a surrogate model is
trained, or a zero-cost metric is used a proxy, evolutionary al-
gorithm or bayesian optimization are used. A large search
space may require a combination of gradient-optimization
and evolutionary to speed up the exploration.

In this survey, we explain the details of each step to build
a MedNAS framework. We provide a comprehensive anal-
ysis of how the unique characteristics of medical data and
the stringent requirements of healthcare applications influ-
ence the design of neural architectures. This includes a deep
dive into the nuances of defining search spaces tailored to spe-
cific medical tasks, such as diagnostic imaging, genomics, or
patient data analysis. We highlight how each MedNAS ob-
jective can be measured, and how it can be approximated.
Moreover, we explore the intricacies of implementing effec-
tive search strategies and evaluation methodologies in Med-
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Figure 2: Common medical data modalities.

NAS. Given the multi-objective nature of medical tasks and
the computational constraints inherent in healthcare applica-
tions, we examine how different frameworks approach the
challenge of balancing speed, accuracy, and complexity. Fi-
nally, this survey identifies gaps in current research and pro-
poses potential future directions for MedNAS. We discuss
emerging trends, such as the integration of federated learning
for privacy-preserving MedNAS, and the exploration of more
efficient and scalable NAS techniques suited for real-world
medical applications.

2 Existing Surveys

Numerous surveys have thoroughly explored the realms of
deep learning in medical applications [Kumar et al., 2023]
and Neural Architecture Search (NAS) [Elsken et al., 2019]
separately, each contributing valuable insights into their re-
spective fields.

However, the specialized intersection of NAS within med-
ical applications, known as Medical Neural Architecture
Search (MedNAS), represents a nuanced and emerging field
that has not been as comprehensively surveyed. This book’s
chapter [Vo-Ho et al., 2023] highlight some of the work done
on NAS for medical image segmentation. Our survey aims
to fill this gap by providing a detailed exploration of Med-
NAS. We endeavor to connect the dots between the general
principles of NAS and their tailored application in the com-
plex landscape of medical tasks. By offering a comprehen-
sive overview of the current state of MedNAS, discussing the
unique challenges it faces, and projecting future directions,
our work seeks to serve as a cornerstone for researchers and
practitioners in this intersection of technology and healthcare.

3 MedNAS Problem Formulation

NAS is conceptualized as a bi-level optimization problem,
defined in equation 1. At its core, NAS operates on two in-
terrelated levels: the upper level focuses on the architecture
search space, where optimal neural network architectures are
identified, and the lower level deals with the training of these
architectures to minimize a predefined loss function.

minimize
α

Lval(w
∗(α), α)

subject to w∗(α) = argmin
w

Ltrain(w,α),
(1)

In the context of MedNAS, this formulation takes on addi-
tional layers of complexity. The search space extends beyond
a mere assembly of architectural elements, as it is deeply in-
tertwined with the particularities of the the medical datasets.
These datasets often exhibit high variability and distinctive
features, adding layers of complexity to the search space.
This necessitates a search strategy that can navigate a space
rich in diverse architectural possibilities while maintaining a
focus on medical-specific performance metrics such as diag-
nostic accuracy and interpretability.

Furthermore, the training process at the lower level is con-
fronted with challenges inherent to medical data, including
limited sample sizes, imbalance in class distributions, and the
critical need for model robustness and generalization. The
optimization process in MedNAS must, therefore, be adept
at handling these nuances, often requiring bespoke strategies
that go beyond conventional NAS methodologies.

4 Medical Data Modalities
Medical datasets are characterized by a range of data modal-
ities, each presenting distinct features and requiring special-
ized handling. These modalities play critical roles in vari-
ous aspects of healthcare, such as diagnosis, patient care, and
treatment planning. Figure 2 show the different modalities
and datasets.

Diagnostic modalities are pivotal in identifying and un-
derstanding medical conditions, providing clear images of
internal body structures. Pathology slides, or microscopic
images, are used to diagnose various types of cancer and
other tissue abnormalities, with datasets like The Cancer
Genome Atlas (TCGA) [Tomczak et al., 2015] offering ex-
tensive histopathological data. The Nuclei dataset [Caicedo
et al., 2019] , extracted from TCGA, is commonly used
for breast cancer detection. The Medical Segmentation De-
cathlon (MSD) [Antonelli et al., 2022] is a ten datasets bench-
mark with CTs and MRIs to enable brain tumor, lung tumor,
and spleen segmentation. The NIH Chest X-rays [Wang et al.,
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Figure 3: Taxonomy of MedNAS strategies

2017] , used for pneumonia detection on chest X-rays. Ad-
ditionally, Ultrasound images, used in datasets such as DUS
Dataset [Cordts et al., 2016] , are vital for prenatal diagnos-
tics and examining internal organs. Electroencephalogram
(EEG) and electrocardiogram (ECG) are non-invasive tests
that record electrical activity datasets such as MIT-BIH Ar-
rhythmia Database [Moody and Mark, 2001].

For ongoing patient care, data from wearable sensors and
electronic health records (EHRs) are indispensable, offer-
ing continuous monitoring and comprehensive patient his-
tory, respectively. Wearable sensors, as in the PPG-DaLiA
dataset [Reiss et al., 2019] , track health metrics like heart rate
and physical activity, which are crucial for chronic disease
management. EHRs, exemplified by datasets like MIMIC-
III [Johnson et al., 2016] and i2b2, provide a holistic view
of patient history, treatments, and progress, facilitating ongo-
ing care and management in a text format. These datasets are
used to train language models that generate reports.

In treatment planning, genomics data is increasingly cru-
cial, enabling personalized medicine approaches based on in-
dividual genetic profiles. Datasets like the 1000 Genomes
Projectand Genome in a Bottle (GIAB) [Zook et al., 2019]
offer insights into genetic variations, aiding in the develop-
ment of targeted therapies. Notably, MRI not only serves a
key role in diagnosis, particularly for soft tissue conditions
but also aids significantly in planning treatments, especially
for surgeries and cancer therapies.

Given the plurality of datasets and modalities, there is a
necessity for an automated system that can design the best-
performing architecture. Selecting an appropriate architec-
ture for a given medical task is another layer of complexity.
The range of potential architectures is vast, from conventional
convolutional networks to more recent, intricate designs like
capsule networks or attention-based models. Each architec-
ture has its strengths and weaknesses, making the selection
process non-trivial. Additionally, pre-processing of medical
data plays a crucial role in model performance. Techniques
like normalization, augmentation, and feature extraction can
significantly impact the effectiveness of the chosen architec-
ture, necessitating careful consideration in the NAS process.

4.1 Taxonomy & Trends
The field of MedNAS has witnessed a significant rise in popu-
larity, which can be attributed to the growing adoption of DL
models in medical tasks. In figure 3, we provide a general
taxonomy of the methodology used in MedNAS.

First, multiple MedNAS works [Song et al., 2021; Wang
et al., 2024] use the same NAS flow, specifically those that
target tiny machine learning tasks such as arrhythmia detec-
tion [Moody and Mark, 2001]. The NAS flow, involves sam-
pling an architecture from the search space, evaluating that
architecture and based on the performance, efficiently sam-
pling the next architecture. For these tasks, real-time train-
ing is usually applied to obtain the evaluation metrics. These
tasks defines a large search space of small networks, which
are fast to evaluate. For large search spaces, methods to re-
duce the search space are used. The goal is to prune ar-
chitectures which are considered inefficient or less likely to
yield optimal performance. Techniques such as network mor-
phism, constraint-based search, or heuristic pruning are often
employed. These methods enable a more focused search by
eliminating architectures that do not meet predefined criteria.
For example, BiX-NAS [Wang et al., ] includes a differen-
tiable NAS to narrow down the search space, followed by a
novel progressive evolutionary search.

The most complex medical tasks are segmentation and de-
tection. These tasks are hindered by the large size of their
datasets and networks which makes training during the search
completely impractical. To mitigate this, MedNAS uses two-
level search strategies: the topology-level and the operator-
level. An operator, in this paper, refers to a block of lay-
ers, such as a residual block or a VGG block. In optimizing
the topology-level, the focus is on determining the optimal
number of operators and their interconnections while keeping
the individual operator configurations constant. On the other
hand, optimizing the operator-level involves fine-tuning the
configuration of each operator, assuming the overall number
of operators and their connections are predefined. Strategies
can then choose to optimize each level independently, which
gives rise to the two-phase search class, or jointly optimiz-
ing the topology and operator levels by sampling from each
search space at the same time to build the architecture.

C2FNAS [Yu et al., 2020] searches for both the topology-
and operator- levels through a two-phase optimization prob-
lem for different segmentation tasks. Similarly, Thrifty
NAS [Chen et al., 2022] involves a two-phase optimization
where they re-engineered a U-Net-like backbone architec-
ture with dense connections, enabling feature map reuse and
consequently lowering the parameter count. At the operator
level, their focus shifts to crafting a operator structure search
space that selectively retains feature maps, thereby dimin-
ishing GPU memory usage. On the same tasks, EMONAS-
NET [Baldeon-Calisto and Lai-Yuen, 2021] proposed a si-
multaneous approach to solve the two optimization prob-
lems to speed up the search process. Other works, only fo-
cus on one search space. While fixing the topology, ENAS
U-Net [Gessert and Schlaefer, 2019] searches new operator
blocks. Contrary, Resource Optimized NAS [Bae et al., 2019]
focuses on the topology level only and uses a standard U-Net
block as an operator.

An optional but that appears critical in Medical settings,
is to explore and search for the best pre-processing strategy
along side the architecture. NN-Unet [Isensee et al., 2020]
offers a streamlined data pre-processing approach for medical
imaging. It standardizes dataset resolution through isotropic
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Figure 4: Medical imaging search space based on U-Net-like archi-
tecture. Each cell can be one of the blocks defined on top.

resampling to address varying voxel sizes in medical scans.
Each image is then normalized, generally by adjusting the
intensity values to a standard scale. They search for the ad-
equate data augmentation as well. NAS-PPG [Song et al.,
2021] includes a specific heuristic for data pre-processing ac-
cording to the sensory data types. RO-NAS [Bae et al., 2019]
includes the input images resolution in their search space.

5 Search Space
In this section, we detail the commonly used search space and
design techniques. As images modalities are the most com-
mon and most complex, we start with search spaces that tar-
get segmentation and detection tasks on CT, MRI or X-rays.
Most of these search spaces are based on the U-Net archi-
tecture. We then provide a detailed description of different
search spaces for other medical tasks including those dealing
with sensory data.

5.1 Medical Imaging Search Spaces
While recent works [Yu et al., 2020; Weng et al., 2019b;
Isensee et al., 2020] adhere to the U-Net-like architecture, it
is worth mentioning that some the early works such as MM-
NAS [Peng et al., 2020], uses a search space inspired from
NASNet [Zoph et al., 2018] with a sequence of normal and
reduction convolutional blocks. Enhanced MRI Reconstruc-
tion NAS (EMR-NAS) [Huang et al., 2020] creates a unique
search space, featuring eight operators sequentially tailored
for MRI reconstruction. However, these search spaces result
in suboptimal performance [Kim et al., 2019].
When considering a U-Net-like architecture, we define two
search spaces: the topology and operator levels.

Topology-level
Figure 4 illustrates the possible paths in a U-Net-like search
space. This architecture has a downsampling path, i.e., the
left side of the U-shape, and an upsampling path. The down-
sampling path reduces the feature map size to extract small
features. The upsampling enlarges back the feature maps.
This strategy is essential to detect tiny tumors and larger ones
in medical images. The search space implementation can be
either sequential [Yu et al., 2020; Baldeon-Calisto and Lai-
Yuen, 2021] or recursive [Weng et al., 2019b]. Recursive
implementation forces the upsampling path to have the same
number of downsampling operators. While it restricts the
search space, it makes up for efficient search.
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Figure 5: Convolution types used in MedNAS.

The same search space is used by several methodolo-
gies including, V-NAS [Zhu et al., 2019], Resource opti-
mized NAS [Bae et al., 2019], Efficient NAS U-Net (ENAS-
U-Net) [Gessert and Schlaefer, 2019], Quantum inspired
NAS (segQNAS) [Carlos et al., 2023] and Mixed Block
NAS [Bosma et al., ], NG-NAS [Qin et al., 2023]. How-
ever, they can differ in the allowed maximum depth and ad-
ditional nodes in both the encoder and decoder. For instance,
NG-NAS [Qin et al., 2023] uses a carefully designed skip
connections to avoid additional computational costs while.
Different types of skip connections have been exploited as
they improve accuracy, however, they increase the computa-
tional resources needed for the search space and many works
tried to overcome this issue [Gessert and Schlaefer, 2019;
Bae et al., 2019]. The types include either applying an
element-wise sum or a concatenation to merge the feature
maps while maintaining a basic U-shape backbone. This
method consciously avoids adding superfluous skip connec-
tions between nodes of varying resolutions, which, while
minimally impacting model performance, significantly esca-
lates computational costs and latency. Thrifty-NAS reimag-
ines the backbone architecture by integrating dense connec-
tions for effective feature map reuse and incorporates both
downsampling and upsampling operators within a densely
connected framework. Bix-NAS [Wang et al., ] stands out
with a modified multiscale bi-directional NAS on the back-
bone of Bio-Net.

Some works used unconventional backbone networks,
while still targeting the same tasks. NAS-DBN [Qiang et al.,
2020] design a search space of Deep Belief Networks (DBN).
They vary the number of layers and the neuron counts in the
fully-connected architecture. The NAS framework for adver-
sarial medical image segmentation, as presented in [Dong et
al., ], marks a significant innovation by incorporating Gener-
ative Adversarial Networks (GANs) as its backbone. This
framework automates the design of discriminator architec-
tures, essential to GANs, using NAS.

Operation-level
The operators used in the topology are searched at this level.
Generally, the same operator is used in the whole architecture,
modifying only the output channel number to extract more
features.

Due to volumetric nature of medical imaging modalities,
We distinguish different types of convolutions such as: di-
lated, depth, depthwise separable, 2D, 3D, and P3D convolu-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Survey Track

7935



tions. 2D convolutions are suitable for processing 2D images,
while 3D convolutions are used for volumetric data, such as
the slices of different organ regions in MRIs. Pseudo-3D
(P3D) convolutions, a variant of 3D convolutions, can also
be applied to such volumetric data for efficient and effective
analysis. Figure 5 illustrates the diversity of operators in the
search spaces over the years and modalities.

Figure 5 shows an increasing number of search spaces us-
ing 3D and pseudo 3D convolutions for CT and MRI datasets.
Although 3D convolutions achieve higher performance with
MRI and CT datasets, their training cost is expensive, which
hinders the search.

Figure 6 shows the types of operators used in MedNAS
over the years. A combination of multiple common blocks
are used including VGGBlock, Basic residual blocks, Bottle-
neck blocks, Inception and Mobilenet blocks. The bottleneck
block are the most used type. This block is the originally
used one in U-Net architecture, which makes it practical. Re-
cently, the use of attention-based blocks such as SwinBlock
in Swin U-Net [Cao et al., ] have succeded in outperforming
end-to-end convolution models. However, there are no med-
NAS methodology yet with an attention-based search space.

MB-NAS [Bosma et al., ] stands out as it defines the search
space with a variety of different pre-defined blocks, including
VGG, Residual, Dense, and Inception blocks, to streamline
the architecture design process.

In addition to the block type, other hyperparameters are
also tuned such as kernel size, stride, and padding.

5.2 Search Space for Sensory Data
Sensory datasets include EEG, ECG, and wearable device
sensors such as Photoplethysmogram (PPG). These data are
usually time series and require different architectural back-
bones for the search spaces.

For EEG and ECG data, MedNAS search spaces are rep-
resented with small Convnets. [Li et al., 2023a]’s search
space is a sequence of reduction and normal convolutions, in
which different hyperparameters, including kernel size, are
searched. TNAS [Li et al., 2023b] considered incorporating
transformers and proposed a multi-objective NAS framework
that finds the optimal number of heads and the number of hid-
den layers to maximize accuracy and minimize the number of
parameters.

[Wang et al., 2022] have built two search spaces for a CNN
baseline: spectral and temporal. Both of them are defined
with a convolutional neural network for which convolution
and its hyperparameters are searched.

AutoEER [Wu et al., 2023] extends the definition of the
search space with a wider set of operators including convolu-
tion, transformer, 2D convolution, Local-Global-Graph Net-
work (LGGNet), Channel Wise Attention (CWA) in addition
to a skip connection and a zero operation.

Wearable devices have also seen significant advancements
in the application of MedNAS. PPG sensors are generally
used for pulse rate estimation. These tasks are fast and
practical for NAS. NAS-PPG [Song et al., 2021] defines a
search space based on convolution, long-short-term memory
(LSTM), and fully-connected layers.
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6 Search Algorithms and Strategies
Diverse search algorithms have been used for the different
MedNas techniques. In this section, we briefly describe these
methodologies.

Evolutionary Algorithm mimic the process of natural se-
lection by iteratively generating, evaluating, and selecting
candidate solutions based on their performance or ’fitness’.
These algorithms typically start with a randomly generated
population of solutions, and over successive generations, they
apply operations akin to genetic crossover and mutation to
evolve increasingly effective solutions to a given problem.
C2FNAS [Yu et al., 2020], for example, uses a two phase
evolutionary algorithm with the dice score as a fitness for seg-
mentation tasks.

Gradient-based optimization uses the supernetwork
methodogy inspired by DARTS [Liu et al., 2018]. This
approach involves training a large network that encompasses
many different sub-network architectures, allowing the
optimization process to explore a vast search space. By
backpropagating gradients through this supernetwork, the
method efficiently identifies the most effective architecture,
balancing performance and computational efficiency. BiX-
NAS [Wang et al., ] and MixSearch [Liu et al., 2021] use
these supernetworks for both topology and operator-level
exploration. Although training these supernetworks can be
resource-intensive, it is typically a one-time process, after
which the optimized network can be deployed for various
applications without the need for further extensive training.
However, this is true for each targeted task.

Reinforcement Learning is used as a generator of efficient
architectures by framing the architecture design process as
a sequential decision-making problem. In this approach, an
agent, typically a controller network, iteratively proposes ar-
chitectures, which are then evaluated for their performance
on a given task. The feedback from this evaluation, often in
the form of accuracy or other performance metrics, is used
as a reward signal to train the controller using reinforcement
learning algorithms. RO-NAS [Bae et al., 2019] uses this
strategy and defines a large RNN controller trained to predict
the activation type, pooling type, convolution delated rate and
other hyperparameters.

Bayesian Optimization This methodology leverages
Bayesian inferential statistics to efficiently explore neural
network architectures for medical use, integrating prior
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Category Example tasks Common metrics

Classification
Disease diagnosis from images
Skin lesion classification
Cell type classification

Accuracy
Precision
Recall
F1 Score
AUC-ROC

Detection
Tumor detection in radiology images
Polyp detection in endoscopy
Lesion detection in dermatology images

IoU
mAP
Recall
Precision

Segmentation
Organ segmentation in CT/MRI
Lesion segmentation in radiology images
Cell segmentation in microscopy images

Dice Coefficient
Jaccard Index (IoU)
Pixel Accuracy
Sensitivity
Specificity

Sequence Prediction
ECG signal classification
EEG signal analysis
Time-series prediction in medical data

Accuracy
Precision
Recall
F1 Score
PRC

Regression
Estimating organ/tumor volume
Predicting patient’s length of stay
Age estimation from medical images

MSE
MAE
RMSE

Anomaly Detection
Identifying abnormal radiology images
Detecting irregular heartbeats in ECG
Unusual patterns in medical time-series data

Sensitivity
Specificity
AUC-ROC
F1 Score

NLP
Information extraction from clinical notes
Automated report generation
Sentiment analysis in patient feedback

Accuracy
Precision
Recall
F1 Score
BLEU score

Table 1: Medical deep learning tasks and their task-performance
metrics

knowledge and empirical data for iterative refinement.
This approach is advantageous in medical contexts with
limited or sensitive data. [Odema et al., 2021] employs
this strategy for multi-objective hyperparameter search in
binary convolutions, aiming at energy-efficient myocardial
infarction detection on wearable devices.

7 Multi-Objective MedNAS
MedNAS is inherently multi-faceted, aiming not just to op-
timize a single objective but multiple, often conflicting, ob-
jectives. This section delves into the various objectives of
MedNAS, emphasizing their definitions and significance in
the medical domain.

Task-specific Performance: The foremost objective in
MedNAS is performance, defined as the model’s ability to
correctly interpret and classify medical data. In clinical set-
tings, high accuracy is vital, as misdiagnosis or incorrect pre-
dictions can have serious implications. MedNAS strives to
develop architectures that yield the highest possible accuracy.
The task-specific performance may differ from one task to
another. Table 1 summarizes the performance metrics used
in common medical deep learning applications. Most Med-
NAS strategies, fully train a supernetwork [Yu et al., 2020;
Isensee et al., 2020; Wang et al., ] or generally the sampled
networks [Song et al., 2021; Li et al., 2023b]. Currently,
this makes MedNAS strategies extremely time-consuming. In
NAS, performance estimators are used to overcome this chal-
lenge. However, these methods compromise optimality. A
MedNAS method [Wang et al., 2024] uses the FLOPs as a
metric for performance, assuming larger models always yield
better result. This significantly speed up the search process at
the expense of performance. Note that fairness, in this con-
text, because of its high importance, is included with the task-
specific performance.

MRI

CT

Figure 7: Cross-datasets architecture ranking correlation.

Multi-tasking: The ability to use a single architecture for
multiple datasets and task is especially appealing for medical
settings. In a single modality, the input data are highly simi-
lar. Figure 7 shows a small experiments in which we extract
1000 architectures and compare their ranking on different
tasks using the kendal tau correlation. Datasets are extracted
from MSD [Antonelli et al., 2022] and the search space is rep-
resented with U-Net-like architecture akin to C2FNAS [Yu
et al., 2020]. We see the same architecture can be used for
multiple datasets, which can significantly enhance and speed
MedNAS frameworks. Besides, given the low-memory de-
vices used by radiologist all over the world, deploying a sin-
gle architecture, would greatly improve the medical tools.

Interpretability: is the degree to which a human can un-
derstand the cause of a decision made by the model. In med-
ical settings, interpretability is vital for gaining clinicians’
trust and for validating the model’s decisions. It is essential
that these AI systems provide insights that are comprehen-
sible to medical professionals. While qualitative, it can be
approached through feature importance scores and visualiza-
tion techniques such as Local Interpretable Model-Agnostic
Explanations (LIME) and shapely values (SHAP). [Zhang et
al., 2023] uses SHAP values to find interpretable convolution
networks to understand enzymatic reactions.

Robustness: Robustness in MedNAS refers to the model’s
ability to maintain performance despite variations in input
data, such as noise or artifacts typical in medical images. En-
suring robustness is crucial, as real-world medical data often
come with such imperfections. [Dong et al., ] uses an adver-
sarial training during the search to find robust architecture,
however, this strategy is extremely time-consuming and more
efficient methods are interesting future works.

Uncertainty: Another important metric in medical appli-
cations is uncertainty. Particularly in medical diagnostics
where decisions must be made with confidence. Metrics to
measure uncertainty include: confidence intervals for predic-
tions, entropy-based measures for classification uncertainty,
and bayesian approaches for quantifying model uncertainty.
NAS-DBN [Qiang et al., 2020] focuses on bayesian neural
networks to find an architecture that is performant and confi-
dent.

Another important objective includes hardware efficiency.
Specifically, for on-going patient care using wearable re-
source constrained devices. The following section is dedi-
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Figure 8: Analog In-Memory Computing Concept

cated on hardware-aware MedNAS.

8 Hardware-Aware MedNAS
In the medical domain, where real-time processing and porta-
bility can be crucial, designing DL architectures need to con-
sider hardware efficiency. This includes considerations for
memory footprint, computational power, energy consump-
tion, and latency.

8.1 Edge Computing Potential
The reality in many healthcare environments, particularly in
hospitals with limited budgets, is that the availability of com-
putationally intensive resources is often constrained. This
limitation necessitates the development of DL models that are
not overly reliant on high-resource environments. Besides,
wearable devices with constrained resources have become
an integral part of the on-going patient care. This is where
Hardware-aware Medical Neural Architecture Search (Med-
NAS) plays a crucial role. It aims to tailor neural network
architectures to achieve not just high performance in medical
tasks but also optimal compatibility with diverse hardware
configurations.

RO-NAS [Zeng et al., 2020] searched for a real-time 3D
cardiac cine MRI segmentation on a supernetwork search
space. They included the latency in their loss function as a
regularizer. These task are extremely important for cardiac
intervention assistance.

In contrast, [Odema et al., 2021] searches for an energy-
efficient binary convolutional network using bayesian opti-
mization. They target myocardial infarction detection on low-
power wearable devices. Each sampled architecture is de-
ployed on a SmartCardia INYU and the energy consumption
is measured.

8.2 In-Memory Computing Potential
Analog In-memory computing (AIMC) [Sebastian et al.,
2020], a paradigm shift in computational architecture, holds
substantial promise for enhancing the capabilities of Med-
NAS. AIMC addresses the shortcomings of traditional Von-
Neumann computing in handling the increasing volume of
medical data and the demand for real-time analysis. As il-
lustrated in Figure 8, an AIMC chip consists of crossbar ar-
rays, each representing a neural network layer. Neural net-
work synaptic weights are stored as charge or conductance
states in memory devices at crosspoints, handling both pos-
itive and negative weights. Data is processed through these

layers in a single step, with input on the rows and output from
the columns, followed by a nonlinear neuron function at the
crossbar edge. In feed-forward networks like MLPs or CNNs,
each array interfaces with the subsequent layer’s array, while
in RNNs, the output feeds back into its own input. However,
the inherent noise and susceptibility to conductance drift in
these chips pose significant challenges to AIMC’s effective-
ness, particularly in maintaining model accuracy.

A study by [Hamzaoui et al., 2024], focused on AIMC’s
role in medical AI, specifically in brain tumor detection,
spleen segmentation, and nuclei identification, showed that
introducing noise could be a strategic advantage in AIMC,
showcasing its potential benefits in providing robust model
training, enhancing noise resilience, and improving predic-
tion certainty. Another key finding was that transformer mod-
els have greater noise tolerance compared to pyramidal al-
ternatives, ultimately contributing to more robust and cer-
tain predictions in healthcare settings. A novel closed-loop,
continuous-time AIMC-based resistive memory circuit has
shown significant promise for compressed sensing (CS) re-
covery [Wang et al., 2023], which shows the interest in these
types of hardware for medical settings.

9 Conclusion and Future Directions
NAS is crucial for advancing medical imaging through au-
tomated neural network design, yet it faces multiple chal-
lenges. The computational expense is substantial due to
the need for training and evaluating numerous architectures
on complex datasets. Issues with the generalizability of
MedNAS-designed architectures across varied medical imag-
ing data and patient populations also persist. The inherent
black-box nature of NAS hinders the incorporation of essen-
tial domain-specific knowledge, leading to a lack of inter-
pretability—a critical obstacle for clinical adoption. Addi-
tionally, the scarcity and diversity of medical imaging data
and data privacy concerns complicate NAS model training
and deployment. Effectively addressing these concerns re-
quires a tailored approach that considers the unique needs and
limitations of the medical imaging domain. Looking ahead,
future research in MedNAS should concentrate on develop-
ing more efficient algorithms, enhancing the generalizability
of NAS architectures, and integrating domain-specific knowl-
edge to improve interpretability. Key focuses also include
addressing deployment challenges by creating NAS frame-
works compliant with healthcare regulations and seamlessly
integrating the validation reporting required by FDA.
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