
Multi-objective Optimization-based Selection for Quality-Diversity
by Non-surrounded-dominated Sorting

Ren-Jian Wang1 , Ke Xue1 , Haopu Shang1 , Chao Qian1∗ , Haobo Fu2 and Qiang Fu2

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2Tencent AI Lab, Shenzhen, China

{wangrj, xuek, shanghp, qianc}@lamda.nju.edu.cn, {haobofu, leonfu}@tencent.com

Abstract
Quality-Diversity (QD) algorithms, a subset of evo-
lutionary algorithms, maintain an archive (i.e., a set
of solutions) and simulate the natural evolution pro-
cess through iterative selection and reproduction,
with the goal of generating a set of high-quality
and diverse solutions. Though having found many
successful applications in reinforcement learning,
QD algorithms often select the parent solutions
uniformly at random, which lacks selection pres-
sure and may limit the performance. Recent stud-
ies have treated each type of behavior of a solu-
tion as an objective, and selected the parent solu-
tions based on Multi-objective Optimization (MO),
which is a natural idea, but has not led to sat-
isfactory performance as expected. This paper
gives the reason for the first time, and then pro-
poses a new MO-based selection method by non-
surrounded-dominated sorting (NSS), which con-
siders all possible directions of the behaviors, and
thus can generate diverse solutions over the whole
behavior space. By combining NSS with the most
widespread QD algorithm, MAP-Elites, we per-
form experiments on synthetic functions and sev-
eral complex tasks (i.e., QDGym, robotic arm, and
Mario environment generation), showing that NSS
achieves better performance than not only other
MO-based selection methods but also state-of-the-
art selection methods in QD.

1 Introduction
Generating a set of high-quality and diverse solutions is im-
portant in a wide variety of scenarios, such as robotics [Cully
et al., 2015; Allard et al., 2022; Salehi et al., 2022], combina-
torial optimization [Do et al., 2022; Nikfarjam et al., 2022],
multi-agent coordination [Lupu et al., 2021; Xue et al., 2022;
Zhang et al., 2023; Yu et al., 2023], and reinforcement learn-
ing (RL) [Eysenbach et al., 2018; Parker-Holder et al., 2020;

∗This work was supported by the National Science Foundation
of China (62022039, 62276124), and the CCF-Tencent Open Re-
search Fund (CCF-Tencent RAGR20220110). Chao Qian is the cor-
responding author.

Chalumeau et al., 2023]. For example, it is difficult for one
single policy to adapt to a variety of situations when con-
trolling a multi-foot robot, while maintaining a set of diverse
policies (i.e., policies having different frequencies of using
each foot) can improve robustness, e.g., enabling the robot to
recover quickly from damage [Cully et al., 2015].

Evolutionary algorithms (EAs) [Bäck, 1996; Zhou et al.,
2019] are general-purpose heuristic optimization algorithms
that maintain a set of solutions, and simulate the natu-
ral evolution process by iterative reproduction and selec-
tion. Quality-Diversity (QD) algorithms [Cully et al., 2015;
Mouret and Clune, 2015; Cully and Demiris, 2018; Chatzi-
lygeroudis et al., 2021] are a specific type of EAs that aim
to return a set of high-quality and diverse solutions in a sin-
gle run. Given an objective function to be maximized and a
behavior descriptor vector function, QD algorithms attempt
to find a set of solutions that can cover the space of the be-
havior descriptor and have high objective values. Specifi-
cally, a QD algorithm maintains a set of solutions (called an
archive), and iteratively performs the following process: se-
lects a subset of parent solutions from the archive, then ap-
plies reproduction operators (e.g., crossover and mutation)
to generate offspring solutions, and finally uses these off-
spring solutions to update the archive. The excellent perfor-
mance of QD algorithms has been demonstrated in many RL
tasks, such as exploration [Ecoffet et al., 2021; Miao et al.,
2022], robust training [Kumar et al., 2020; Yuan et al., 2023a;
Yuan et al., 2023b], policy ensemble [Sheikh et al., 2022],
and environment generation [Bhatt et al., 2022].

The parent selection strategy and offspring reproduction
operator are critical to the performance of QD algorithms
[Cully and Demiris, 2018]. Many recent works have been
focusing on developing more efficient reproduction opera-
tors [Nilsson and Cully, 2021; Fontaine and Nikolaidis, 2021;
Tjanaka et al., 2022] to improve the sample efficiency, while
using uniform random selection to select the parent solutions
by default, which may, however, be inefficient due to the lack
of selection pressure.

Multi-objective Optimization (MO) [Deb, 2011] considers
the problems that optimize multiple conflicting objectives si-
multaneously, and the goal is to obtain a set of Pareto optimal
solutions that can represent different trade-offs of the objec-
tives. Thus, it is natural to view different types of behaviors
as multiple objectives to optimize, and select the parent so-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4335

0

500

1000

1500

2000

2500
O

bj
ec

tiv
e

MOP1 MOP2

0.0 0.5 1.0
Behavior descriptor

0

500

1000

1500

2000

2500

O
bj

ec
tiv

e

MOP3

0.0 0.5 1.0
Behavior descriptor

NSS (ours)

Figure 1: Solutions selected by different MO-based methods (i.e.,
the previous MOP1–3 and our proposed NSS) in the QD Hopper
environment given the same archive. Selected solutions are marked
with “×” and corresponding colors. The x-axis represents the 1-
dimensional behavior descriptor value (i.e., the fraction of time the
single foot was touching the ground during an episode), and the y-
axis represents the objective function value (i.e., the agent’s forward
speed) of a solution.

lutions based on MO before reproducing offspring solutions
in QD [Shen et al., 2020; Villin et al., 2021]. However, MO-
based selection strategies have not shown satisfactory perfor-
mance as expected [Wang et al., 2022].

In this paper, we point out the reason of the ineffective-
ness of MO-based selection in QD for the first time. That
is, optimizing multiple behavior descriptor functions simul-
taneously can obtain a set of diverse solutions with different
preferences over behaviors, but actually only concentrates on
a certain area of the behavior space (e.g., maximizing two
behavior descriptor functions simultaneously will focus on
the upper right part of the behavior space); while the goal
of QD is to cover the whole behavior space. Figure 1 gives
an example illustration of applying MO-based selection to
the most popular QD algorithm, Multi-dimensional Archive
of Phenotypic Elites (MAP-Elites, ME) [Cully et al., 2015;
Mouret and Clune, 2015]. ME discretizes the behavior space
into M cells, each containing at most one solution, obtaining
its archive. The goal of ME is to maximize the sum of the ob-
jective values of all solutions in the archive, called QD-Score.
It can be clearly observed that the previous MO-based selec-
tion methods cannot cover the whole behavior space well, and
thus can hardly help maximize the QD-Score.

To address the above issue of MO-based selection, we pro-
pose surrounded dominance, a new concept for solution com-
parison in MO. Traditionally, a solution Pareto dominates an-
other one if it is not worse on all objectives and is better on
at least one objective; thus, the behavior descriptor functions
are optimized only in one direction. Now, surrounded domi-
nance is a relationship between a solution and a solution set:
a solution is surrounded dominated if for each possible direc-

tion of the behavior descriptor functions, there is a solution in
the set which Pareto dominates it. Thus, by Non-Surrounded-
dominated Sorting (NSS), the diverse solutions covering the
behavior space well can be selected (as shown in the last sub-
figure of Figure 1), which can help improve the QD-Score
efficiently. Note that the proposed NSS is a general selection
method, which can be used in various QD algorithms, e.g.,
ME [Mouret and Clune, 2015], PGA-ME [Nilsson and Cully,
2021], and OG-ME [Fontaine and Nikolaidis, 2021].

We conduct experiments on synthetic functions and pop-
ular benchmarks (i.e., QDGym [Nilsson and Cully, 2021;
Flageat et al., 2023], robotic arm [Cully et al., 2015;
Fontaine and Nikolaidis, 2021], and Mario environment gen-
eration [Bhatt et al., 2022]) to examine the performance of
NSS. As expected, the results show that NSS achieves better
performance (i.e., QD-Score) than the other MO-based selec-
tion methods [Shen et al., 2020; Villin et al., 2021]. Further-
more, it can perform better, even compared with the state-of-
the-art selection methods [Wang et al., 2022].

2 Background
2.1 Quality Diversity
QD algorithms aim to find a diverse set of high-quality so-
lutions of a problem [Cully and Demiris, 2018; Chatzilyger-
oudis et al., 2021]. Let X denote the solution space, and
S ⊆ Rk denote the k-dimensional descriptor space. Given an
objective (quality) function f : X → R to be maximized and
a behavior descriptor function m : X → S , the goal of QD
algorithms is to find solutions that span the k-dimensional de-
scriptor space S while maximizing the objective function f .

Take the most well-known QD algorithm, ME [Cully et al.,
2015; Mouret and Clune, 2015], as an example. It maintains
an archive by discretizing the descriptor space S into M cells
{Si}Mi=1 and storing at most one solution in each cell. ME
tries to fill in the cells with as high-quality solutions as possi-
ble. That is, the goal of ME can be formalized as maximizing
the QD-Score: ∑M

i=1
f(xi), (1)

where xi denotes the solution contained by the cell Si, i.e.,
m(xi) ∈ Si. Note that if a cell Si does not have a solution
xi, then f(xi) is defined as 0. Without loss of generality,
the objective value f(·) is assumed (or converted) to be non-
negative, to prevent solutions from decreasing the QD-Score.

The main procedure of QD algorithms is to iteratively se-
lect parent solutions from the archive, generate offspring so-
lutions by reproduction operators, and update the archive.
The selection method, a key component of QD algo-
rithms [Cully and Demiris, 2018], aims to address the follow-
ing question [Chatzilygeroudis et al., 2021]: Given the cur-
rent archive, how do we select appropriate parent solutions to
generate new offspring solutions? Uniform random selection,
i.e., selecting parent solutions from the archive uniformly at
random, is one of the simplest selection methods and has been
widely used in QD algorithms such as [Cully et al., 2015;
Nilsson and Cully, 2021; Fontaine and Nikolaidis, 2021;
Tjanaka et al., 2022]. Recently, Wang et al. [2022] proposed
a clustering-based selection method EDO-CS, which divides

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4336

the archive into several clusters and then selects good parent
solutions from each cluster. They compared different selec-
tion methods on various continuous control tasks, showing
the state-of-the-art performance of EDO-CS and also demon-
strating the importance of an efficient selection method.

2.2 Multi-objective Optimization-based Selection
Another branch of selection methods for QD are based on
Multi-objective Optimization (MO), which tries to maximize
multiple objective functions f1, . . . , fk : X → R simultane-
ously, i.e.,

max
x∈X

(f1(x), . . . , fk(x)) . (2)

The objective function vector (f1(x), . . . , fk(x)) is also rep-
resented as f(x) for convenience. Since the objectives are
usually conflicting, two solutions may be incomparable, and
the solution comparison is usually based on the Pareto dom-
inance relationship [Deb, 2011], as shown in Definition 1.
This also implies that there is no single optimal solution in
MO, but rather a set of Pareto optimal solutions.
Definition 1 (Pareto Dominance). A solution x Pareto dom-
inates x′ (denoted as x ≻ x′) if ∀i : fi(x) ≥ fi(x

′) and
∃i : fi(x) > fi(x

′). A solution x∗ is Pareto optimal if
∄x ∈ X such that x ≻ x∗. The set of all Pareto optimal
solutions is called Pareto Set (PS). The set of the correspond-
ing objective vectors of PS, i.e., {f(x) | x ∈ PS}, is called
Pareto Front (PF).

As the size of PF can be exponentially large, the goal of
MO is often to find a set of Pareto optimal solutions, which
can approximate the PF well. Furthermore, each Pareto op-
timal solution represents a unique trade-off between the ob-
jectives. Thus, the obtained set of solutions can be seen as
diverse from the perspective of multiple objectives, and MO
has been naturally used to select diverse parent solutions in
QD [Shen et al., 2020; Villin et al., 2021]. There have been
three types of MO formulation for parent selection in QD.
MOP1 [Villin et al., 2021] treats each behavior descriptor
function mi : X → R as an objective, i.e.,

max
x∈X

(m1(x), . . . ,mk(x)) , (3)

which promotes diversity only. MOP2 [Shen et al., 2020;
Villin et al., 2021] considers quality into the MO formulation:

max
x∈X

([f(x),m1(x)], . . . , [f(x),mk(x)]) , (4)

where for each objective [f(x),mi(x)], f(x) is prioritized
over mi(x), i.e., x is better than x′ if f(x) > f(x′), or
f(x) = f(x′) ∧ mi(x) > mi(x

′). MOP3 [Villin et al.,
2021] also considers quality, but treats the quality function f
as another objective directly, i.e.,

max
x∈X

(f(x),m1(x), . . . ,mk(x)) . (5)

However, these MO-based selection methods do not lead
to satisfactory performance of QD. This is because maximiz-
ing multiple behavior descriptor functions simultaneously ac-
tually only focuses on a certain area of the behavior space,
while the goal of QD is to cover the whole behavior space.
This has been observed in Figure 1, when MOP1–3 are ap-
plied to ME in the QD Hopper environment.

3 Method
In this section, we first introduce a new concept of surrounded
dominance for solution comparison in Section 3.1, which
considers all the possible directions of the behavior space.
Based on this, we propose the Non-Surrounded-dominated
Sorting (NSS) for selecting parent solutions in QD in Sec-
tion 3.2, and analyze its property in Section 3.3. Finally, we
use NSS as the selection method of ME, resulting in the algo-
rithm NSS-ME in Section 3.4.

3.1 Surrounded Dominance
As discussed in Section 2.2, the classical MO-based selec-
tion methods based on Pareto dominance prefer the solutions
in a certain direction of the behavior space (i.e., maximizing
all the behavior descriptor functions simultaneously). This
issue makes them hard to improve the performance of QD
algorithms efficiently, whose goal is to obtain a set of high-
quality solutions covering the whole behavior space. To ad-
dress this issue, we propose a new concept called surrounded
dominance, which considers all possible directions of the be-
havior space rather than a certain direction.

Definition 2 (Surrounded Dominance). For a solution x and
a solution set A, x is surrounded dominated by A if for each
d ∈ D = {−1, 1}k, there exists a solution x′ ∈ A such that
x′ ≻ x with respect to the objective vector d ⊙m(·), where
⊙ denotes the element-wise product of two vectors.

Different from classical Pareto dominance, surrounded
dominance is a relationship between a solution and a solu-
tion set. It uses a vector in {−1, 1}k to represent one di-
rection (where k denotes the number of behavior descrip-
tor functions), and the behavior descriptor vector m(·) =
(m1(·), . . . ,mk(·)) is multiplied by this vector for compar-
ison in this direction. A solution x is surrounded dominated
by a solution set A if for each direction d ∈ {−1, 1}k, there
is a solution x′ in A better than x, i.e., x′ ≻ x with respect
to d⊙m(·). That is, the behavior descriptors are considered
in all possible directions for comparison.

However, surrounded dominance only considers the be-
havior descriptor functions m1(·), . . . ,mk(·) (i.e., diversity)
but ignores the objective function f(·) (i.e., quality), mak-
ing it only have the ability of exploring the behavior space
but hardly improve the quality of the solutions or spread the
high-quality solutions to other areas. To address this issue,
we further propose surrounded dominance with quality.

Definition 3 (Surrounded Dominance with Quality). For a
solution x and a solution set A, x is surrounded dominated
by A if for each d ∈ D = {−1, 1}k, there exists a solution
x′ ∈ A such that f(x′) > f(x) and x′ ≻ x with respect to
the objective vector d⊙m(·), where ⊙ denotes the element-
wise product of two vectors.

That is, a solution x non-surrounded-dominated by a so-
lution set A implies that there exists one direction d ∈
{−1, 1}k such that no solution x′ ∈ A satisfies that f(x′) >
f(x) and x′ ≻ x with respect to d ⊙ m(·). Thus, by
selecting non-surrounded-dominated solutions for reproduc-
tion, QD algorithms can either explore new area of the be-
havior space or improve the quality of explored areas. In the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4337

absence of ambiguity, surrounded dominance is defaulted to
the version with quality for simplicity. An example for sur-
round dominance is provided in Appendix A.

3.2 Non-surrounded-dominated Sorting
Based on surrounded dominance, we propose the NSS
method to sort the solutions in an archive A. Specifically,
NSS divides the solutions in A into several hierarchical non-
surrounded-dominated fronts {Pi}i∈I , where Pi denotes the
i-th front, and |I| is the total number of fronts. The first
front P1 contains the solutions that are not surrounded dom-
inated by A. After determining {Pj}j∈{1,2,...,i}, a solution
in A \ {Pj}j∈{1,2,...,i} (i.e., the remaining solution set after
removing the solutions in {Pj}j∈{1,2,...,i} from the archive
A) is added into Pi+1 if it is not surrounded dominated by
A \ {Pj}j∈{1,2,...,i}. According to the definition of sur-
rounded dominance, the solutions in P1 have less-explored
or low-quality neighbor area in the behavior space, implying
that the offspring solutions generated from the solutions inP1

are more likely to explore the areas of the behavior space that
are not reached and spread the high-quality solutions to other
areas. Therefore, it is natural to select the solutions from the
top-ranked fronts as the parent solutions during the reproduc-
tion process of QD algorithms to improve their performance.
An example illustration in Figure 1 has clearly shown that
NSS can select more diverse solutions in the behavior space
than previous MO-based selection methods.

The detailed procedure of NSS is presented in Algorithm 1.
For each solution x in the archive A, NSS first initializes
a dominance counter vector c(x) ∈ R|D|, where D =
{−1, 1}k denotes the direction vector set, k is the number of
behavior descriptor functions, and the i-th dimension ci(x) is
the number of solutions x′ satisfying that f(x′) > f(x) and
x′ ≻ x with respect to the i-th direction di ⊙m(·) of the
behavior space. Note that di denotes the i-th direction vec-
tor in D. Accordingly, NSS initializes |D| dominating sets
{Qi(x)}|D|

i=1 for each solution x, where Qi(x) contains all
the solutions x′ such that f(x) > f(x′) and x ≻ x′ with re-
spect to di ⊙m(·). If the dominance counter vector c(x) of
a solution x contains 0 elements, x is not surrounded dom-
inated by the archive A according to Definition 3, and thus
will be put into P1 in line 2. After determining P1, the dom-
inance counter vectors of the remaining solutions in A \ P1

will be updated by ignoring those solutions in P1, and the so-
lutions with at least one 0 element in their dominance counter
vectors will be put into the second front P2. This process
will be repeated until all the solutions have been put into the
corresponding non-surrounded-dominated fronts, as shown in
lines 4–15. In particular, after determining Pi, NSS checks
the solutions in the dominating set Qj(x), for each solution
x ∈ Pi and each direction dj ∈ D in line 6. If the dom-
inance counter vector c(x′) of a solution x′ ∈ Qj(x) does
not have 0 elements, i.e., x′ has not been put into the fronts,
then its dominance counter cj(x′) in the corresponding direc-
tion dj will be reduced by 1 in line 8. If cj(x′) is reduced to
0, implying that x′ must be not surrounded dominated by the
remaining solution setA\{Pj}j∈{1,2,...,i}, then it will be put
into the next front Pi+1 in line 10.

Algorithm 1 Non-surrounded-dominated Sorting
Input: archive A
Output: hierarchical non-surrounded-dominated fronts {P1,
P2, . . .} of the archive A

1: For each solution x ∈ A, initialize its dominance counter
vector c(x) and dominating sets {Qi(x)}|D|

i=1;
2: Put all the solutions whose dominance counter vector has

at least one 0 element into P1;
3: Let i = 1;
4: while Pi ̸= ∅ do
5: Let Pi+1 ← ∅;
6: for all x ∈ Pi, j ∈ {1, 2, . . . , |D|}, x′ ∈ Qj(x) do
7: if c(x′) does not have 0 elements then
8: cj(x

′)← cj(x
′)− 1;

9: if cj(x′) = 0 then
10: Pi+1 ← Pi+1 ∪ {x′}
11: end if
12: end if
13: end for
14: i← i+ 1
15: end while
16: return {Pj}j∈{1,2,...,i−1}

3.3 Property of NSS
Let Aopt denote the optimal archive, which consists of the
highest-quality solution for each point in the behavior space.
Next, we prove in Theorem 1 that a surrounded dominated
solution will not appear in Aopt, implying that considering
only non-surrounded-dominated solutions by the NSS-based
selection will not miss good solutions. The proof utilizes a
behavior-quality function gAopt

: S → R as follows:

∀b ∈ S, gAopt(b) = f(xb), (6)

where xb is the solution having behavior b in Aopt, i.e.,
xb ∈ Aopt and m(xb) = b. It also relies on an assump-
tion that gAopt

is quasi-concave, which intuitively means that
the further away from the optimal behavior (i.e., the behavior
with the highest quality), the worse the quality of the behav-
ior. This assumption often holds in QD problems. For exam-
ple, in QD Walker [Nilsson and Cully, 2021], the goal is to
make the agent walk fast, where the quality is measured by
the agent’s forward speed, and the two-dimensional behavior
vector function is described by the fraction of time each foot
was touching the ground during an episode. Obviously, the
agent can walk fast only when the fractions of time are appro-
priate; the greater the fractions deviate from the appropriate
values, the slower the agent walks.
Theorem 1. A surrounded dominated solution will not ap-
pear in the optimal archive Aopt.

Proof. Assume that a solution x in the optimal archive Aopt

is surrounded dominated by an archive A. According to the
definition of surrounded dominance, i.e., Definition 3, we
have for each direction di ∈ D, there exists a solution xi such
that f(xi) > f(x) and xi ≻ x with respect to the objective
vector di ⊙m(·). Let B =

{
x1, . . . ,x|D|

}
. It is obvious

that m(x) is in the convex hull of the set {m(x′) | x′ ∈ B}.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4338

Algorithm 2 NSS-ME
Parameter: number T of total generations, number N of se-
lected solutions in each generation
Output: archive A

1: Let A ← ∅, t← 1;
2: while t ≤ T do
3: if t = 1 then
4: B(t)o ← Randomly Generate(N)
5: else
6: B(t)p ← NSS Select(A, N);
7: B(t)o ← Reproduction(B(t)p)
8: end if
9: Evaluate(B(t)

o);
10: Update Archive(A,B(t)o);
11: t← t+ 1
12: end while
13: return A

Let fBmin = minx′∈B f(x′). By the quasi-concave as-
sumption of the behavior-quality function gAopt

in Eq. (6),
the upper-level behavior set SfB min

of gAopt
with respect to

the threshold fBmin is a convex set. Since f(x′) ≥ fBmin

for any x′ ∈ B, the convex hull of {m(x′) | x′ ∈ B} must
be a subset of SfB min

. Thus, we have m(x) ∈ SfB min
,

implying f(x) ≥ fBmin = minx′∈B f(x′), contradicting
∀x′ ∈ B : f(x) < f(x′). Thus, the theorem holds.

3.4 NSS-based QD Algorithms

Finally, we apply NSS-based selection to the most popular
framework ME of QD algorithms, resulting in NSS-ME, as
presented in Algorithm 2. We will use NSS-ME to examine
the effectiveness of NSS in the experiments.

At the beginning, the archive A is created as an empty set
in line 1, and the N offspring solutions B(1)o are randomly
generated in line 4. After that, in each generation t (where
t > 1), NSS-ME first selects N parent solutions B(t)p from
the archive A by NSS Select(A, N) in line 6, which selects
N solutions from the top-ranked non-surrounded-dominated
fronts ofA obtained by NSS in Algorithm 1. Let {Pi}i∈I de-
note the non-surrounded-dominated fronts ofA, and let j∗ =

max{j ≥ 0 |
∑j

i=1 |Pi| ≤ N}. The N parent solutions B(t)p

consists of {Pi}i∈{1,2,...,j∗} and N −
∑j∗

i=1 |Pi| solutions
randomly selected from Pj∗+1. The offspring solutions B(t)o

are then generated via reproduction operators in line 7, such
as Gaussian mutation in ME [Mouret and Clune, 2015], ob-
jective gradient in OG-ME [Fontaine and Nikolaidis, 2021],
and policy gradient in PGA-ME [Nilsson and Cully, 2021;
Flageat et al., 2023]. After evaluating B(t)o , NSS-ME updates
the archiveA based on the rules of ME methods [Mouret and
Clune, 2015; Nilsson and Cully, 2021]. That is, each solution
x ∈ B(t)o is placed in its corresponding cell in the behavior
space according to its behavior m(x). If the cell is empty,
x is kept directly; otherwise, the one with a higher quality
between x and the solution occupying the cell is kept.

4 Experiments
To examine the performance of NSS, we conduct experiments
on synthetic functions and several complex tasks, including
QDGym, robotic arm, and Mario environment generation.
We consider the following three main metrics for evaluation.

• QD-Score: The total sum of objective (quality) values
across all solutions in the archive, as defined in Eq. (1).
It reflects both the quality and diversity of the solutions,
and is the most important metric to evaluate a QD algo-
rithm [Pugh et al., 2016; Cully and Demiris, 2018].

• Coverage: The total number of solutions in the archive.
It can measure the exploration ability of a QD algorithm.

• Best Performance: The largest objective value of so-
lutions in the archive. It can measure the exploitation
ability of a QD algorithm.

For each task, we will compare NSS with other parent selec-
tion methods under the same implementation of ME for fair
comparison. We run each method multiple times indepen-
dently, and report the average results. The detailed settings of
experiments are provided in Appendix B. Our code is avail-
able at https://github.com/lamda-bbo/NSS.

4.1 Synthetic Functions
First, we conduct experiments on a simple synthetic function
to show the advantage of NSS over other MO-based selec-
tion methods intuitively. We define a 2-dimensional behavior
descriptor vector function adopted from [Fontaine and Niko-
laidis, 2021]: the first and second dimensions are the sum of
the first and second half of the elements of a real-valued vec-
tor solution, respectively. The objective function is defined
as the sum of the distance between each element of the solu-
tion and the average of the half the element belongs to. We
compare NSS with random selection and previous MO-based
methods, including MOP1, MOP2, and MOP3 in Eqs. (3)–
(5) [Shen et al., 2020; Villin et al., 2021]. All of these selec-
tion methods use ME [Mouret and Clune, 2015] as the frame-
work and all the other components are set to the same.

As shown in Figure 2, NSS achieves the highest QD-Score
and fills the largest number of cells in the behavior descrip-
tor space, demonstrating its superior overall performance and
exploration ability. Although MOP2 and MOP3 have a lit-
tle higher best performance than NSS, they cannot cover the
behavior space well, and their QD-Scores are extremely low.
MOP1 performs badly in all three metrics. These previous
MO-based selection methods are even worse than random se-
lection on QD-Score and archive coverage. Figure 3 also vi-
sualizes the archives obtained by different MO-based meth-
ods. We can clearly observe that the solutions obtained by
MOP1–3 are concentrated in the upper right corner of the be-
havior space, while NSS can cover the behavior space well.

4.2 Complex Tasks
QDGym. It is a popular benchmark to evaluate QD al-
gorithms [Nilsson and Cully, 2021; Tjanaka et al., 2022;
Flageat et al., 2023]. We conduct experiments on four differ-
ent environments, i.e., QD Hopper, Walker, HalfCheetah, and
Ant. These tasks aim to generate a set of policies that move

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4339

https://github.com/lamda-bbo/NSS

0.0

0.2

0.4

Q
D

-S
co

re

1e6

0.0

0.2

0.4

A
rc

hi
ve

 C
ov

er
ag

e

0.0 0.2 0.4 0.6 0.8 1.0
Evaluations 1e6

80

85

90

B
es

t P
er

fo
rm

an
ce

Ramdom
MOP1
MOP2
MOP3
NSS

Figure 2: Plots of QD-Score, archive coverage and best performance
for random, NSS and other MO-based selection methods on the syn-
thetic function. The x-axis is the number of solutions evaluated.

forward as fast as possible and are diverse in the frequency
of feet use. Thus, the objective function is determined by the
agent’s forward speed, and the behavior descriptor functions
are defined as the fraction of time each foot was touching the
ground during an episode. The ME framework here uses the
implementation in [Mouret and Clune, 2015]. In addition,
we also conduct the experiments with PGA-ME [Nilsson and
Cully, 2021; Flageat et al., 2023], achieving similar results
which are shown in Appendix C.1 due to space limitation.
Robotic Arm. It aims to find a set of joint angle solutions
for a robotic arm that allows the end effector positions to
cover its reachable space [Cully et al., 2015; Fontaine and
Nikolaidis, 2021]. The objective function is defined as the
variance of the joint angles, and the behavior descriptor func-
tions are defined as the positions of the end effector. All the
parent selection methods on this task use OG-ME [Fontaine
and Nikolaidis, 2021] as the framework.
Mario Environment Generation. The QD algorithms can
be used to generate a set of diverse environments [Fontaine
et al., 2021; Bhatt et al., 2022]. We conduct experiments on
Mario environment generation, which aims to generate a set
of Mario environments with diverse properties. The gener-
ated environments are evaluated by simulating a pre-trained
agent in the environments provided in [Bhatt et al., 2022].
The objective function is defined as the completion rate. The
two behavior descriptor functions are defined as the number
of tiles of a certain type that are in the upper half of the 2D
grid, and the number of jumps of the agent, respectively. We
use the implementation of ME in [Mouret and Clune, 2015].

−200

−100

0

100

200

MOP1 MOP2

−200 0 200

−200

−100

0

100

200

MOP3

−200 0 200

NSS

55

60

65

70

75

80

85

90

Figure 3: Visualization of archives post-trained on the synthetic
function. The behavior space is divided into a 2-dimensional grid.
Cells are left blank when no solution with the corresponding be-
havior descriptor exists in the archive, and otherwise colored as the
objective values of the corresponding solutions.

Besides random selection and MOP1–3 compared in Sec-
tion 4.1, we run three more parent selection methods here.
NSLC [Lehman and Stanley, 2011] considers both the nov-
elty score and local quality score (i.e., the number of neigh-
bors that a solution outperforms), and selects parent solu-
tions from the corresponding Pareto front obtained by NSGA-
II [Deb et al., 2002]. Curiosity-based selection [Cully and
Demiris, 2018] calculates the curiosity score based on the
history information (i.e., increases the score if the offspring
solution improves the QD-Score; otherwise, decreases it),
and selects the solutions with higher curiosity scores. EDO-
CS [Wang et al., 2022] divides the archive into several clus-
ters and then selects good parent solutions from each cluster.
It has been shown that EDO-CS achieves state-of-the-art per-
formance in many tasks [Wang et al., 2022]. For these three
methods, we use their recommended hyperparameters.

The results are shown in Table 1. Instead of simply show-
ing the QD-Score of the returned archive, we use QD-Score
AUC [Tjanaka et al., 2022],∑T

t=1
(λ× QD-Score at generation t) , (7)

where T is the total number of generations, and λ is the num-
ber of evaluated solutions per generation. That is, the QD-
Score AUC measures the area under the QD-Score curve,
which quantifies the optimization efficiency of a QD algo-
rithm. It can be observed from Table 1 that NSS has the
best average rank, EDO-CS is the runner-up, and the previ-
ous MO-based selection methods (i.e., MOP1–3) performs
the worst (even worse than random selection). We also per-
form the Wilcoxon rank-sum test with significance level 0.05,
and the row ‘+/−/≈’ shows the clear advantage of NSS over
other methods. For the running time, NSS-based selection
costs 0.0618s per generation on QD HalfCheetah, which is

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4340

Environment Random MOP1 MOP2 MOP3 NSLC Curiosity EDO-CS NSS

QD Hopper 1.25 − 0.88 − 1.26 − 1.17 − 0.78 − 1.53 − 1.44 − 1.69
QD Walker 0.34 − 0.34 − 0.37 − 0.35 − 0.29 − 0.36 ≈ 0.38 ≈ 0.40

QD HalfCheetah 3.72 − 2.94 − 3.17 − 3.08 − 3.48 − 3.84 ≈ 3.94 ≈ 3.90
QD Ant 1.02 ≈ 0.77 − 0.88 − 0.80 − 0.90 − 1.05 ≈ 1.09 ≈ 1.04

Arm 18.09 − 17.26 − 9.89 − 20.17 − 21.77 + 18.30 − 18.59 − 20.52
Mario 98.45 − 41.05 − 38.29 − 40.54 − 112.72 − 138.65 ≈ 108.55 − 134.18

+/−/≈ 0/5/1 0/6/0 0/6/0 0/6/0 1/5/0 0/2/4 0/3/3
Average Rank 5.00 7.00 5.83 5.83 5.00 2.83 2.50 1.83

Table 1: QD-Score AUC (first four rows ×1012, last two rows ×106) of different methods on six complex tasks. The symbols ‘+’, ‘−’,
and ‘≈’ indicate that the result is significantly superior to, inferior to, and almost equivalent to NSS, respectively, according to the Wilcoxon
rank-sum test with significance level 0.05.

0.0 0.2 0.4 0.6 0.8 1.0
Behavior descriptor

0

500

1000

1500

2000

2500

O
bj

ec
tiv

e

Random
MOP1
MOP2
MOP3
NSLC
Curiosity
EDO-CS
NSS

Figure 4: Visualization of archives post-trained on QD Hopper. The
x-axis represents the 1-dimensional behavior descriptor value, and
the y-axis represents the objective function value of a solution.

much faster than 0.2918s of EDO-CS, which requires clus-
tering for selection. The complete results about running time
are shown in Appendix C.2. Figure 4 visualizes the archives
obtained by different methods on QD Hopper, which clearly
demonstrates the superiority of NSS. Compared with other
methods, NSS can cover a large area of the behavior space,
and generate more high-quality solutions. More visualization
results are shown in Appendix C.3.

4.3 Additional Results
In our experiments, we have used surrounded dominance with
quality in Definition 3 when implementing NSS-based selec-
tion. Here, we conduct ablation study to compare it with
the version without quality (i.e., using surrounded dominance
in Definition 2). Figure 5 shows that NSS archives higher
QD-Score and best performance, validating the importance
of considering the quality in surrounded dominance.

Furthermore, we analyze the influence of the number N of
selected solutions in each generation. Figure 6 shows that a
too small or too large N may lead to relatively worse per-
formance, but the performance is overall not very sensitive
to N . Note that N is a hyperparameter that comes with the
ME framework, while NSS is a selection method without ad-
ditional hyperparameters. On the contrary, other competitive

0.00 0.25 0.50 0.75 1.00
Evaluations 1e6

0

1

2

3

4

Q
D

-S
co

re

1e6

0.00 0.25 0.50 0.75 1.00
Evaluations 1e6

1000

0

1000

2000

B
es

t P
er

fo
rm

an
ce

NSS without quality
NSS

NSS without quality
NSS

Figure 5: QD-Score and best performance for NSS with and without
quality on QD Hopper.

0.00 0.25 0.50 0.75 1.00
Evaluations 1e6

0.0

0.5

1.0

1.5

2.0

Q
D

-S
co

re

1e6

0.00 0.25 0.50 0.75 1.00
Evaluations 1e6

0

1000

2000

B
es

t P
er

fo
rm

an
ce

N=50
N=100
N=200

N=50
N=100
N=200

Figure 6: QD-Score and best performance for different values of
number N of selected solutions in each generation on QD Hopper.

selection methods (i.e., NSLC, Curiosity and EDO-CS) have
additional hyperparameters, e.g., Curiosity requires to decide
the reward and penalty values of curiosity score. The ablation
study on the number M of cells is provided in Appendix C.4.

5 Conclusion
The parent selection methods play an important role in QD al-
gorithms. This paper analyzes why classical MO-based selec-
tion fails, and then proposes the NSS-based selection method
by considering all directions in the behavior space. Experi-
ments on synthetic functions and several complex tasks show
the superiority of NSS. NSS can be incorporated into various
QD algorithms, which can be beneficial in real-world appli-
cations. Improving the scalability of NSS w.r.t the number of
behavior descriptor functions is an interesting future work.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4341

References
[Allard et al., 2022] Maxime Allard, Simón C Smith, Kon-

stantinos Chatzilygeroudis, Bryan Lim, and Antoine
Cully. Online damage recovery for physical robots with
hierarchical quality-diversity. arXiv:2210.09918, 2022.

[Bäck, 1996] Thomas Bäck. Evolutionary Algorithms in
Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University
Press, 1996.

[Bhatt et al., 2022] Varun Bhatt, Bryon Tjanaka, Matthew C.
Fontaine, and Stefanos Nikolaidis. Deep surrogate assisted
generation of environments. In Advances in Neural Infor-
mation Processing Systems 35 (NeurIPS), New Orleans,
LA, 2022.

[Chalumeau et al., 2023] Felix Chalumeau, Raphael Boige,
Bryan Lim, Valentin Macé, Maxime Allard, Arthur Flajo-
let, Antoine Cully, and Thomas Pierrot. Neuroevolution
is a competitive alternative to reinforcement learning for
skill discovery. In The 11th International Conference on
Learning Representations (ICLR), Kigali, Rwanda, 2023.

[Chatzilygeroudis et al., 2021] Konstantinos Chatzilyger-
oudis, Antoine Cully, Vassilis Vassiliades, and Jean-
Baptiste Mouret. Quality-diversity optimization: A
novel branch of stochastic optimization. In Black Box
Optimization, Machine Learning, and No-Free Lunch
Theorems, pages 109–135. Springer, 2021.

[Cully and Demiris, 2018] Antoine Cully and Yiannis
Demiris. Quality and diversity optimization: A unifying
modular framework. IEEE Transactions on Evolutionary
Computation, 22(2):245–259, 2018.

[Cully et al., 2015] Antoine Cully, Jeff Clune, Danesh Tara-
pore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503–507, 2015.

[Deb et al., 2002] Kalyanmoy Deb, Samir Agrawal, Amrit
Pratap, and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[Deb, 2011] Kalyanmoy Deb. Multi-objective optimisation
using evolutionary algorithms: An introduction. In Multi-
objective Evolutionary Optimisation for Product Design
and Manufacturing, pages 3–34. Springer, 2011.

[Do et al., 2022] Anh Do, Mingyu Guo, Aneta Neumann,
and Frank Neumann. Analysis of evolutionary diversity
optimization for permutation problems. ACM Transac-
tions on Evolutionary Learning and Optimization, 2(3):1–
27, 2022.

[Ecoffet et al., 2021] Adrien Ecoffet, Joost Huizinga, Joel
Lehman, Kenneth O Stanley, and Jeff Clune. First return,
then explore. Nature, 590(7847):580–586, 2021.

[Eysenbach et al., 2018] Benjamin Eysenbach, Abhishek
Gupta, Julian Ibarz, and Sergey Levine. Diversity is all
you need: Learning skills without a reward function. In
The 6th International Conference on Learning Represen-
tations (ICLR), Vancouver, Canada, 2018.

[Flageat et al., 2023] Manon Flageat, Felix Chalumeau, and
Antoine Cully. Empirical analysis of PGA-MAP-Elites for
neuroevolution in uncertain domains. ACM Transactions
on Evolutionary Learning and Optimization, 2023.

[Fontaine and Nikolaidis, 2021] Matthew Fontaine and Ste-
fanos Nikolaidis. Differentiable quality diversity. In
Advances in Neural Information Processing Systems 34
(NeurIPS), pages 10040–10052, Virtual, 2021.

[Fontaine et al., 2021] Matthew C. Fontaine, Ruilin Liu,
Ahmed Khalifa, Jignesh Modi, Julian Togelius, Amy K.
Hoover, and Stefanos Nikolaidis. Illuminating mario
scenes in the latent space of a generative adversarial net-
work. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI), pages 5922–5930, Virtual,
2021.

[Kumar et al., 2020] Saurabh Kumar, Aviral Kumar, Sergey
Levine, and Chelsea Finn. One solution is not all you
need: Few-shot extrapolation via structured MaxEnt RL.
In Advances in Neural Information Processing Systems 34
(NeurIPS), pages 8198–8210, Vancouver, Canada, 2020.

[Lehman and Stanley, 2011] Joel Lehman and Kenneth O.
Stanley. Evolving a diversity of virtual creatures through
novelty search and local competition. In Proceedings
of the 13th ACM Genetic and Evolutionary Computation
Conference (GECCO), pages 211–218, Dublin, Ireland,
2011.

[Lupu et al., 2021] Andrei Lupu, Hengyuan Hu, and Jakob
Foerster. Trajectory diversity for zero-shot coordination.
In Proceedings of the 38th International Conference on
Machine Learning (ICML), pages 7204–7213, Virtual,
2021.

[Miao et al., 2022] Jiayu Miao, Tianze Zhou, Kun Shao,
Ming Zhou, Weinan Zhang, Jianye Hao, Yong Yu, and
Jun Wang. Promoting quality and diversity in population-
based reinforcement learning via hierarchical trajectory
space exploration. In Proceedings of the 39th IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 7544–7550, Philadelphia, PA, 2022.

[Mouret and Clune, 2015] Jean-Baptiste Mouret and Jeff
Clune. Illuminating search spaces by mapping elites.
arXiv:1504.04909, 2015.

[Nikfarjam et al., 2022] Adel Nikfarjam, Amirhossein
Moosavi, Aneta Neumann, and Frank Neumann. Com-
puting high-quality solutions for the patient admission
scheduling problem using evolutionary diversity optimisa-
tion. In Proceedings of the 17th International Conference
on Parallel Problem Solving from Nature (PPSN), pages
250–264, Dortmund, Germany, 2022.

[Nilsson and Cully, 2021] Olle Nilsson and Antoine Cully.
Policy gradient assisted MAP-Elites. In Proceedings of the
23th ACM Genetic and Evolutionary Computation Confer-
ence (GECCO), page 866–875, Lille, France, 2021.

[Parker-Holder et al., 2020] Jack Parker-Holder, Aldo Pac-
chiano, Krzysztof M. Choromanski, and Stephen J.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4342

Roberts. Effective diversity in population based reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems 34 (NeurIPS), pages 18050–18062, Van-
couver, Canada, 2020.

[Pugh et al., 2016] Justin K. Pugh, Lisa B. Soros, and Ken-
neth O. Stanley. Quality diversity: A new frontier for evo-
lutionary computation. Frontiers Robotics AI, 3:40, 2016.

[Salehi et al., 2022] Achkan Salehi, Alexandre Coninx, and
Stephane Doncieux. Few-shot quality-diversity optimiza-
tion. IEEE Robotics and Automation Letters, 7(2):4424–
4431, 2022.

[Sheikh et al., 2022] Hassam Sheikh, Kizza Frisbee, and
Mariano Phielipp. DNS: Determinantal point process
based neural network sampler for ensemble reinforcement
learning. In Proceedings of the 39th International Confer-
ence on Machine Learning (ICML), pages 19731–19746,
Baltimore, MD, 2022.

[Shen et al., 2020] Ruimin Shen, Yan Zheng, Jianye Hao,
Zhaopeng Meng, Yingfeng Chen, Changjie Fan, and Yang
Liu. Generating behavior-diverse game ais with evolution-
ary multi-objective deep reinforcement learning. In Pro-
ceedings of the 29th International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 3371–3377, Yokohama,
Japan, 2020.

[Tjanaka et al., 2022] Bryon Tjanaka, Matthew C. Fontaine,
Julian Togelius, and Stefanos Nikolaidis. Approximating
gradients for differentiable quality diversity in reinforce-
ment learning. In Proceedings of the 24th ACM Genetic
and Evolutionary Computation Conference (GECCO),
page 1102–1111, Boston, MA, 2022.

[Villin et al., 2021] Victor Villin, Naoki Masuyama, and
Yusuke Nojima. Effects of different optimization formula-
tions in evolutionary reinforcement learning on diverse be-
havior generation. In Proceedings of the 7th IEEE Sympo-
sium Series on Computational Intelligence (SSCI), pages
01–08, Orlando, FL, 2021.

[Wang et al., 2022] Yutong Wang, Ke Xue, and Chao Qian.
Evolutionary diversity optimization with clustering-based
selection for reinforcement learning. In The 10th Inter-
national Conference on Learning Representations (ICLR),
Virtual, 2022.

[Xue et al., 2022] Ke Xue, Yutong Wang, Lei Yuan,
Cong Guan, Chao Qian, and Yang Yu. Heteroge-
neous multi-agent zero-shot coordination by coevolution.
arXiv:2208.04957, 2022.

[Yu et al., 2023] Chao Yu, Jiaxuan Gao, Weilin Liu, Botian
Xu, Hao Tang, Jiaqi Yang, Yu Wang, and Yi Wu. Learning
zero-shot cooperation with humans, assuming humans are
biased. In The 11th International Conference on Learning
Representations (ICLR), Kigali, Rwanda, 2023.

[Yuan et al., 2023a] Lei Yuan, Feng Chen, Zongzhang
Zhang, and Yang Yu. Communication-robust multi-agent
learning by adaptable auxiliary multi-agent adversary gen-
eration. arXiv:2305.05116, 2023.

[Yuan et al., 2023b] Lei Yuan, Ziqian Zhang, Ke Xue, Hao
Yin, Feng Chen, Cong Guan, Lihe Li, Chao Qian, and
Yang Yu. Robust multi-agent coordination via evolution-
ary generation of auxiliary adversarial attackers. In Pro-
ceedings of the 37th AAAI Conference on Artificial Intelli-
gence (AAAI), Washington, DC, 2023.

[Zhang et al., 2023] Ziqian Zhang, Lei Yuan, Lihe Li,
Ke Xue, Chengxing Jia, Cong Guan, Chao Qian, and Yang
Yu. Fast teammate adaptation in the presence of sudden
policy change. In Preoceedings of the 39th Conference
on Uncertainty in Artificial Intelligence (UAI), Pittsburgh,
PA, 2023.

[Zhou et al., 2019] Zhi-Hua Zhou, Yang Yu, and Chao Qian.
Evolutionary Learning: Advances in Theories and Algo-
rithms. Springer, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

4343

	Introduction
	Background
	Quality Diversity
	Multi-objective Optimization-based Selection

	Method
	Surrounded Dominance
	Non-surrounded-dominated Sorting
	Property of NSS
	NSS-based QD Algorithms

	Experiments
	Synthetic Functions
	Complex Tasks
	Additional Results

	Conclusion

